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Abstract: Aptamers are small non-coding RNAs capable of recognizing, with high 

specificity and affinity, a wide variety of molecules in a manner that resembles antibodies. 

This class of nucleic acids is the resulting product of applying a well-established screening 

method known as SELEX. First developed in 1990, the SELEX process has become a 

powerful tool to select structured oligonucleotides for the recognition of targets, starting 

with small molecules, going through protein complexes until whole cells. SELEX has also 

evolved along with new technologies positioning itself as an alternative in the design of a 

new class of therapeutic agents in modern molecular medicine. This review is an historical 

follow-up of SELEX method over the two decades since its first appearance. 
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1. Long Story Short, the Birth of Selection Methods 

In 1990, a mutation experiment was conducted by Tuerk and Gold [1] to explain the nature of the 

translational regulation exerted by the phage T4 replicase over its own messenger. They randomized a 

stretch of eight nucleotides within the regulatory loop of the mRNA and systematically exposed the 

resulting pool of sequences to the replicase. Two hairpins out of 48 (~65,536) possible combinations were 

isolated that bind with very similar affinity. This experiment defined the SELEX method for the first time 

and allowed us to envisage nucleic acids as flexible ligands potentially useful in protein recognition.  
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In parallel, Ellington and Szostak [2] utilized the same strategy while seeking a way to explain the 

existence of active sites. They wondered whether RNA molecules had the ability, like proteins, to form 

stable surfaces that provided “pockets” for specific interaction with small molecules (e.g., organic 

dyes) and designated the resultant ligands as APTAMERS, a term derived fromthe combination of the 

Latin word “aptus” (meaning to fit) and the Greek word mers (particle). 

Although SELEX was not meant to be a method for the screening of oligonucleotides with novel 

functions, it rapidly was visualized and adapted for this purpose. The basic SELEX method has been 

evolved to achieve a number of specific objectives [3,4]. In general, it seems to be a progress in which, 

after grounds were settled, the selection libraries started to be modified in order to improve their 

resistance in vitro. Afterwards, once sufficient functionality and resistance were proved, the aptamers 

in the cell interior were tested. In these experiments, aptamers were shown to be suitable for cell 

conditions and the major concern was how to regulate and detect them inside the cell. Finally, after 13 

years, aptamers were ready to be used as biotechnological tools and the view was focused on 

improving the method to make it more efficient, incorporating new technologies. In this review we 

provide a historical overview of most of the SELEX variants using the first published reports as 

references (Table 1). It is important to mention that some of these variants of SELEX were developed 

to obtain DNA aptamers but the same methods can be applied for non-coding RNA libraries and are 

were described as part of the evolution of SELEX.  

Table 1. Timeline of emerging modifications of SELEX. 

Year SELEX type References * 
1990–1993 Classic, Negative 1,2,5 

1994 Counter or Subtractive 6,7 
1995 Blended (Covalent), Photoselex (crosslinked), cDNA-SELEX 8–10 
1996 Spiegelmer isolation 12 
1997 In vivo 13 
1998 Chimeric 14 
1999 Multistage, Cell Specific SELEX(CS-SELEX) 15 
2000 Beacon aptamers, Indirect 16–18 
2001 Toggle 19,20 
2002 Expression cassette 21 
2003 Tailored-SELEX 22 
2004 CE-SELEX 23 
2005 FluMAG 24 
2006 TECS-SELEX, NON-SELEX (NCEEM) 25,27 
2007 NanoSelection® (nM-AFM SELEX), MonoLEX 28,30 
2008 CS-SELEX  31,32 
2009 Next-generation SELEX 33 
2010 Microfluidic-SELEX, Bioinformatics analyses 36,37,43,44 
2011 Multiple-target high-throughput SELEX 38–41 

* references correspond to the first report of each type of SELEX;  Setting the ground;  
 Improving the libraries;  Entering the cell environment;  Regulation and detection;  
 Updating SELEX with modern Technologies. 
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2. Setting the Ground for First Selections (1990–1994) 

2.1. Classic SELEX 

The data derived from the pioneering works mentioned above, led to the generalization of SELEX 

as a useful method for the identification single-stranded oligonucleotides folding into structures that 

could interact with different molecules. Then, the SELEX process was described as an in vitro 

evolution of nucleic acid molecules until have with high specificity to target molecules.  

