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Abstract: The aim of this work was to investigate the immunomodulatory activities of 

Rubus coreanus Miquel extract-loaded gelatin nanoparticles. The mean size of the produced 

nanoparticles was 143 ± 18 nm with a bandwidth of 76 nm in the size distribution and a 

maximum size of ~200 nm, which allows effective nanoparticle uptake by cells. Confocal 

imaging confirmed this, since the nanoparticles were internalized within 30 min and 

heterogeneously distributed throughout the cell. Zeta-potential measurements showed that 

from pH = 5 onwards, the nanoparticles were highly negatively charged, which prevents 

agglomeration to clusters by electrostatic repulsion. This was confirmed by TEM imaging, 

which showed a well dispersed colloidal solution. The encapsulation efficiency was nearly 

60%, which is higher than for other components encapsulated in gelatin nanoparticles. 

Measurements of immune modulation in immune cells showed a significant effect by the 

crude extract, which was only topped by the nanoparticles containing the extract. 
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Proliferation of B-, T- and NK cells was notably enhanced by Rubus coreanus-gelatin 

nanoparticles and in general ~2–3 times higher than control and on average ~2 times higher 

than ferulic acid. R. coreanus-gelatin nanoparticles induced cytokine secretion (IL-6 and 

TNF-α) from B- and T-cells on average at a ~2–3 times higher rate compared with  

the extract and ferulic acid. In vivo immunomodulatory activity in mice fed with R. 

coreanus-gelatin nanoparticles at 1 mL/g body weight showed a ~5 times higher antibody 

production compared to control, a ~1.3 times higher production compared to the extract 

only, and a ~1.6 times higher production compared to ferulic acid. Overall, our results 

suggest that gelatin nanoparticles represent an excellent transport vehicle for Rubus 

coreanus extract and extracts from other plants generally used in traditional Asian 

medicine. Such nanoparticles ensure a high local concentration that results in  

enhancement of immune cell activities, including proliferation, cytokine secretion, and 

antibody production.  

Keywords: Rubus coreanus Miquel; nano-encapsulation process; nanoparticle; immune 

activity; immunomodulation; edible polymer; gelatin; ferulic acid; cytotoxicity 

 

1. Introduction 

Biodegradable nanoparticles have been used frequently as drug delivery vehicles due to their high 

bioavailability, good encapsulation properties, and relative lack of toxicity [1]. As the basis for a 

natural encapsulation agent, gelatin is widely used in a number of parenteral formulations because of 

its biocompatibility [2], biodegradability [3], and low antigenicity [4]. Gelatin, which is a mixture of 

soluble proteins and peptides, is obtained by partial hydrolysis of collagen, the main fibrous protein 

constituent in bones, cartilage, and skin [5]. Furthermore, because gelatin is a complex poly-ampholyte 

with cross-linking properties that depend significantly on temperature and on cationic, anionic, and 

hydrophilic groups [6], it has been commonly used as a biomaterial in the manufacturing of food  

and cosmetic products, allowing significant control over the final product. In addition, the protein 

structure of the constituents is well defined, offering a large number of functional groups for  

further derivatization. Because of its favorable and biocompatible properties, gelatin is classified as a  

food product and as such is not assigned an E-number [7]. In pharmaceuticals, gelatin is typically used 

in the shells of capsules to make the powdery content easier to transport by ingestion or subcutaneous 

injection [8] and numerous drugs and even engineered nanoparticles have successfully been 

encapsulated in gelatin nanoparticles or coated with gelatin, with efficient loading and drug release 

properties [8–10]. Furthermore, because of these advantages, the technology of nano-encapsulation has 

been extended to natural products over the past decade to protect them from chemical damage and 

product degradation, especially from air oxidation, and therefore extent the product’s shelf-life before 

its final application [11]. 

Components from edible plants, e.g., fruits and vegetables, generally termed phytochemicals, have 

draw increased attention because of their potential benefits to human health [12]. It has long been 

known, since medieval times, that humans inherently depend on nutritional intake from plants to cover 
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their need for vitamins, antioxidants, minerals, and trace elements to name but a few. In those days, 

prolonged exploratory travels and military campaigns caused scurvy (syn. scorbut), a vitamin C 

(ascorbate) deficiency that led to formation of spots on the skin, spongy gums, and bleeding from the 

mucous membranes [13], which impressively exemplifies the importance of plants as a source of 

essential phytochemicals. Furthermore, herbs and plants have been used in experience-based medical 

practice both in the Occident and Orient for many centuries. However, in Asian countries, the use of 

medicinal plants in traditional medical practice has a much longer history and is more pronounced. Not 

surprisingly, interest in traditional Asian medicine has increased significantly over the past few 

decades including in the West, because of the recognized potential of developing new drugs based on 

natural phytochemicals. 

Rubus coreanus Miquel or Korean black raspberry is a perennial shrub belonging to the Rosaceae 

family that produces edible berries and is predominantly endogenous to the southern part of Korea and 

parts of China and Japan. The incomplete ripened fruit has been used in traditional herbal medicine, 

since anti-impotence, aphrodisiacal, anti-inflammatory [14], anti-bacterial [15], and antioxidative 

properties [16] are ascribe to R. coreanus. In addition, it is an effective agent against allergic 

diseases [17] and colon cancer [18]. 

Because so many bioremedial effects have previously been reported both by traditional practitioners 

and researchers and because most of the effects in one way or another involve components of the 

immune system, we aimed with the current study to investigate the immunomodulatory activities of 

Rubus coreanus Miquel extract-loaded gelatin nanoparticles. Furthermore, since delivery vehicles  

are crucial in drug formulation, stability, bioavailability, and uptake, we assessed whether gelatin 

nanoparticles would provide a cheap, biocompatible, low toxic and convenient way to introduce the 

extracts orally, with the possible future option to target the nanoparticles to particular tissues and achieve 

a high local concentration and bioremedial effect. In this study, gelatin nanoparticles in a narrow size 

range were prepared by ultrasonic treatment of aqueous R. coreanus extracts. The nanoparticles of  

R. coreanus were characterized by various physicochemical means, such as size measurements, loading 

capacity, cytotoxicity assessment, transmission electron microscopic (TEM) evaluation and several 

methods to assess their immune modulatory activities.  

