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Abstract: Coagulation involves a complex set of events that are important in maintaining 

hemostasis. Biochemical interactions are classically known to regulate the hemostatic 

process, but recent evidence has revealed that mechanical interactions between platelets 

and their surroundings can also play a substantial role. Investigations into platelet 

mechanobiology have been challenging however, due to the small dimensions of platelets 

and their glycoprotein receptors. Platelet researchers have recently turned to 

microfabricated devices to control these physical, nanometer-scale interactions with a 

higher degree of precision. These approaches have enabled exciting, new insights into the 

molecular and biomechanical factors that affect platelets in clot formation. In this review, 

we highlight the new tools used to understand platelet mechanobiology and the roles of 

adhesion, shear flow, and retraction forces in clot formation. 
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1. Introduction  

Platelets are one of the smallest cells in the human body, having discoid shapes with 2–4 μm 

diameters, but they play a large role in preventing blood loss when damage has occurred in a vessel [1,2]. 

Platelets initiate hemostasis by using their glycoprotein receptors to form attachments to the damaged 

tissue, which arrests them from circulating in the blood (Figure 1a) [3,4]. Once attached, platelet 

release a variety of agonists and soluble adhesive proteins from within their granules to activate and 

recruit more platelets to the wound site (Figure 1b) [5]. Platelets can also act as biomechanical 

elements for the growing clot structure by using their glycoprotein receptors to form bridges between 

other platelets and the surrounding protein meshwork that forms the hemostatic plug (Figure 1c). They 

further reinforce the integrity of the plug by using their cytoskeletal filaments to undergo shape change 

[6,7], forming protrusions that enable more physical connections with other platelets within the clot, 

while also using their actin-myosin interactions to pull the clot into a more compact structure that 

stabilizes it against the vessel wall [8].  

Figure 1. Platelet Adhesion and Aggregation: (a) Platelets adhere to the vessel wall when 

exposed to matrix proteins. (b) Adhered platelets undergo shape change and release soluble 

adhesive proteins from their α-granules. (c) A hemostatic plug is formed when platelets 

adhere to fibrin and each other. Specific receptor-ligand bonds mediate (d) platelet 

adhesion and (e) platelet aggregation.  

 

Glycoprotein receptors in platelets bind to ligands sites found within the extracellular matrix (ECM) 

of the vessel wall and soluble adhesive proteins that platelets release [9]. ECM proteins of the vessel 

wall consist mainly of collagen and laminin, but soluble adhesive proteins like von Willebrand Factor 
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(vWF), fibrinogen, and fibronectin can also deposit onto the wound site to enhance platelet adhesion 

(Figure 1d) [10–13]. The initial arrest of a platelet from the blood flow involves the glycoprotein 

receptor GPIb-IX-V, but subsequent engagement of GPIV to collagen can activate integrins α2β1 and 

αIIbβ3, which further assist in the adhesion process. P-selectin receptors on the surface of activated 

endothelial cells can mediate platelet adhesion through interactions with P-selectin glycoprotein ligand 1 

(PSGL1) on a platelet’s membrane after degranulation [14,15]. Moreover, platelet GPIbα receptors can 

also interact with P-selectin to aid in homing platelets to the site of injury [16]. Receptor-ligand 

interactions are nano-scale and a single platelet can have a multitude of different receptor-ligand 

interactions during clot formation (Figure 1e). Understanding these small and complex interactions 

requires approaches that can specifically control the ligand presentation on a surface and have 

sufficient measurement sensitivity to interrogate their biophysical properties. 

Physical forces also play a critical role in hemostasis by regulating the mechanobiology of platelets. 