The classic SELEX method involved steps of iterative binding, partitioning and amplification 

applied to a mixture of candidate oligonucleotides through a general scheme of four phases until 

virtually any desired criteria of affinity and selectivity could be achieved. The initial pool of nucleic 

acids, was preferably designed with a randomized segment in the middle section of its sequence [1]. In 

the first phase, specific complexes are formed by incubation of the pool with the target under 

controlled binding conditions. The second phase, and probably the most important, is the partitioning 

of unbound nucleic acids from the mixture. The third phase involves the dissociation of the nucleic  

acid-target complexes, and finally, the last phase comprehends the amplification of successful nucleic 

acids to yield an enriched group of aptamers. This description corresponds to what was named a 

selection cycle, in this way, by reiterating the steps of binding, partitioning, dissociating and 

amplifying through as many cycles as desired, it could be possible to yield highly specific and affinity 

aptamers to the target molecule (Figure 1a). A typical aptamer is 5–15 kDa in size (15–45 nucleotides), 

binds its target with nanomolar to sub-nanomolar affinity and can discriminate among closely related 

targets. Interesting, a series of structural studies have shown that aptamers are capable of using the 

same types of binding interactions (e.g., hydrogen bonding, electrostatic complementarities, 

hydrophobic contacts, steric impediments) that drive affinity and specificity in antibody-antigen 

complexes. Despite the fact that nucleic acids are formed by only four nucleotides, has proved that it is 

enough to acquire a variety of bi- and three-dimensional structures and is sufficient  

chemical versatility to be compared with proteins, forming specific binding pairs with virtually any  

chemical compound. 

Since this first description, more or less twenty years ago, more than 25 variants of SELEX process 

have been described that modified the basic steps of the original selection procedure, each on specific 

aspects (Figure 1b). 
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Figure 1. SELEX evolution. This scheme shows the basic steps of SELEX (a) and the 

main modifications done over two decades (b). The methods indicated on (b) are 

positioned on each aspect of SELEX where modifications were proposed. The techniques 

on the center of (b) represent major changes—at least in three aspects—of classic SELEX. 

A: Library design, B: Target type, C: Partition and D: Elution and amplification. 

 
(a) 

 
(b) 

2.2. Negative-SELEX 

Even though SELEX raised expectation as a promising screening method, during the first two years 

after classic procedure, other selections experiments resulted in populations of oligonucleotides 

without exclusive affinity. Isolated ligands recognized components unavoidably present in the 

selective environment. This behavior led to a modification of the method to eliminate unspecific 
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interactions, which was named negative-SELEX. The process excluded those aptamers adsorbed by 

the matrixes used for immobilization of selection targets with the purpose of enriching the population 

with sequences that could form complexes only with the target itself. In this adjustment of  

classic-SELEX, the screening pools are loaded onto the matrix alone and after an incubation period the 

flow-through is mixed with the immobilized target to isolate specific aptamers. Negative-SELEX was 

first put forward by Ellington and Szostak in 1992 [5]. They used it after several selection cycles to 

eliminate sequences binding to the agarose matrix employed as purification support. Compared to 

SELEX without negative selection, the affinity of the resultant aptamers was about 10 times higher. 

This outcome testified the feasibility of negative-SELEX in practical application, especially for the 

screening process with immobilized targets. 

2.3. Counter-SELEX 

Once non-specific interactions with the system of selection were eliminated, changes were made to 

the procedure to increase the capacity of aptamers to discriminate between structurally similar 

molecules. Counter-SELEX improves aptamers selectivity by excluding RNA molecules with  

co-affinity for molecules that are similar to the targets. The idiographic processes are similar to the 

negative SELEX; simply exchange the matrixes with the analogues of the target. This method was 

established by Jenison et al. when identifying RNA aptamers for bronchodilator theophylline [6]. They 

selected aptamers for caffeine, using theophylline—which differs only by a methyl group at nitrogen 

atom N7—as the counter-target, and finally aptamers were obtained that could bind only to 

theophylline. Counter-SELEX had the same purpose as negative-SELEX, which is to eliminate 

aptamers recognizing other targets, but in this case by using analogue targets it was also possible to 

increase the selectivity of the obtained sequences [6,7].  

3. Improving the Libraries (1995–1996) 

3.1. Blended SELEX 

Afterwards, libraries began to be modified thinking ahead on providing the necessary resistance for 

in vivo applications. Blended SELEX appeared as a method which leads the aptamers towards a 

specific region of the target, through fusing them to no-nucleic acid counterparts. This method was 

established by Smith et al. in 1995 [8], as an alternative to enrich the combinatorial pool for drug 

discovery. They connected an inhibitor of the neutrophil elastase (valP) with a 5′-linker DNA or  

splint-oligonucleotide, which can hybridize with the 3′end of the randomized RNA pool. Therefore, 

this inhibitor could be joined to the random sequence to form a “blended pool” suitable for SELEX. In 

their experiment, blended molecules specifically attached to elastase through valP portion, dragging 

the possible aptamers into the interaction and promoting the formation of a new covalent bond 

between valP and the active site of the enzyme. The RNA-DNA-valP-elastase complex was separated 

by PAGE and the RNA molecules were recycled for the following process of SELEX [8]. 