Our results show that R. coreanus extract-encapsulated gelatin nanoparticles with an average size of 

143 ± 18 nm and a narrow bandwidth can effectively and easily be produced. This offers the possibility 

to add targeting sequencings to target such nanoparticles to particular tissues and as such achieve a 

higher local concentration compared to ingestion of the crude extract only. Toxicity assessment shows a 

low toxicity and high biocompatibility. Immunomodulatory effects were determined in T-, B-, and  

NK-cells and in all cell types, R. coreanus extract-encapsulated gelatin nanoparticles showed a higher 

modulatory potency compared with the crude extract or ferulic acid as a control. Confocal imaging 

showed that the loaded nanoparticles were taken-up within 30 min and were distributed homogenously 

throughout the cell.  
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2. Results and Discussion 

2.1. Characterization of Nanoparticles 

2.1.1. Size and Morphology of Nanoparticles 

Gelatin nanoparticles containing R. coreanus (GNR) were characterized through transmission 

electron microscopy (TEM) to evaluate the morphology of the individual particles and the mean 

particle size and size distribution was assessed via dynamic light scattering (DLS). The results in 

Figure 1(A) show that the particles formed were of spherical shape and that predominantly two 

different pools of particles were formed. This was corroborated by the DLS measurements, which 

show a pool of smaller particles (red arrows) with an average diameter of 23 ± 6 nm and narrow band 

width and the majority as larger particles with an average diameter of 143 ± 18 nm and a bandwidth  

of 76 nm.  

Figure 1. Analysis of nanoparticle morphology and size distribution of gelatin 

nanoparticles containing R. coreanus extract. (A) TEM: red arrows indicate nanoparticles 

in the 25 nm range belonging to the small distribution peak; (B) Size distribution and 

Gaussian fit after DLS analysis.  
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The size distribution, as deduced from the full-width-at-half-maximum (FWHM), is sufficiently 

narrow and the maximum size of approximately 200 nm ensures good cellular penetration and uptake via 

endocytic and passive mechanisms [19,20]. Notice that the nanoparticles observed present themselves as 

white domains because the samples were pretreated by a negative staining technique. No noteworthy 

nanoparticles-clusters were observed, indicating a good colloidal stability.  

In general, the TEM image of GNR shows a uniform carrier system with two different size pools and 

the results are largely in agreement with observations by others [21]. Li et al. [22] recently produced 

self-assembling, amphiphilically-modified gelatin nanoparticles in which the size could be controlled 

by hydrophobic substitution. They observed good cellular uptake with gelatin nanoparticles up to 

130 nm. Therefore, the combined results show that based on their size and surface properties, gelatin 

nanoparticles constitute ideal vehicles for extracts of phytochemicals in biomedical applications. 

2.1.2. Zeta Potential of Nanoparticles 

In order to assess the stability of the colloidal gelatin nanoparticles in solutions, zeta potential 

measurements were preformed. Figure 2 shows the pH-dependent zeta potentials of GNRs. The 

absolute value of the zeta potential decreased with pH, i.e., the zeta potential was 9.6 mV at pH = 2, 

−18.2 mV at pH = 6.15 and −28.6 mV at pH = 10. Most importantly, at physiological pH = 7.4, the 

average zeta potential of GNR was –19.3 mV. The measurements show that GNR nanoparticles have a 

good stability over a wide pH range from approximately pH = 4 to 10 as reflected by the high negative 

charges that prevent agglomeration by inter-particulate electrostatic repulsion forces [23]. This might 

be expected, since gelatin is a heterogeneous mixture of single or multi-stranded polypeptides, 

predominantly consisting of the acidic and basic amino acids arginine (7.8%) and glutamic acid (10%), 

the hydrophobic alanine (8.9%), and the zwitter ionic, glycine (21%), proline, and hydroxyproline 

(both 12%). Because of the inductive effect by the carbonyls (electron-withdrawing) and the lone pairs 

on the nitrogen of the amide groups, resonance charge delocalization leads to a net negative, positive 

or neutral charge in the gelatin chain depending on the pH of the solution [24]. With a measured 

isolectric point around 5.0 (4.84 [25]; 4.88 [26]) in pure gelatin nanoparticles, at neutral to basic pH 

values, the carboxylic groups are deprotonized, and an overall net negative electric potential in the 

interfacial double layer is measured. These results are in good agreement with the TEM observations 

and other reports in the literature [22,24]. However, as shown in Figure 2, the isoelectric point of 

GNRs significantly shifts to lower values when the extract components are present, i.e., 2.48 ± 0.20. 

Furthermore, it was recently reported that nanoparticle-based colloidal solutions are inherently 

more stable compared to micrometer-sized particle suspensions, because of the much higher Brownian 

motion of suspended nanoparticles that at least partially and mechanically prevents 

agglomeration [27].  
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Figure 2. Zeta potential of gelatin nanoparticles containing R. coreanus extract. 

 

2.1.3. Encapsulation Efficiency 

To determine the encapsulation efficiency of the R. coreanus extracts in gelatin nanoparticles,  

high-performance liquid chromatography (HPLC) analysis was performed, which additionally 

provided an initial assessment of the extract’s composition. Figure 3(A) shows representative HPLC 

chromatograms for five phenolic acid standards, i.e., gallic acid, chlorogenic acid, caffeic acid, ferulic 

acid, and m-coumaric acid. In Figures 3(B,C), the chromatograms of the R. coreanus crude extract and  

R. coreanus extract-loaded GNR, which were chemically treated to release their content, are shown. 

Comparison of the peak positions revealed that the extract is rich in chlorogenic acid, caffeic acid, 

ferulic acid, and m-coumaric acid. The figure also shows that in addition to gallic acid, a derivative is 

present with a slightly different retention time; the nature of the split peak at ~5 min and the 

unidentified minor peaks in the chromatograms is currently under investigation.  