When a platelet adheres to a wound site, adhesive forces keep the platelet attached and prevent it from 

being dislodged by the blood stream. Receptors GPIb-IX-V and αIIbβ3 are known to have a large role in 

platelet mechanobiology because they regulate the initial tethering to the vessel wall and the activation 

of platelet shape change and force generation [17]. Upon activation, G-actin monomers in platelets 

polymerize into F-actin filaments, allowing platelets to undergo shape change. Platelet activation also 

leads to phosphorylation of non-muscle myosin, which can in turn, engage with actin and form 

contractile filaments. The contractile forces produced by platelets are in the range of piconewtons for a 

single actin-myosin complex to nanonewtons for single platelets, but are vastly important in stabilizing 

a clot by compacting its structure [18] and in strengthening platelet adhesions through integrin-related 

mechanotransduction [19]. Another type of force that is important in hemostasis is shear forces applied 

to platelets due to flow of blood. Shear forces can cause platelets to detach, but are also known to have 

a major role in the steps from platelet adhesion to aggregation.  

A multitude of engineered devices have been developed to look at adhesive, contractile, and shear 

forces and the role of agonist and receptor-ligand bindings on the clot formation process [5,20–25]. 

Among the technological advances for studying platelets, micro- and nano-scale tools have been used 

recently to understand platelet biology and thrombus formation dynamics [24,26,27]. The advantage of 

these tools is that platelets and their adhesion receptors are micro- and nano-scale is size, so devices 

that are in the same size range as platelets can be used as programmable materials, in which the 

physical and adhesive interactions between platelets and their surroundings can be controlled and 

measured. In this review, we will highlight the tools used to examine clot formation with an emphasis 

on the tools used to study the role of hemodynamic shear and platelet forces. 

2. Platelet-Shear Flow Interactions  

Early studies on platelet adhesion and aggregation were conducted in the absence of shear  

flow [28–30]. Soluble factors were assumed to be the main mechanisms driving hemostasis and that 

shear flow had a minor effect. These studies on platelets under static conditions examined the effect of 

different ECM proteins and biomaterials on platelet adhesion, shape change, and spreading, and the 

role of different agonists and inhibitors on platelet aggregation [30,31]. These studies were helpful in 

gaining a better understanding of the process, but shear forces were later recognized as having a more 
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identify the importance of vWF-GPIb and fibrinogen-αIIbβ3 interactions under higher shear  

rates [40–43]. The downside however was that since the adhesive wall was a vessel segment, platelets 

were exposed to the native ECM, which had an uncharacterized composition of ligands with which the 

platelets could interact, making it difficult to study specific receptor-ligand interactions. 

Tubular flow chambers allowed for better control over the adhesive interactions, but it did not have 

the same control over the shear rate as a result of the ex vivo nature of the assay. The typical setting of 

these assays consists of a tube coated with the targeted ECM or anticoagulant and surgically inserted 

between an artery and vein to form a shunt. This approach allowed for studies on platelet binding to 

surfaces with well-defined ECMs [44]. In addition, the tubular devices were helpful in studying drug 

effects on platelets due to the usage of blood in the absence of anticoagulants. Different synthetic graft 

and stent materials could be examined using these devices because of the particular bio-compatibility 

issues that they can introduce when exposed to the blood and the potential for clot formation possibly 

leading to restenosis, embolism, or other secondary defects [45–47].  

Cone and plate flow devices are another type of devices used to expose platelets to uniform and 

well-defined shear rates (Figure 2c) [38,48]. To run the assay, a sample of blood or platelet-rich 

plasma is placed between a rotating cone and a stationary well, which exposes the sample to the shear 

rate that is determined by the rotation speed and the angle of the cone [49,50]. Cone and plate flow 

devices have been used to investigate platelet adhesion and aggregation on different ECMs [51–53]. 

More recently, these devices have been used to produce more complicated flow regimes, such as 

pulsatile shear stresses that mimic stenosed regions or recirculation zones [54]. Moreover, these 

devices has been combined with an upright epi-fluorescence microscope to allow for real-time studies 

of the thrombogenecy of biomaterials [55]. One shortcoming of this assay is that the open surface at 

the rotating cone can lead to evaporation of the sample. 