Incorporation of non-nucleic acid functional units to produce blended SELEX pools increases the 

repertoire of structures and interactions available to produce high affinity binding ligands. Various 

types of units can be incorporated to produce a spectrum of molecular and functional structures. 
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3.2. Photo-SELEX 

Simultaneously, another alternative for the modification of libraries that allowed an increase in the 

affinity and stability of aptamer-target complexes, was first reported by Jensen et al. [9], who obtained 

aptamers for Rev Protein of HIV-1. Photo-SELEX uses photosensitive nucleotides to promote covalent 

cross-link with other molecules under a certain wavelength light. 5-IU or 5-BrdU was mixed into the 

screening pool, then the modified library was incubated with the target, the mixture was exposed to 

ultraviolet radiation to make the cross-link reaction happen. Then, the mixture could be separated by 

PAGE. The wavelength of the ultraviolet radiation and the irradiation time should be optimized to 

ensure that only specific sequences could react with the targets. The incorporation of a photoreactive 

chromophore (5-IU or 5-BrU) into a randomized RNA library allowed the in vitro selection of ligands 

which not only could bind with high affinity but retained specificity for its target. 

3.3. cDNA-SELEX 

In the same year (1995), another library modification strategy was proposed by Dobbelstein et al. [10] 

using sequences from a natural source like organisms genomes, unlike previous techniques where 

synthetic pools were employed to search for specific interactions. This method was called  

cDNA-SELEX and consists on the use of total cell RNA from Human B-cell lymphoma as the 

screening pool and L22 protein as the target, searching for discriminating sequences. Initially an 

immunoprecipitation of total RNA-L22 complexes with a specific antibody was performed, followed 

by SELEX amplification for binding sequences present in the immunoprecipitate. This analysis 

revealed three sites on 28S ribosomal RNA that have the potential to interact with L22, one site on  

18S ribosomal RNA, and two RNA segments that are not in current sequence databases. This method 

provided a new strategy to study the regulation networks between protein and nuclear acid in a manner 

similar to proteomic procedures that would be developed years later.  

3.4. Spiegelmer Technology 

When it was first projected that aptamers could be used in medical treatment, it was a key point to 

improve their stability in vivo because the half-lives of DNA and RNA are all short in vivo. Typically, 

the principal strategy to increase nuclease resistance was, until that moment, to modify the backbone 

of nucleic acids using chemical modification (phosphorothioates, methylphosponates or 

phosphoroamidates) [11]. However, in 1996 [12] another method was created to confer stability to 

aptamers designated as Spiegelmer Technology. With the help of the optical activity of chiral molecules, 

Spiegelmer Technology screens aptamers from dextrorotatory oligonucleotide pool. Then, the 

corresponding levorotatory oligonucleotide can recognize the target molecule and could not be 

cleavage by nucleases, which make them attractive molecules for in vivo application. The aptamers 

obtained via this strategy are also called Spiegelmers. However, this method only suits the screening for 

small molecules with optical activity. 
  



Int. J. Mol. Sci. 2011, 12 9161 

 

4. First Attempts to Enter the Cell Environment (1997–1999) 

4.1. In Vivo SELEX 

After almost a decade of development, SELEX processes reached a point where aptamers were 

readily selected and started to diversify towards the use of complex selection environments looking for 

new functionalities, other than recognizing. At that time, the goal was to transfer in vitro selection into 

a cellular context. In 1997 the first report of a selection made inside mammalian cells was done by 

Coulter et al. [13]. This approach is modeled on the in vitro SELEX procedure and uses transient 

transfection and an iterative procedure to enrich RNA-processing signals in culture. The authors 

incorporated a randomized sequence flanked by a duplication of an intronic region that is naturally 

exscinded from the pre-mRNA of a minigene (SXN13). Then, the construct was transfected in a 

transient fashion into QT35 cells to utilize the endogenous splicing machinery. The insertion of this 

library generated potential splicing sites that allowed the recovery of two final transcripts: those with 

and without a new exon constituted by the randomized sequence (R).Total mRNA was isolated and a 

RT-PCR reaction was performed to amplify the “R” segment that was cloned into the same initial 

minigene construct to complete the equivalent steps of an in vitro selection cycle [13]. With this approach, 

after the third selection cycles it was possible to find splincing enhancers sites unknown at that time. 