The overall encapsulation efficiency of the R. coreanus extracts in GNRs was close to 60% and this 

was significantly higher than the entrapment ratio of conventional gelatin nanoparticles (<45%) as 

reported by Saxena [21] and Vandervoort [28] and their respective co-workers. From the HPLC 

analysis, the encapsulation efficiency of the major components in GNR nanoparticles were determined 

to be 70.6% for gallic acid, 72.1% for chlorogenic acid, 63.2% for caffeic acid, 44.4% for ferulic acid 

and 45.8% for m-coumaric acid. These results were similar to the encapsulation efficiency of other 

water-soluble active substances [29]. Based on these results, it may be concluded that gelatin is a 

suitable carrier for the encapsulation of phytochemical extracts. 
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Figure 3. Chromatograms of (A) five phenolic acid standards; (B) crude extract of  

R. coreanus (added initially); and (C) R. coreanus extract-loaded GNR nanoparticles 

extracted by chemical treatment. 

 



Int. J. Mol. Sci. 2011, 12           

 

9038

2.2. Toxicity Assessment 

2.2.1. In Vitro Cytotoxicity 

Cytotoxicity evaluation was performed with the sulforhodamine B (SRB) assay in HEK293 cells, 

which are human embryonic kidney cells and a good model for such evaluations. The data are expressed 

as percentage viable cells. As shown in Figure 4, gelatin nanoparticles only (GO) show maximally a 10% 

decrease in cell viability at the highest concentration (1 mg/mL) after 48 h incubation. Both the 

addition of GNR and the extract only (RO) result in a concentration-dependent decrease in cell viability 

to a maximum of 17.6 and 19.2% respectively. The figure also illustrates that there is virtually no 

significant difference in toxicity between the encapsulated and extract forms. Furthermore, the difference 

in cytotoxicity compared to the GO is practically negligible.  

Figure 4. Cytotoxicity assessment in HEK293 cells after 48 h incubation with gelatin 

nanoparticles containing R. coreanus extract or the extract only compared to gelatin 

nanoparticles as a control.  

 

A number of studies using modified gelatin nanoparticles, including inorganic nanoparticles coated 

with gelatin report similar results [22,30]. Furthermore, comparison of the cytotoxic effects of extracts 

from other medicinal plants, such as the traditional Chinese medicinal plant Ligularia hodgsonii Hook, 

which contains pyrrolizidine alkaloids such as clivorine, puts our results further into perspective. This 

plant is traditionally used to treat cough, hepatitis, and inflammation and shows a reduction of HEK293 

cell viability to 60% after treatment with 100 µM of the active component for 48 h [31], which is a 

concentration that is 24 times less than the maximum concentration used in our study.  

In general, our results are in accordance with other studies [22,30] and show that HEK293 cells 

cultured in the presence of GNR for 48 h remain viable over a wide concentration range showing only 

a minor cytotoxic effect in a concentration-dependent manner. Nonetheless, for further and safe in vivo 

animal studies and clinical research on extracts from medicinal plants used in traditional Asian medicine, 
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assessment of cytotoxicity in cellulo does not suffice and further studies in intact organisms are 

necessary. Therefore, we performed a 21 day assessment in mice (vide infra).  

2.2.2. In Vivo Toxicity 

As stated previously, toxicity assessment in intact animals was performed to further determine  

the safety of GNR, primarily for use in future animal studies. Five-week-old female ICR mice were 

placed on a 21 day feeding regiment (1 mL/g body weight) for a number of controls and GO or GNR 

(1 mg/mL), and subsequently body weight, cholesterol and glucose were assessed.  

In all groups, the mice survived for the entire 21 day experimental period, which shows that the 

doses used are non-lethal (survival ratio = 1). The body weight of the mice gradually increased in all 

three groups, albeit that those animals fed on the extract or GNR showed sigmoid growth curves and 

the daily weight gain was slightly higher in these groups (Figure 5). A steady gain in weigh indicates 

that no adverse effects undermine appetite and growth. In the group fed only the R. coreanus extract 

(RO), the body weight increased to 30.7 g after 21 days; this weight was marginally higher than the 

body weights of 29.7 g in the GNR group and 28.8 g in the GO group.  

Figure 5. Changes in body weight in female ICR mice fed (1 mL/g body weight) on gelatin 

nanoparticles with R. coreanus extract, gelatin nanoparticles only or R. coreanus extract only 

(1 mg/mL). Normal feeding and saline only were additionally used as controls (Lines 

represent non-linear growth curve fitting). 

 

The extracts of R. coreanus generally reduced LDL-cholesterol and glucose levels, and increased 

HDL-cholesterol levels in virtually all feeding groups (Table 1). However, the effects were markedly 

larger in the GNR group, as glucose decreased to 208 mg/dL, LDL-cholesterol dropped to 45.4 mg/dL, 
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and HDL-cholesterol increased to 72.5 mg/dL. Since high HDL-cholesterol levels are associated with 

a lower health risk, such as a decreased incidence in sclerotic plague formation and concomitant 

cardiovascular disease, these results show the potential beneficial effect of GNR supplementation  

in vivo. Here there is a clear advantage of the GNR nanoparticles over the GO extract.  

Table 1. Blood component analysis of ICR mice. 

 Control 
(mg/dL) 

GO1 
(mg/dL) 

GNR2 
(mg/dL) 

RO3 
(mg/dL) 

SO4 
(mg/dL) 

Parameter      
Glucose 192 227 208 218 191 
HDL cholesterol 49.0 51.0 72.5 54.5 47.2 
LDL cholesterol 58.6 55.8 45.4 52.0 59.4 

1 GO: gelatin nanoparticle-only feeding group; 2 GNR: R. coreanus extract gelatin nanoparticle 
feeding group; 3 RO: R. coreanus extract-only feeding group; 4 SO: Saline-only feeding group. 