Parallel plate flow chamber is used most frequently among the types of flow perfusion systems 

(Figure 2d) [56,57]. The early design was a channel with a cover-glass holder at the bottom where 

different ECMs could be introduced to the system using a cover-glass that was pre-treated with 

adhesive proteins. After exposure to flowing platelets or whole blood, the cover-glass can be removed, 

fixed, stained, and analyzed for the platelet adhesion and thrombus formation [58]. Later with the 

usage of new imaging techniques, channels were made of clear and thinner materials to allow for a 

microscope objected to be close enough for live-microscopy studies of platelet adhesion and thrombus 

formation [11,22]. An advantage of parallel plate flow chambers over the other devices is that they can 

be modified to mimic different in vivo conditions; among these, pulsatile flow [59] and disturbed  

flow [60] can be generated with a slight modifications to pumping system or flow chamber design. 

Porous membranes can also be used instead of cover-glass to allow for controlled introduction of 

chemicals to the system through the membrane [61]. These membranes help to mimic the release of 

different chemicals from endothelial cells such as agonists and anticoagulants. One limitation with 

parallel plate flow chambers is the use of anti-coagulated blood in these studies; to overcome this 

limitation, these chambers have also been used ex vivo by surgically inserting them into the subject’s 

body in order to study the thrombogenic characteristics of grafts and stents [62]. Parallel plate flow 

chambers have been very successful in determining many of the unknowns in platelet adhesion and 

aggregate formation, including the effect of shear on platelet-ECM binding mechanisms as well as clot 

formation and stability [7,10,11,21,22,63,64].  
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2.2. Microfluidic Devices 

Miniaturized versions of parallel plate flow chambers have been developed to improve the  

micro-and nano-scale capabilities for studying platelets under shear flow [65,66]. These microfluidic 

devices are typically made of a silicone rubber (polydimethylsiloxane, PDMS), which can be cast 

against a silicon master to replicate its features [67]. This process is referred to as soft lithography and 

allows for high precision in replicating micro- and nano-scale features that have been built onto a 

master silicon wafer using processing tools for semiconductor fabrication [68]. To build the 

microfluidic devices, multiple layers of PDMS are bonded together, where each layer contains a part of 

the design of channels and posts [69]. This method is quite versatile and a variety of unique and 

creative chamber configurations have been achieved. 

Microfluidic devices have been used in biological studies because they have the capability to mimic 

the in vivo conditions closely. They have been used effectively in vascular research studies, e.g., shear 

flow mechanotransduction, cell-cell interactions, cell migration, and targeted drug delivery [70,71].  

In particular, they have been used to confirm the observations made using conventional flow devices, 

but at the same time, they provide powerful insights into the interactions between platelet receptors 

and matrix ligands under different shear rates [10,12,72]. Additionally, they have been used to study 

clot formation and the role of different agonists [73], anticoagulants [74], strain micro-circulation 

zones [75] (Figure 3). 

These devices have been able to successfully resolve one of the major short comings of 

conventional flow chambers, which is the high volume consumption of sample blood and reagents. 

Human subjects provide adequate volumes of sample blood to run assays using parallel plate flow 

chambers, but in some cases, a sample volume of blood is limited, e.g., sickle cell anemia. Blood from 

mice, which is advantageous for studying genetic modification, has major limitations in sample volume 

since an average-sized adult mouse can yield less than 1 mL of blood volume [76]. In comparison, 

microfluidic devices require lower volumes of sample blood, usually less than 50 µL [73,77–79]. The 

lower volumes possible with microfluidics have expanded the studies on platelets from knock-out mice, 

which in turn have provided more insights on the role of platelet receptors in adhesion and  

aggregation [79,80]. 

Microfluidic devices have also been helpful in running assays at different shear rates [81]. A variety 

of environments can be introduced under these shear rates, using patterning techniques to create 

wound-like environments with well-defined areas of adhesive protein (Figure 3a) [77]. They have 

enabled studies on aggregate formation to be run with multiple experiments simultaneously  