4.2. Chimeric SELEX 

Once SELEX process was transferred within the cell, the search for aptamers with complex 

functions began. Burke and Willis [14] performed, in 1998, experiments to fuse a series of aptamers 

previously selected every one able to recognize an independent target (Cloramphenicol, adenosine or 

Co-A). They used 2–3 aptamers for each target, creating a “mini-library” of 22 combinations. Their 

findings proved that the newly formed molecules or chimeras (hence the name chimeric-SELEX) 

retained a reduced recognition activity for both targets, probably due to misfolding. However, applying 

a dual selection pressure to the recombined populations, best suited combinations were produced that 

bind to both targets [14]. In this sense, the chimeric molecules are useful to improve affinities for a 

target molecule, to enhance assembly of bifunctional molecules and to recapitulate in vitro a possible 

evolutionary mechanism that might happening in the hypothetic RNA world. Also, chimeric-SELEX 

had served as a precedent for selections directed to promote reactions between two adjacent molecules. 

4.3. Multi Stage SELEX 

A variant of chimeric SELEX was developed by Wu et al. in 1999 [15] by iterating the strategy 

previously described. The approach results in a multi-stage SELEX of five steps. Stage one starts on 

the selection of parental aptamers from randomized libraries. Then, in stage two, a counter-selection 

step is used to avoid cross-reaction between each selection target (cibacron blue and cholic acid). In 

stage three, obtained aptamers are fused to each other (named allosteric DNAs) and reselected to 

isolate the most affinity allosteric pairs. Stage four was to separate binding regions and returned to the 

counter-selection like stage two. In stage five, new allosteric-DNA combinations are re-joined and  

re-selected to later be cloned and characterized. The isolated aptamers could bind either cibacron blue 
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or cholic acid fixed in columns and eluted by any of the free targets (either cibacron or cholate). The 

novelty of multi stage SELEX relies on the fact that only two steps of variability (bi-aptamer 

mini-library construction) are introduced to create molecules with two domains which activity depends 

on interaction with the counter-target. 

5. Aptamer Regulation and Detection (2000–2003) 

5.1. Signaling Aptamers 

After experimenting with different library designs and verifying for intra-cellular functionality, the 

possibility of evaluate the potential applications aptamers in vivo and in vitro became tangible. Some 

of the selection processes started to use the acquire knowledge on aptamer modification to explore its 

application as biosensor, through methods that coupled their molecular recognition abilities with signal 

transduction. Signaling aptamers were initially obtained by Jhaveri et al. in 2000 when they inserted 

limited number fluoresceinated uridines into a library selected to identify ATP. The obtained aptamers 

were able to detect its target with high sensitivity (25 µM) and with as little as one modified 

uridine [16]. Later, methods were based on molecular beacon technology, that is, on the conformational 

change occurring when two oligonucleotides hybridize with each other causing two fluorescent 

reporters to separate [17]. For aptamers, the conformational change is produced by interaction with  

the selection target, ultimately causing a loss of fluorescence or a dequenching of a fluorophore. The 

basic design of a SELEX for aptamer beacons starts with a library that had been amplified using a  

5′-labeled primer (e.g., fluorescein), and then hybridized with a capture oligonucleotide that is 

biotynilated on the 3′-end and coupled to a particular quencher in the 5′-end. Hybrids are recovered 

using streptavidin beads and mixed with the target, in such way that only those sequences forming 

specific interactions are released and dequenched. When the selection procedure is over, each aptamer 

has the property of emitting a signal proportional to target concentration. 

5.2. Indirect SELEX 

The ability to modulate the aptamer function in vivo was another desirable characteristic for its 

application. In this regard, a selection was developed by Kawakami [18] in 2000 using a divalent 

cation (Zn2+) as inductor to form new structural motifs that can recognize naturally RNA-interacting 

proteins (Tat of HIV-1) and evade the isolation of consensus regions. Authors collected RNAs that 

bound to Tat by using a nitrocellulose filter. Sequences of the chosen RNAs were determined after 6 

and 12 rounds of selection. After SELEX, many unique sequences were isolated from the library in 

presence of Zn2+ and the RNA with the most abundant sequence (e.g., clone 31) recognized Tat protein 

tightly only when Zn2+ was present in the mixture. From the data of secondary structure determination, 

it was possible to say that Zn2+ responsive Tat-aptamer should require a relatively large region of the 

sequence to establish a tertiary interaction of several motifs in order to perform the binding [18]. 