Under exogenous stress conditions, lipid peroxides and oxidized LDL accumulate in the organism 

and it has been shown that oxidized LDL-cholesterol is more negatively charged with an increased 

cytotoxicity [32]. Furthermore, macrophages up-regulate their scavenger receptors in response  

to oxidized-LDL to enhance the uptake of oxidized-LDL (foam cell formation), to name but one 

consequence of the immune response to stress [33]. Since GNR boost the function of other 

immunocytes (vide infra), it would be interesting to determine how GNR nanoparticles affect both 

lipoprotein particles and immunocytes in an atherosclerosis model organism, as well as whether GNR 

prevent the formation of oxidized LDL through antioxidant activity. 

Despite the fact that many questions remain, our preliminary results suggest that treatment with 

GNR might be useful as an anti-stress factor, which might both be related to GNR’s action in boosting 

the immune system and the antioxidative properties of several components in the extract. 

2.3. Immune Activities of Nanoparticles 

2.3.1. Proliferation of B- and T-Cells 

Recent research suggests that extracts of phytochemicals used in traditional Asian medicine have 

immunomodulatory properties and contain ingredients that promote immune cell proliferation. Here, it 

was evaluated if R. coreanus extracts might show the same effect and properties. Figure 6 shows  

the cell counts of human B- and T-cells in samples treated with the extract (0.5 mg/mL) for 6 days;  

the number of cells increased with time. Ferulic acid, which is a derivative of cinnamic acid that has 

been reported to have immunomodulatory activity [34], was used as a positive control in the same 

concentration as the R. coreanus extract.  
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Figure 6. Proliferation of human B- and T-cells cultured in the presence of gelatin 

nanoparticles containing R. coreanus extract and ferulic acid (both 0.5 mg/mL) as a positive 

control for 6 days. 

 

In the controls, normal medium without addition, saline only, gelatin nanoparticles only, cell 

proliferation progressed normally and near linearly with no significant deviation amongst them. The fact 

that gelatin generally does not affect cell proliferation was recently established by Magrez et al. [35] 

in human lung-tumor cell line H596 and their results are in agreement with our experiments.  

Ferulic acid showed a significant induction in proliferation of both T- (~1.25 × control) and B-cells 

(~1.52 × control), as was to be expected. Both the conventional extract and GNRs increased T- and  

B-cell proliferation in a time-dependent manner with a deviation from linearity towards an exponential 

increase, as determined from non-linear curve fitting. Interestingly, the nano-encapsulated extracts 

induced a significantly higher proliferation in T- (~3.4 × control) and B-cells (~2.9 × control) compared 

with the extract only, i.e., T- (~1.8 × control) and B-cells (~1.9 × control). This might be an indication 
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that the nanoparticles are better taken-up by the cells and as such a higher intracellular concentration  

is reached. 

Initial experiments by our group [36] previously suggested that raspberries contain components that 

promote immune cell proliferation and the current results confirm this notion.  

2.3.2. Secretion of Cytokines 

Cytokines are important signaling molecules that are secreted by immune cells and affect immune 

system activity in vivo. Of the myriad of cytokines that modulate immune cell activity, interleukin-6 

(IL-6) and tumor necrosis factor alpha (TNF-α) are important and potent proinflammatory cytokines 

exerting pleiotropic effects on a number of cell types and are involved in the regulation of the immune 

response, inflammation, and hematopoiesis [37,38]. 

Figure 7 shows the secretion of the cytokines IL-6 and TNF-α by cultured human B- and T-cells in  

the presence of the various extracts and ferulic acid over a period of 6 days. The maximal amount  

of IL-6 and TNF-α released from B-cells grown in the presence of GNRs after this period was  

2.46 × 10−4 pg/mL and 1.97 × 10−4 pg/mL, respectively. Equally, T-cells secreted 2.33 × 10−4 pg/mL 

and 1.87 × 10−4 pg/mL of IL-6 and TNF-α maximally, in the presence of GNR. The figure illustrates 

that both B- and T-cells can be stimulated to produce IL-6 and TNF-α in response to the extract only 

and GNRs. Furthermore, the fitted slopes in Figure 7 reveal that (i) T- and B-cells are equally 

stimulated by the samples; (ii) both the extract and the nanoparticles GNR induce the cells more 

compared with the positive control ferulic acid; (iii) the production of IL-6 is nearly 50% higher than 

TNF-α; and (iv) on average, GNRs induced cytokine secretion at a ~2–3 times higher rate compared 

with the extract and ferulic acid; the latter two had secretion rates that were in the same order of 

magnitude, albeit that the extract caused higher absolute levels. 

Figure 7. Secretion of IL-6 (A) and TNF-α (B) from human B- (solid symbols) and T-cells 

(open symbols) in response to gelatin nanoparticles containing R. coreanus extract (GNR), 

extract only (RO), and ferulic acid as a positive control (0.5 mg/mL). 
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Figure 7. Cont. 

 

These secretion values were similar to those reported for the radix extract of Rosa rugosae [39]. Thus, 

the R. coreanus extract and the use of nano-encapsulation enhances immune activity by promoting the 

proliferation of immune cells and increasing the secretion of cytokines. The data in this study also 

confirm the practical usefulness of GNRs as a functional material associated with immune activation. 

However, further studies in model animals are required to firmly establish the bioremedial effects on 

the GNR formulation proposed in this paper. Such studies are currently in preparation. 

2.3.3. Proliferation of Natural Killer Cells 

Natural killer (NK) cells were first recognized in 1975 for their ability to kill leukemic cells without  

major-histocompatibility complex (MHC) restriction or prior sensitization [40,41]. They play an 

important role in immune surveillance and their primary function is to eliminate aberrant cells, 

including virally infected and tumorigenic cells.  

NK cells respond to signaling by interleukins IL-2, IL-15 and IL-21, IL-12 and IL-18 [42,43]. Once 

activated, NK cells produce both proinflammatory and immunosuppressive cytokines and chemokines, 

which include TNF-, IL-10, IL-3, IL-6, interferon gamma (IFN-), granulocyte and granulocyte 

macrophage colony-stimulatory factor (G-CSF and GM-CSF), and growth factor beta (TGF-) [44]. 