(Figure 3b) [74,82] or with controlled concentration of agonists (Figure 3c) [73]. Of particular 

noteworthiness, a novel microfluidic device has been used to investigate aggregate formation after 

exposure to micro-gradients in the shear rate (Figure 3d) [24,75]. In these studies, the walls of the 

microchannel were built with a section that narrowed and then expanded in width as the flow passed 

over an obstruction in the channel. This configuration was used to generate a gradient in the shear rate 

that was similar to what platelets experienced as they pass through a stenosis in vivo. Changes in the 

shear rate were able to initiate platelet adhesion and aggregation, even when the platelet response to 

conventional agonists was blocked. The implications of these studies suggest that biomechanical 

factors can activate platelets independent of biochemical factors. 
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cup that holds the sample and is rotated back and forth by a small angle. A pin is suspended in the 

blood sample and is normally stationary, but when fibrin strands and platelet adhesions formed, the 

torque from the rotating cup is transferred to the pin, which then rotates. The strength of these fibrin 

strands and platelet forces affect the motion of the pin. Its rotation is measured by a transducer  

and reported as the output of the system. Key information obtained by thromboelastography consists of 

the initiation of coagulation, propagation kinetics, fibrin-platelet interaction, clot firmness, and 

fibrinolysis [93]. The main shortcomings of this method, however, are its sensitivity to mechanical 

vibrations and long assay time in the absence of chemical agonists. To address these shortcomings a 

variation of this method called rotating thromboelastography (ROTEM) has been designed which 

transmits the pin signal through an optical detector and the movement is initiated by the pin [95]. This 

technique is considered a whole blood coagulation assay and is used to predict surgical bleeding and 

aid to determine blood product usage for a patient clinically [91].  

Platelet clot strips was the first technique to directly examine contractile forces within the clots 

(Figure 4d). Clot strips are formed by pouring platelet-rich plasma into a cylindrical tube and 

activating them with thrombin or heating up the clots [96–98]. After removing the clots strip from the 

tube, one end is tied to a rigid support and the other is tied to a load cell which monitors the retraction 

force in the sample. This technique has been used to study the effect of different agonists on the 

tension generated in a clot [96], receptors involved in fibrin-platelet binding [99], and alignment of 

fibrin in the clot contraction [97]. The positive aspect of this method is that since the assays are done in 

a fluid bath, it is possible to change the conditions of the experiment by changing the bath solution. Its 

shortcoming, however, is that the clot needs to be directly manipulated when it is mounted onto the 

load cell, resulting in mechanical disruption of the fibrin-platelet adhesions which can compromise the 

testing results. 

Clot retractometry examines platelet clots by directly forming them between a cup and plate which 

is coupled to a strain gauge transducer with a voltage output (Figure 4e) [100,101]. The plate is in 

contact with the blood sample and during clotting, fibrin strands as well as platelet aggregates connect 

the cup and plate. Once clots are formed, platelets forces pull on the fibrin strands, which in turn pull 

down on the plate. This movement is then transferred to a load cells that reports the output of the 

system. The advantage that this method over others is that it allows for measurement of the force at the 

onset of clot formation and does not require additional physical handling of the growing clot. Clot 

retractometry has been used extensively to investigate the clinical relevance of platelet forces in 

cardiovascular disease and medical treatments [101–110]. 

3.2. Micro/Nano Force Assays 

Conventional force measurement techniques discussed here have been successful in demonstrating 

the importance of platelet forces in hemostasis. There is, however, an inherent size and resolution 

limitation within these methods. Platelet cytoskeleton-fibrin interactions are nanoscale and complex 

with glycoprotein receptors playing different roles in adhesion, aggregation, and clot retraction. The 

macro-scale dimensions of the conventional techniques do not allow for microscopic imaging, which 

can help reveal the dynamic features of thrombus formation. Moreover, the fibrin meshwork has 

strain-stiffening behavior under load, which confounds the direct measurement of platelet forces. 
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Therefore, researchers have begun to explore tools that come from micro- and nano-scale technologies 

in order to gain more insight into the mechanobiology of platelets.  