5.3. Toggle SELEX 

On the other hand, while libraries became more intricate, targets used for selection gradually were 

increasing in size, but the consequence was that the affinity, in many cases, fell; probably because 
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SELEX directed against large molecular surfaces resulted in the isolation of multiple sequences that 

attached to various sites (or epitopes), some with higher affinity than others. Therefore, when individual 

sequences were isolated, the chances of have found a weak-interacting aptamer were bigger. After this 

observation, SELEX started to be modified so each aptamers recognizing an epitope had the highest 

interaction possible. Toggle-SELEX was proposed in 2001 to yield a number of aptamers acting as 

“polyclonal” populations that eventually could be separated into stronger individual aptamers. Two 

studies under this strategy appeared that year, Bianchini et al. [19] selected several RNA aptamers for 

ERK2 using initially a small peptide (comprising two phosphorylation sites) as an intermediate target 

that was fixed on a nitrocellulose membrane. They tested this sub-population for positive interaction 

and then the target was switched for ERK2 complete protein extracted from T84 cell cultures. As the 

authors stated, by using a crude extract they ensured selection on the basis of specificity rather than 

affinity, with the important consequence that the latter increased considerably (63 nM). Only two steps 

were made to obtain a very specific mixture of sequences and individual aptamers, also showing that 

selection methods could begin to be simplified. 

The second experiment was performed by White et al. [20], who described a selection in which 

RNA aptamers were obtained to recognize both human and porcine thrombin. Initial library was 

incubated with a mix of both proteins to enrich the population with thrombin-recognizing aptamers. 

This “pre-selected” library was then incubated with one protein in an alternately way, until sequences 

joining common region on both species were isolated. In parallel, two selections directed to either 

human or porcine protein were conducted as comparative populations. At the end, a family of RNA 

aptamers was obtained from toggle-SELEX that had cross-reactivity and a high affinity analogous to 

aptamers isolated form targets used individually. This procedure was then proposed as a cheaper 

method to obtain molecules suitable for animal testing. 

5.4. Expression Cassettes 

The next consideration taken into the path towards aptamer application was the design of 

appropriate delivery methods. One approach was published in 2002 by Martell et al. [21] where a 

previously isolated aptamer to the E2F1 transcription factor was coupled to a Pol III promoter as an 

expression unit (or cassette) in a plasmidic DNA. The construct contained a promoter, a tRNA 

sequence and the aptamer flanked by randomized regions. When the transcript was generated, tRNA 

structure stabilized the aptamer and the randomized stretches formed a stem flexible enough to allow 

the formation of the proper configuration for target recognition. This expression cassette yielded RNAs 

that bind E2F with high affinity (IC50 of 15 nM) without sacrificing its structure and which can be 

stably expressed at high levels in mammalian cells [21]. The advantages of this SELEX included 

protection of the aptamer and high levels of expression and functionality at the cell interior, constituting 

the first step in the design of aptamer for therapeutic purposes. 

5.5. Tailored SELEX 

Artificial synthesis was another concern on the quest for application because larger sequences were 

more expensive when produced on a large scale.Also, if fixed regions were involved in the recognition 

of the target, trying to truncate an aptamer in a post-SELEX manner might have represented a problem. 
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In addition, modifications used to add resistance, such as mirror-images (Spiegelmer), incremented 

costs dramatically and large oligonucleotides were less efficiently synthesized. To overcome these 

issue a method, named Tailored-SELEX, that permitted the isolation of short ligands was developed by 

Vater et al. eight years ago [22], it was based on the design of cleavable primer-hybridization sites 

allowing to elimination of fixed sequences after the amplification of the library. The design resulted in 

aptamers with a randomized region flanked only for 10-known nucleotides. This approach was 

validated by identifying an inhibiting Spiegelmer that acted on a migraine relate peptide (α-CGRP) 

with an IC50 of 3 nM. Conveniently, Tailored-SELEX provided a way to obtain short sequences that 

can be tested more rapidly in biological systems [22]. 

6. Updating SELEX Method with Modern Technologies (2004–2011) 

6.1. CE-SELEX 

At his point, aptamers appear to be easily obtained and had passed the test for surviving  

cellular-conditions, joining very specifically to their targets. But although SELEX was being perceived 

as a flexible method it was yet almost artisanal. In this manner, a new episode on aptamers history 

started with the coupling of new devices and technologies into the general scheme. The goal of the 

next modifications was then to make SELEX a more standardized and effective screening method. 

Capillary Electrophoresis selection (CE-SELEX) is one method that used for the first time sophisticated 

equipment for the separation of aptamer-target complexes. Mendonsa et al. [23] isolated DNA 

aptamers recognizing human IgE by means of differential electrophoretic migration due to the size 

dissimilarity between the free and complexed populations. After each CE-partitioning step, recovered 

sequences were amplified and ssDNA separated prior to the next incubation with the target which was 

the beginning a new selective round. The progress of SELEX was measured by determining the 

dissociation constant of final populations; very specific aptamers were obtained (29 nM) and standard 

deviation (6 nM) shows a very narrow range of affinities. The efficiency CE leads to a high rate of 

enrichment, allowing isolated sequences to be obtained in only four rounds of selection. This method 

also decreased the number of cycles shortening selection procedure from weeks to several days. 