Recent research shows that NK cells are not only cytolytic effector cells, but exert negative feedback 

on activated macrophages during microbial infections and act as regulatory cells of cell types, such as 

dendritic cells, T-cells, B-cells, and endothelial cells. Because NK cells affect other cells of the 

immune system and link the innate and adaptive immune response, we investigated the effect of the R. 

Coreanus extract and the GNR nanoparticles on NK proliferation as a measure for immunomodulatory 

properties of the aforementioned species. 
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The results in Figure 8 show that the NK cell content increased with the addition of the B-cell 

supernatant containing 0.5 mg/mL of crude R. coreanus extract or GNRs and after 6 days in culture, 

rose to 14.6 × 104 cells/mL or 18.2 × 104 cells/mL for the crude extract and GNR respectively. This 

corresponds to a ~2–3 times higher proliferation rate in the presence of GNR (Figure 8). Compared 

with ferulic acid, the progression in NK cell proliferation over the 6 day period in the presence of the 

crude extract was nearly the same as the positive control, ferulic acid. Furthermore, in the assessment 

of the NK cell proliferative response to the samples, it is clear that pure gelatin nanoparticles did not 

induce any effect compared with the control and saline only. 

Figure 8. Effects on NK cell proliferation of B-cell supernatants containing 0.5 mg/mL extracts. 

 

Overall, our results imply that GNRs significantly increase the proliferation of NK cells as 

compared to control and that the higher effect compared to the crude extracts is likely caused by their 

cellular penetration and uptake, thereby achieving a higher local concentration. 

2.3.4. Antibody Production in Vivo Using a Mouse Model 

Immunoglobulin G (IgG) is the main protein involved in humoral immunity, contributing 

substantially to the defense against infection and is the most abundant antibody class in the sera  

of humans and mice [45]. IgG acts on invading pathogens (“non-self”) by agglutination and 

immobilization, complement activation via the classical pathway that leads to opsonization and 

phagocytosis. Thus, the quantification of immunoglobulins in serum is a representative indicator of 

immune activity [46]. 

In vivo experiments were conducted with ICR mice over a 15-day period. In total, 46 blood samples 

obtained at intervals of three days were used to measure IgG antibody production (Figure 9). In all 

mouse groups, IgG antibody production showed a gradual increase over time. Antibody production 

increased after the administration of either RO or GNRs. In addition, the antibody production 
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stimulated by RO or GNRs was greater than that stimulated by ferulic acid. The highest antibody 

concentration was induced by GNRs on day 15, i.e., 28.15 ng/mL. Overall, the GNR group showed a 

~5 time higher antibody production compared to control, a ~1.3 time higher production compared to 

the extract only, and a ~1.6 time higher production compared to ferulic acid (Figure 9). These results 

further suggest that GNRs might be used as an immune enhancement drug in a myriad of diseases, 

especially in those in which the immune system is compromised. 

Figure 9. Antibody production in vivo in female ICR mice fed gelatin nanoparticles 

containing R. coreanus extract, gelatin nanoparticles only, R. coreanus extract only, or 

ferulic acid (all 1 mg/mL and 1 mL/g body weight). 

 

2.4. Penetration of Nanoparticles into the Immune Cells 

Gelatin-based nanoparticles have been shown by a number of studies to be taken up by various cell 

types via passive endocytic pathways. A cell culture of adhering Jurkat cells (human T-cell) was 

incubated with 0.5 mg/mL of GNR nanoparticles containing fluorescein isothiocyanate (FITC) as  

a fluorescent marker. Our confocal microscopy imaging results (Figure 10) show that initially the 

nanoparticles coat the cell surface of the adhering cells. However, within 30 min, the gelatin 

nanoparticles penetrated the T-cells and bright green FITC fluorescence was observed in the cytoplasm 

and other sub-cellular compartments (compare the cells in Figure 10(C)), indicating that the 

nanoparticles were efficiently internalized and transported within the cells. Some cells in Figure 10(B) 

remained unstained intracellularly, which might be cell cycle dependent. However, as the incubation 

time progressed, more cells became fully stained. Compared with amphiphilic gelatin nanospheres, the 

cellular uptake rate of GNRs is significantly faster [22]. Overall, these results show that the GNR 

nanoparticles are taken-up by immune cells without further need for the incorporation of targeting 

modalities to aid active up-take processes such as receptor-mediated endocytosis. However, future 
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endeavors may contain such surface coatings, since this would facilitate the targeting of the GNR 

nanoparticles to a particular cell type of tissue within intact organisms. 

Figure 10. Confocal fluorescence microscopic evaluation of nanoparticle penetration and 

uptake in human T-cells (Jurkat cells). (A) Differential interference contrast image of the 

cell culture at t = 0 min; (B) DIC-fluorescence overlay: uptake evaluation, with an 

amplified region in (C): intensity gradient and intensity plot along a defined axis  

(blue line). 

 

3. Experimental Section 

3.1. Preparation of Samples 

Fresh unripe fruits of R. coreanus were collected from Hyeong Seuong (Gangwondo, Korea). 

Subsequently, the unripe fruits were shade-dried for 48 h at ambient temperature. Extracts of the  
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R. coreanus fruits were made by pulverizing 50 g of shade-dried unripe fruits and extracting the  

water-soluble components with 1,000 mL of distilled water for 24 h at 60 °C. The solvent was 

evaporated with an Eyela NE-series rotary evaporator (Tokyo Rikakikai Co., Tokyo, Japan) under 

reduced pressure and the resulting product was freeze-dried for 24 h. The extraction yield was 

determined to be approximately 17%. Functional nanoparticles were produced by mixing three 

components: gelatin, R. coreanus extract, and fluorescein isothiocyanate (FITC) [47]. First, 25 mg of 

gelatin was dissolved with a small amount of water in a 50 mL round bottom flask and the solvent was 

evaporated at room temperature using a rotary evaporator to produce a dried thin gelatin film. Next,  

25 mg R. coreanus powder was dissolved in distilled water to a final concentration of 1 mg/mL. 