Micropost arrays are a novel microscale force sensor that have been used previously to measure 

cellular traction forces [111,112]. This sensor is an array of micro-size, flexible, vertical posts that 

bend in proportion to the forces that cells apply at tips of the posts. The posts are made from PDMS 

using soft lithography, similar to the fabrication of microfluidic devices. These arrays have been used 

to study cell migration [112], cell spreading [111], and traction forces [111,113–118]. Forces within 

monolayers [112,119–122] as well as tissue constructs [123], and cell-cell forces [124,125] have also 

been examined using this tool. At the same time a variety of cell studies have been done using  

different types of cells, such as fibroblasts [111,116,117,126,127], smooth muscle cells [111,128], 

cardiomyocytes [129,130], epithelial cells [115,126], endothelial cells [128], and stem cells [114,131]. 

Micropost arrays are considered a novel tool for cell mechanic studies because they can be used to map 

the traction forces of cells spread over multiple posts. Additionally, live studies are possible with 

microposts to investigate the dynamics of cytoskeletal force development. The unique property of this 

sensor is that it can be bio-functionalized with different adhesive proteins to study specific  

receptor-ligand interactions. Micropost arrays have been recently used to investigate platelet forces  

in more detail (Figure 5a). The arrays have been used to examine the effect of concentration of 

thrombin on contractile forces of platelet aggregates as well as the adhesive interactions with 

fibronectin and fibrinogen [26]. Comparisons also have been done between quasi-static and live 

imaging of aggregate formation to show its spatio-temporal capability in assessing platelet 

functionality and thrombus formation. 

Atomic force microscopy (AFM) is another technique that is typically used for nano-scale 

characterization of materials, but it has been adapted to study the mechanical properties of cells and 

single molecules [132]. AFM uses a flexible tip that acts like a cantilever to measure forces in the 

vertical direction. The deflection of the tip is measured from a laser beam that is reflected off the back 

of the tip and towards an array of photodiode detectors. AFMs have been used to investigate cell 

mechanics and cytoskeletal elasticity [133–140] as well as cell-cell forces [141–143], receptor-ligand 

dynamic interactions [141,144], and cytoskeletal proteins [145,146]. Recently, AFM has been used to 

study the nature of the ligand-receptor bond between vWF and GPIbα in platelets. Platelet adhesion to 

the vessel wall likely involves catch-bonds between vWF and GPIbα because high shear stress leads to 

greater binding [147]. This observation is similar to the catch bond-like behavior in other integrin 

types where the strength of the bond increases with the applied external force [148,149]. Using an 

AFM, the bond lifetime of a GPIbα-coated tip to a surface coating of vWF A1-domain was confirmed 

to have catch-bond behavior because the lifetime of the bond increased up to a peak load value  

and then reduced at higher loads as the catch-bond transitioned to a slip-bond [150]. Another 

significant study done using AFM was the direct measurement of retraction forces from a single 

platelet (Figure 5b) [27]. The AFM tip was integrated with a fluorescence microscope and the tip was 

coated with fibrinogen. This technique was not only able to measure the contractile force of single 

platelet, but it was also able to use AFM tips of different spring-constants to show that platelet regulate 

their retraction forces in proportion to the stiffness of the surround clot structure. These findings 

indicate that clot stiffening happens through the contraction of platelets as well as by the strain-stiffening 

of fibrin strands under the tension generated by platelet forces.  
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Micro/nano devices can provide new capabilities in studying platelets and hemostasis. They 

represent a programmable environment that can be modified to represent different in vivo conditions 

like shear, stiffness, or agonist concentration. Moreover, it may be possible to integrate the 

biomechanical assays that measure platelet forces with microfluidic devices in order to study the 

transitions from adhesion, aggregation, and clot retraction while also subjecting platelets to the 

biomechanical and biochemical triggers that occur in vivo. These types of assays can become useful 

for studies on genetic defects that affect the mechanobiology of platelets. Mutations in the GPIb-IX-V 

complex (Bernard-Soulier syndrome), integrin αIIbβ3 (Glanzmann thrombasthenia), or the MYH9 gene 

that encodes the heavy chain of nonmuscle myosin IIA (May-Hegglin anomaly, Fechtner, Epstein, and 

Sebastian syndromes) can lead to serious bleeding disorders due to impaired adhesion, aggregation, or 

clot stability [155,156]. Biomechanical assays for platelets can help diagnose these clinical conditions 

and can open the door to new treatments for improved hemostasis. 
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