6.2. FluMAG SELEX 

In the matter of complex separation and affinity monitoring, Stoltenburg et al. developed other 

option in 2005 [24] that used fluorescent labeling and an target immobilized over magnetic beads. 

Immobilization enables malleability, smaller concentration of target, rapid and efficient separation of 

bound and unbound molecules, and rigorous washing steps [24]. Authors named this modified process 

FluMAG-SELEX, providing at the same time a methodological background for selections with targets 

having diverse properties and sizes, as long as they can be fixed into the beads. Initially the selection 

was made to isolate aptamers against streptavid in that coated magnetic beads. Complexes were 

separated using a magnet and aptamers amplified using a primer with a fluorescent tag. This led to a 

cleaner selection since unspecific interactions were easily eliminated. The advantages of the aptamers 

derived from FluMAG-SELEX are the possibility of applying them as biosensors useful in clinical 

approaches and to avoid the use of radioactive isotope-labeled libraries. 
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6.3. TECS-SELEX 

A primary concern that was explored in parallel with the incorporation of technological advances 

was the way in which the target was presented to the library. Until then, SELEX procedures were 

completed using highly purified targets, but selection for cell surface proteins was restricted due to 

difficulties in the purification of membrane-embedded peptides. Target expressed on cell  

surface-SELEX (TECS-SELEX) was designed by Ohuchi et al. in 2006 for the isolation of aptamers 

recognizing the TGF-β type III receptor (TbRIII) ectopically expressed on the surface of CHO 

cells [25]. These modified cells displayed a recombinant form of TbRIII which were utilized as the 

direct target for a population of RNA oligonucleotides. After incubation, weak- or non-interacting 

sequences were washed out and remaining aptamers were amplified by RT-PCR. At the end of the 

process, one of the aptamers had a dissociation constant near 1 nM and competed with TGF-β to bind 

to the cell surface receptor in vitro [25]. Thereby, this change obviates the target purification step, 

simplifying the overall selection. Three years later, a similar report was made involving the expression 

of a viral target on the surface of a human cell line [26] instead of expressing a human protein on the 

surface of CHO cells like described above.  

6.4. Non-SELEX 

In 2006, a technique was developed by Berezovski et al. [27] under the principle of  

Non-Equilibrium Capillary Electrophoresis of Equilibrium Mixtures (NECEEM), a partition method 

that they previously reported on 2002 as a strategy for the measurement of binding constants for the 

formation of DNA-Protein complexes. For NECEEM, nucleic acids and protein were combined until 

equilibrium is reached and the pool was subjected to capillary electrophoresis on a non-equilibrated 

column leading to a very efficient separation of complexes. NECEEM was successfully coupled to 

SELEX facilitating the partition step when a recollection window was properly found (CE-SELEX). 

Non-SELEX is a variation derived from the CE-SELEX in which amplification step is skipped. In the 

first description, hRas was used as the target for DNA aptamers where an initial PCR reaction was 

made only to determinate the bulk constant for the naïve library as well as the recollecting window. 

Afterwards, no amplifications were performed. Then, the recovered hRas-DNA complexes after 

partition steps were directly incubated with a fresh aliquot of hRas at the same concentration. The 

authors found that three steps of partitioning in the non-SELEX approach were sufficient to improve 

the affinity of a DNA library by more than 4 orders of magnitude [27] at the end of the procedure. 

Affinity values were also higher when compared with those from the enriched library obtained in three 

rounds of complete CE-SELEX. The time required for the Non-SELEX was just one hour resulting in 

a fast and economical method for isolation of highly enriched aptamer populations, suggesting that 

aptamers may be more abundant than they are thought to be [27]. 

6.5. NanoSelection® (nM-AFM SELEX) 

Another technological incorporation that improved SELEX procedure was the microscopy. 

Particularly, atomic force and fluorescence microscopy were combined with small copy number PCR 

by Peng et al. in 2007 [28] to create a new method registered under the name of NanoSelection® (or 
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nano-Manipulator/Atomic Force Microscopy selection, nM-AFM) [4,28]. In this procedure, the 

authors used a 1:1 mixture of an aptamer against thrombin previously isolated [29] and a nonsense 

oligonucleotide as a binary library. Both oligos were fluorescently labeled, attached to soft beads and 

reacted against target-coated substrate. If any of the sequences interacted with thrombin, a strong signal 

was observed from underneath with an inverted fluorescence microscope meanwhile bead-aptamer-target 

complexes were detected by the tapping movement of the AFM tip on the upper face of the coated-substrate. 