Finally, 2 mL of HEPES (pH = 8.2) and 5 mM FITC (Sigma, St. Louis, MO, USA) were added to the 

aqueous extract solution of R. coreanus [48] and the three components were dispersed by 

ultrasonication with a VCX500 sonicator at 500 W (Sonics & Materials, Inc., Newtown, CT, USA) for 

2 h using a rod-type CV33 probe (Sonics & Materials, Inc., Newtown, USA). The condition of the 

ultrasonication was fixed at 25 °C, 7:4 sec pulse to break interval, and 32% amplitude. 

3.2. Characterization of Nanoparticles 

3.2.1. Transmission Electron Microscopy 

The morphology of the nanoparticles was examined with a LEO-912AB TEM (LEO Electron 

Microscopy GmbH, Jena, Germany) operating at an accelerating voltage of 80 kV. A thin film of 

nanoparticles was negatively stained using phosphotungstic acid (H3PW12O40) and mounted on a 

carbon-coated grid. The grid was dried in a desiccator at room temperature (25 °C) before loading onto 

the microscope. 

3.2.2. Dynamic Light Scattering 

To determine the size and size distribution of GNRs, DLS measurements were performed using a 

Brookhaven 90 Plus Nanoparticle Size Analyzer (Brookhaven Instruments Corp., New York, NY, 

USA). The intensity of the scattered light was detected at 90° to the incident beam. The light source 

was a 35 mW He-Ne laser emitting monochromatic light at a wavelength of 632.8 nm, which was 

focused onto the sample, and the scattered light was detected by a photo-multiplier tube (Hamamatsu 

Photonics, Hamamatsu City, Japan). 

3.2.3. Measurement of Zeta Potential and pH 

The zeta potential of the GNRs was measured by varying the pH in a Brookhaven 90 Plus 

Nanoparticle Size Analyzer. About 3 mL of the suspension (1 mg/mL) was added to a cuvette and 

adjusted to pH values in the range from 2–10 using 0.1 N HCl or 0.1 N NaOH. The suspension was 

equilibrated for 4 min at 25 °C. The measurement was performed with three runs, with each run 

consisting of 10 single measurements. 
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3.2.4. Encapsulation Efficiency 

The oversized nanoparticles were removed by gel-permeation chromatography using Sephadex  

G-100 columns (1.6 cm × 40 cm; bead size 40–120 μm) purchased from GE Healthcare (Uppsala, 

Sweden). The collected GNR fraction was centrifuged for 30 min at 16,770 × g and the precipitate was 

dissolved by adding 25 mL acetone (Sigma, St. Louis, MO, USA). After 30 min of stirring, 250 mg  

L-cysteine (Sigma, St. Louis, MO, USA) was added. The sample was sonicated at 60 kHz for 30 min 

and filtered through a 0.2 µm syringe filter [49].  

The content of phenolic acids in the filtrate was then determined by HPLC (M600E, M7725i/Waters, 

996PDA, Waters, Milford, MA, USA). The filtrate was separated to (1) gallic acid; (2) chlorogenic acid;  

(3) caffeic acid; (4) ferulic acid; and (5) m-coumaric acid using a reverse-phase C18 column (250 mm 

× 4.6 mm, Phenomenex, Torrance, CA, USA) at 25 °C. The mobile phase consisted of 50 mM aqueous 

phosphoric acid solution (solvent A) and 100% acetonitrile (solvent B). The gradient elution program 

is shown in Table 2. The flow rate was 0.7 mL/min, UV absorbance was detected at 280 nm, and the 

injection volume was 20 µL for all samples (50 ppm) [16]. The encapsulation efficiency was 

calculated as the ratio of the peak area of the GNRs to that of the crude extract of R. coreanus [11] 

according to: 

%100
initially addedextract amount 

lenanoparticextract amount 
(%) efficiency ionEncapsulat   (1)

Table 2. HPLC mobile phase conditions. 

Time (min) A (%) B (%) 
0 2 98 
30 15 85 
60 50 50 
70 98 2 
75 2 98 
80 2 98 

3.3. Immune Activities of Nanoparticles  

3.3.1. In Vitro Cytotoxicity  

The sulforhodamine B (SRB) assay was performed in HEK293 cells (Adenovirus transformed 

human embryonic kidney 293 cells) to investigate in vitro cytotoxicity. Cells were incubated in tissue 

culture flasks in the desired media in a humidified atmosphere at 37 °C with 5% CO2. Trypsinized 

(trypsin-EDTA, Gibco, Grand Island, NY, USA) cells were washed with media and diluted to a 

seeding concentration of 104 cells/mL in each well of a 96 well plate. The plate was kept in the 

incubator for 24 h. To determine cell survival after exposure to 0.2, 0.4, 0.6, 0.8 or 1.0 mg/mL of the 

individual samples for 48 h, the SRB assay was performed as described previously [50] with some 

modification. After cultivation, 100 µL of a 20% cold trichloroacetic acid (TCA) solution was gently 

added on top of the medium. The plate was then incubated for 60 min at 4 °C. Wells were rinsed five 

times with distilled water, and then cells were stained with 0.4% SRB solution (50 µL/well) for 15 min 
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at room temperature. The SRB staining solution was decanted and wells were rinsed five times with  

1% acetic acid to remove unbound dye and left to air-dry. The bound SRB dye was then solubilized in 

100 µL/well of Tris-base solution, and plates were placed on a plate shaker for 1 h at room 

temperature. Plates were subsequently read at 540 nm using a ThermoMax microplate reader 

(Molecular Devices, Sunnyvale, CA, USA), and the results were expressed as a percentage of control 

values [51]. 

3.3.2. In Vivo Toxicity 

The in vivo toxicity was investigated by measuring the survival rate ratio in ICR mice (traditional 

outbred albino mouse by Hauschka and Mirand-Roswell Park Memorial Institute, Buffalo, USA). 

Five-week-old female ICR mice (Orientbio Co., Ltd, Seoul, Korea) were used after 7 days of 

acclimatization. Mice were housed in groups of six in stainless-steel cages in a room maintained at a 

constant temperature (23 ± 1 °C) and humidity (60 ± 10%) under a 12 h light/dark cycle (lights on 

07:30–19:30 h). Just before the experiment, the mice were only given distilled water and divided into 

groups fed gelatin nanoparticles (GO) or gelatin nanoparticles containing R. coreanus (RO) and a 

number of controls (Figure 5) (all 1 mg/mL). The mice were orally fed at a dosage of 1 mL/g body 

weight for 21 days. Every 3 days, the body weight was measured. The mice were terminated after the last 

bleed on day 21, and their blood was collected into 2 mL vials. The in vivo cytotoxicity was estimated by 

measuring blood glucose, cholesterol, and body weight.  

3.3.3. Proliferation of B- and T-Cells and Secretion of Cytokines 

Raji (human B) and Jurkat (human T) cells were obtained from the American Type Culture 

Collection (ATCC, Manassas, VA, USA). They were maintained in RPMI-1640 supplemented with  

10% fetal bovine serum (FBS, Gibco) and 100 U/mL gentamicin sulfate (Sigma) in a humidified 

atmosphere at 37 °C with 5% CO2. In six-well plates, the proliferation of human B- and T-cells was 

determined by direct cell counting using a hemacytometer (Hausser Scientific Company, Horsham, PA, 

USA) after treatment with R. coreanus extract or GNR (0.5 mg/mL) for 6 days [52]. Ferulic acid  

(4-hydroxy-3-methoxy cinnamic acid), which was reported to have immune activity [34], was used as 

control at the same concentration as the R. coreanus extract. 

Secretion of cytokines was quantified by measuring the amounts of IL-6 and TNF-α with kits from 

Chemicon (Temecula, CA, USA). After adjusting the immune cell concentration to 1–2 × 104 

cells/mL, 900 µL of the cell suspension was seeded into 24-well plates and cultured for 24 h in 5% 

CO2 at 37 °C. Subsequently, 100 µL of a 0.5 mg/mL sample (R. coreanus extract or GNR) was added 

to the cells and centrifuged to obtain the supernatant, from which an absorbance reading was obtained 

at 450 nm using a ThermoMax microplate reader. The amounts of cytokines were determined by 

comparison to standards [53]. 

3.3.4. NK Cell Proliferation 

The interleukin-2 (IL-2) dependent Natural Killer Cell cell line NK-92MI, (ATCC, CRL-2408) was 

diluted to 2 × 107 cells/mL using 2 mM L-glutamine, 0.2 mM myoinositol, 20 mM folic acid, 0.1 mM 
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2-mercaptoethanol, and 12.5% FBS in MEM and cultured in T-25 flasks. The proliferation was 

observed after each sample at a final concentration of 0.5 mg/mL. Cells were sub-cultured 3 to 4 times and 

centrifuged to obtain the supernatant. After 900 µL of the cell suspension was aliquoted into 24-well plates 

at 4–5 × 104 cells/mL and allowed to adjust for 24 h, 100 µL of the supernatants from B-cells was placed 

into each well and the cells were cultured for 48 h. Finally, the proliferation of NK-92MI cells was 

observed for 6 consecutive days using a NucleoCounter NC-200 cell counter (ChemoMetec, Allerød, 

Denmark) [54]. 

3.3.5. Antibody Production in Mice 

Animals were challenged with GNR, GO, and controls as described under in vivo toxicity. IgG 

content was determined as follows: 96-well plates were coated overnight with 100 μL/well of an 

affinity-purified goat F(ab)2 anti-mouse IgG (Caltag, Burlingame, CA, USA) as primary antibody 

appropriately diluted in phosphate-buffered saline (PBS) at 4 °C. The wells were subsequently washed 

three times with PBS containing 0.05% Tween-20 (PBS/Tween) and blocked with 1% bovine serum 

albumin (BSA)/PBS at room temperature for 2 h. This buffer solution was also used as a diluent in all 

subsequent steps. After washings the blocked wells three times with PBS/Tween, 100 μL of diluted 

samples was. As a standard serum, a pooled mouse serum standard containing known concentrations of 

IgG (Pierce, Rockford, IL, USA). The plates were incubated at room temperature for 1 h before washing, 

as described above. Aliquots of 100 μL of horseradish peroxidase (HRP)-conjugated goat IgG (Caltag) 

diluted with BSA/PBS were added to each plate. The plates were further incubated for 1 h at room 

temperature. After washing, peroxidase activities were assayed as follows: 100 μL of substrate solution 

(10 mg of o-phenylenediamine and 8 μL of 30% H2O2 in 25 mL of 0.1 M citrate–phosphate buffer,  

pH 5) was added to each well of the plate. The plates were incubated for 15 min at room temperature, 

and the enzyme reaction was terminated by adding 50 μL/well of 1 N H2SO4. Optical density at 490 nm 

was finally measured with a microplate spectrophotometer (Sunnyvale, CA, USA). 

3.4. Uptake of Nanoparticles by Immune Cells 

To determine the uptake of nanoparticles into the immune cells, a LSM510 META NLO confocal 

laser scanning microscope (Carl Zeiss, Jena, Germany) was employed to image the cellular up-take 

process as follows: Jurkat T-cells were seeded in the confocal dish at 2 × 106 cells/mL. Nanoparticles 

(200 µL) containing a FITC-labeled extract solution were then added to the cells. Thirty minutes later, 

the media of the Jurkat cells was carefully removed and the surface was washed three times with PBS 

buffer. The cross-sections were imaged at 543 nm using a confocal laser scanning microscope. 

3.5. Statistical Analysis 

Data are presented as the means ± SEM from at least three independent experiments. Values were 

evaluated by one-way ANOVA, followed by Duncan’s multiple range tests using GraphPad Prism 4.0 

(GraphPad Software, Inc, La Jolla, CA, USA). Treated or untreated groups were compared using the 

student’s t test. Differences were considered significant at P < 0.01. 