The results of this technology were overlaid images where the most brilliant and higher spots 

corresponded to aptamer-target complexes. These spots were picked-up using a stronger mode of the 

tip to dragged-out the aptamer from the complex. Finally, individual aptamers were amplified and 

characterized. The principal advantage of this technique is the possibility to isolate individual aptamers 

in a single selection cycle from a small pool of random-sequence oligonucleotides [28]. 

6.6. MonoLEX 

Just like microscopy and electrophoresis were applied, chromatography also played a role in the 

development of new approaches to SELEX. Nitsche et al. [30] separated aptamer-target complexes 

using affinity chromatography followed by physical fragmentation of the resin column. The nucleic 

acids from each section of the column was then amplified and directly characterized avoiding the  

re-selection step of traditional SELEX leading to a selection in one step, hence it was named 

MonoLEX [30]. For this particular case, complete Vaccinia virus particles were used as model 

resulting in a 64-nucleotide DNA aptamer that also recognized other orthopoxviruses family members. 

Besides, isolated aptamer was capable of inhibiting in vitro infection in a concentration-dependent 

manner [30]. MonoLEX method improves the selection of high affinity aptamers by diminishing the 

competition between sequences with different affinities during the PCR step, which represents an 

advantage for the selection [30]. 

6.7. CS-SELEX 

The Cell specific SELEX or CS-SELEX is a particular derivation originally developed on 1999 by 

Homann and Göringer [31] using Trypanosome brucei and retaken in 2008 by Shangguan et al. [32] 

who incorporated mass spectrometry. In contrast to TECS-SELEX, neither one of them utilize a 

system of ectopic expression for target proteins on the cell surface [25]. Homann and Göringer used 

classic SELEX to isolate RNA aptamers that recognized the invariant surface glycoproteins (IGSs) of 

the whole living parasite T. brucei. These aptamers were able to discriminate between life cycle stages 

(bloodstream and insect) but unable to distinguish between different strains of parasites. Therefore, 

their results indicated that the RNA ligands could be used against a greater range of trypanosome 

strains but they do not specify the protein with which the aptamers interact. In the approach of 

Shanguann et al., entire cells from established lines were used as targets to determine specific 

biomarkers when compared to a different cell line. Using CS-SELEX they selected aptamers against 

cancer-specific cell markers in T-cell acute lymphoblastic leukemia cell line (CCRF-CEM). Briefly, an 

ssDNA library of 1015 sequences was incubated with CCRF-CEM; bound aptamers were collected and 

immediately passed through counter selection step using control cell lines (e.g., Ramos, a B-cell 

lymphoma cell line). After 20 cycles of amplification, the aptamer scg8 was isolated and target peptide 
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was analyzed by LC-MS/MS. The resulting peptide sequence was identified as PKT7 when was 

searched on MASCOT database [32]. Specificity and affinity of scg8 were measured by flow 

cytometry, indeed adding a new tool that can be incorporated into SELEX. The identification of 

potential target in a short time made the difference with the original report by CS-SELEX. Aptamers 

generated by CS-SELEX can serve as specific probes with high affinity for the identified biomarker. 

This opens an opportunity for diagnostic applications as well as for identification of specific cellular  

functions [32].  

6.8. Next Generation SELEX 

In 2009 a type of SELEX emerged that is derived from previously reported  

cDNA/Genomic-SELEX, in this case involving microarrays technology as a detection system of 

aptamer-target interaction. Reid et al. [33] searched for splicing sites into a set of pre-mRNAs by using 

a library design that displace a 30-nucleotide window in length by increments of 10-nt. The generated 

oligonucleotides were synthesized as a custom microarray and released from the slide to allowed 

amplification through universal primer binding sites. Afterwards, the sequences were transcribed to 

produce small replicas from the selected pre-mRNAs, recognizable by U1-snRNP/PTB, that were 

subjected to SELEX [33]. Finally, enrichment was then measured as the ratio of oligonucleotide in the 

bound fraction versus that in the starting library. The two-color microarray analysis showed that  

U1-snRNP joined 5′ splicing site with specificity comparable to the splice donor motif. Selection for 

PTB resulted in an enrichment of the polypyrimidine tract on the final library. This SELEX application 

could serve as a tool to explore donor and acceptor splicing sites on pre-mRNAs with clinical 

relevance such as Duchenne Muscular Dystrophy [34]. 

6.9. Microfluidics SELEX (M-SELEX) 

The first concept at microfluidic separation understood as the manipulation of continuous liquid 

flow through micro-fabricated channels dates back to 2004 when CE-SELEX [23] emerged. In this 

case, a little sample of target-DNA mixture (up to 5 nL) was injected into a capillary and separated 

with a high voltage setting the bases of microfluidics SELEX. However, in 2010, microfluidics chips 

are defined as a system that integrate many functions such as sample preparation, reaction, separation 

and detection on a single surface (chip) fabricated with minuscule channels where reagents can interact 

to perform defined reactions. These chips range from millimeters to a few square centimeters in 

size [35]. Examples of this technology were reported this year by two independent groups, Cho et al. 

used a micro-magnetic device (MMS) and high throughput sequencing to isolate ssDNA aptamers to 

PDGF-BB (platelet derived growth factor BB) [36]. This method allows the discrimination of aptamers 

surged as high-affinity target ligands rather than a product of experimental biases. Interestingly, the 

resulting aptamers had a Kd in the low nM range (<3 nM) obtained with only three rounds of selection 

and having a ~3–8-fold higher affinity and a ~2–4-fold higher specificity than the aptamers isolated by 

traditional methods [36]. On the other hand, Huang et al. designed and constructed a miniature and 

automatic platform for SELEX [37]. In their microfluidic system three major modules was integrated: 

control, magnetic bead-based ssDNA extraction and amplification modules. Each one was used to 

perform a single step of SELEX (sample incubation and transportation, aptamer screening and fast 
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amplification, respectively) [37]. After interaction of the target protein (C-reactive protein, CRP) with 

the ssDNA randomized pool in the first module, complexes were separated in the screening module 

and an on-chip PCR was performed to amplify specific sequences in the last component of the chip. A 

specific aptamer for CRP with the highest affinity was isolated after five cycles of automatic selection 

with this device. This microsystem proved to be a fast screening powerful tool that can be used to 

select aptamers for any target with potential application in clinic. 

6.10. Multiple-Target High-Throughput SELEX 

In 2011, until 31 August, most of reported SELEX assays have been done by applying state-of-the-art 

technology to multiplex selection and to obtain shortened aptamers as to be quickly and directly 

applied in vivo. Some examples are HAPIscreen [38], Emulsion PCR [39], primer-free SELEX [40] or 

FACMCE [41]. Basically, the goal is now to obtain several aptamers for different targets reducing 

times of selection and characterization by combining techniques such as massively parallel sequencing 

and microfluidics (Multiplexed SELEX) [42]. With the emerge of nanotechnology, it was also possible 

to miniaturized work areas into small devices (microchips) avoiding cross-contamination due to 

management of large samples making aptamers relatively easy produced at low cost. 

7. Bioinformatics Approaches for SELEX 

In silico analysis has also been used to study the behavior of nucleic acid populations during 

SELEX, this way, in the last years some variants had been developed such as Neutral-SELEX [43] or 

DiStRO (a Diversity Standard of Random Oligonucleotides) [44] that permitted to analyze one of the 

steps of SELEX. This technological addition to the story line of in vitro selection led to the description 

of phenomena not previously known such as biases for a particular nucleotide on the amplification 

step, progressive changes on melting temperatures that eventually were used to demonstrate evolution 

of selected pools, and alterations on libraries sequences due to the iterative process itself, even when 

molecular populations had not been exposed to a particular target. Nevertheless, the details of these 

adaptations are out of the scope of this review. 

8. Final Remarks 

Over two decades, SELEX has proved to be a convenient method for the isolation of aptamers 

useful for a wide range of biotechnological and clinical applications. In a typical SELEX experiment, 

there are as many potential aptamers as combinations of the random positions introduced in a library 

design. However, after selection, there is a plethora of sequences that are less than those on the initial 

library but often no SELEX results in a unique product. Usually SELEX renders defined structural 

families, independently of the selection method employed, and there are groups of ligands with a 

spectrum of affinities for the same target. The variations of the method mentioned above had helped to 

avoid the isolation of weak-interacting ligands and now the choice of a particular SELEX depends 

mainly on how the resulting aptamer is planned to be used. In general, it seems that the technology of 

in vitro selection has reached a point of maximum improvement and the next challenge will be the 

application of aptamers as molecular tools. Some non-coding RNAs and DNA sequences obtained this 
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way are now being applied in therapeutics and diagnostics fields but there is still a long way to go until 

aptamers became as widespread as antibodies, although now we know is plausible. This review 

presented a compilation of some of the modification of SELEX process, but does not include all of the 

varieties that might be reported in the period of time referred to (1990–2011). 
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