Int. J. Mol. Sci. 2011, 12           

 

9051

4. Conclusions 

The preparation of gelatin nanoparticles is a common and well-established method [55]. Gelatin 

nanoparticles can be used as delivery vehicles in a myriad of ways, either by attaching pharmaceutical 

ligands to the nanoparticle’s surface [56] or by encapsulating molecules within the particle as is done 

for vitamin A in foods to form a physical barrier and protect it from degradation [57]. Numerous drug 

formulations are based on gelatin or other biopolymer particles, primarily for stabile drug delivery, to 

achieve a higher local concentration, and in particular formulations, a delayed or controlled release. 

Thus far, extracts of medicinal plants such as R. coreanus have received little attention in this field 

compared to pharmaceutical drugs. Potions made from R. coreanus are customarily used in traditional 

Asian medicine because anti-impotence, aphrodisiacal, anti-inflammatory [14], anti-bacterial [15], 

antioxidative [16], and even anti-tumorigenic [18] properties are ascribed to R. coreanus. We therefore 

investigated both the immunomodulatory properties of the R. coreanus extract and assessed the 

feasibility of a controlled drug delivery based on gelatin nanoparticles. 

Our results demonstrate that the extract of R. coreanus can effectively be encapsulated in gelatin 

nanoparticles, which results in a relatively homogenous, well dispersed and stabile colloidal solution. 

Morphology evaluation via TEM showed spherical nanoparticles with an average size of 143 ± 18 nm 

and a bandwidth of 76 nm (FWHM) as determined by DLS. No clusters were observed, in conformity 

with the high negative values for the zeta potential (at physiological pH = 7.4, the average zeta 

potential of GNR was –19.3 mV), which ensures sufficient particle repulsion and a stabile colloidal 

solution. The encapsulation efficiency with nearly 60% was high compared to equivalent formulations 

with other drugs [21,28]. Confocal imaging with a fluorescent marker revealed that the particles 

initially adhered to the cell surface and that they were efficiently internalized, probably by passive 

mechanisms, such as endocytosis, within 30 min and subsequently homogenously dispersed within  

the cell. 

Assessment of the toxicity showed that no significant cytotoxic effects occurred in HEK293 cell 

cultures, which is in agreement with previous reports that gelatin and gelatin-encapsulated nanoparticles 

show low toxicity and high biocompatibility [22,24,30]. Furthermore, ICR mice fed on GNR at 1 mL/g 

body weight showed no fatalities and no in vivo toxicity was observed in any of the feeding groups. 

Moreover, they displayed a steady weight-gain and growth, near normal glucose, reduced LDL and 

increased HDL cholesterol levels. These results additionally point to the potential of GNR treatment to 

cause health-promoting effects, although this requires further investigation.  

By determining the proliferative capacity of key immune cells, i.e., T-, B- and NK-cells, the secretion 

of cytokines, and the production of IgG immunoglobulins in ICR mice, we aimed to cover a large part  

of the immune response to assess the immunomodulatory effects and efficiency of the crude R. coreanus 

extract and R. coreanus-extract-loaded gelatin nanoparticles. As a positive control, ferulic acid  

(4-hydroxy-3-methoxy cinnamic acid) was used, since previous investigations report immunomodulatory 

properties [34].  

On the whole, the crude extract induced a significant modulatory effect, which was topped by the 

GNR nanoparticles in all immune cells. Furthermore, the effects induced by the crude extract and the 

GNR nanoparticles were higher than those induced by the positive control, ferulic acid. The immune 

cells were not hindered in their proliferation in any way, but rather a significant increase in proliferation 
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of a factor 2 to 3 was observed in all immune cell types for the GNR nanoparticles. Furthermore, the 

secretion of the key cytokines IL-6 and TNF-by B- and T-cells was on average at a ~2–3 times 

higher rate compared with the extract and ferulic acid. In vivo immunomodulatory activity in mice fed 

with R. coreanus-gelatin nanoparticles at 1 mL/g body weight showed a ~5 times higher antibody 

production compared to control, a ~1.3 times higher production compared to the extract only, and a 

~1.6 times higher production compared to ferulic acid. Since the HPLC analysis of the extract and 

GNR nanoparticles showed that a significant amount of ferulic acid is present in R. coreanus, it is 

tempting to ascribe the modulatory effects to the endogenous ferulic acid. However, the effect of the 

extract and GNR nanoparticles was significantly larger than the effect of ferulic acid alone and the 

concentration of endogenous ferulic acid in the extract was much lower than the positive control. It 

might therefore be entirely possible that other components, such as gallic or chlorogenic acid, 

synergistically enhance the effect of ferulic acid alone. This is certainly an interesting line of research 

to be pursued in the future. Nonetheless, the results in this paper provide some indications that the 

endogenous ferulic acid plays a key role in the measured immunomodulation, because previous 

research demonstrates glucose and LDL lowering effects [58,59], and modulation of IL-8, an 

inteleukin that causes local accumulation of neutrophils and regulates inflammation reactions [60]. 

In summary, the immunomodulatory capacity can be described as: GNR nanoparticles > crude 

extract (RO) ≥ ferulic acid. Furthermore, the presence of endogenous ferulic acid in R. coreanus must 

at least partially be responsible for the immune-modulation. Our results suggest that gelatin 

nanoparticles represent an excellent transport vehicle for Rubus coreanus extract and extracts from 

other plants generally used in traditional Asian medicine. Future endeavors will focus on targeting such 

gelatin nanoparticles to particular cell types or tissues to achieve a more local and effective release of active 

components and to minimize side-effects as much as possible. This can be achieved by coating the particle 

with appropriate molecules that target the particle to particular cells with particular cell surface receptors, 

as was done by Jain et al. via mannosylation of the gelatin nanoparticles, which resulted in a significantly 

higher uptake through the macrophage mannose-receptor in macrophages [61]. Furthermore, the nature of 

a number of peaks identified via HPLC and the possible cooperativity of the extract components is under 

investigation. 
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