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Abstract: Human chymase is a very important target for the treatment of cardiovascular 

diseases. Using a series of theoretical methods like pharmacophore modeling, database 

screening, molecular docking and Density Functional Theory (DFT) calculations, an 

investigation for identification of novel chymase inhibitors, and to specify the key factors 

crucial for the binding and interaction between chymase and inhibitors is performed. A 

highly correlating (r = 0.942) pharmacophore model (Hypo1) with two hydrogen bond 

acceptors, and three hydrophobic aromatic features is generated. After successfully 

validating “Hypo1”, it is further applied in database screening. Hit compounds are 

subjected to various drug-like filtrations and molecular docking studies. Finally, three 

structurally diverse compounds with high GOLD fitness scores and interactions with key 

active site amino acids are identified as potent chymase hits. Moreover, DFT study is 
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performed which confirms very clear trends between electronic properties and inhibitory 

activity (IC50) data thus successfully validating “Hypo1” by DFT method. Therefore, this 

research exertion can be helpful in the development of new potent hits for chymase. In 

addition, the combinational use of docking, orbital energies and molecular electrostatic 

potential analysis is also demonstrated as a good endeavor to gain an insight into the 

interaction between chymase and inhibitors. 

Keywords: chymase; pharmacophore; molecular docking; in silico screening; density 

functional theory; molecular electrostatic potential. 

 

1. Introduction 

Raised blood pressure, especially systolic pressure (hypertension), is one of the striking factors 

inducing various diseases like heart failure, stroke, myocardial infarction and arterial aneurysm, and is 

a leading cause of chronic kidney failure [1]. A treatment of hypertension is to decrease the circulating 

volume and/or to slack the blood vessels [2]. Angiotensin II has important roles not only in the 

regulation of blood pressure but also in the development of vascular wall remodeling [3]. Conversion 

of angiotensin I (Ang I) to angiotensin II (Ang II) is catalyzed by well-known angiotensin-converting 

enzyme (ACE), which is a metallo-proteinase with dipeptidyl-carboxypeptidase activity. However, 

chymase (EC 3.4.21.39) which is a chymotrypsin-like enzyme expressed in the secretory granule of 

mast cells, also catalyzes the production of angiotensin II in vascular tissues even when ACE is 

blocked (Figure 1).  

Figure 1. Chymase-dependent conversion of angiotensin I to angiotensin II and precursors 

of TGF-β and MMP-9 to their active forms. 

 

Chymase converts Ang I to Ang II with greater efficiency and selectivity than ACE [4]. The rate of 

this conversion by chymase is approximately four fold higher than ACE. Chymase shows enzymatic 

activity immediately after its release into the interstitial tissues at pH 7.4 following various stimuli in 

tissues. Since chymase has no enzymatic activity in normal tissues, chymase inhibitors are expected to 

have high safety because chymase inhibitors may not have an effect on any other targets in normal  

tissues [5]. In order to generate Ang II, human, monkey, dog and hamster chymases cleave the 

angiotensin I at Phe8-His9 peptide bond. Chymase also converts precursors of transforming growth 

factor-β (TGF-β) and matrix metalloproteinase (MMP)-9 to their active forms thus contributing to 
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vascular response to injury. Both TGF-β and MMP-9 are involved in tissue inflammation and fibrosis, 

resulting in organ damage [6]. Previous studies have demonstrated the involvement of chymase in the 

escalation of dermatitis and chronic inflammation pursuing cardiac and pulmonary fibrosis [7]. 

Therefore, inhibition of chymase is likely to divulge therapeutic ways for the treatment of 

cardiovascular diseases, allergic inflammation, and fibrotic disorders. Chymase inhibition may also be 

useful for preventing the progression of type 2 diabetes, along with the prevention of diabetic 

retinopathy [8]. Moreover, the role of chymase in inflammation has prompted its restorative value in 

diseases such as chronic obstructive pulmonary disease (COPD) and asthma [9]. 

Chymase inhibitors are imperative for elucidation of the physiological functions of chymase and 

potentially useful therapeutic agents. Several chymase inhibitors such as sulfonyl fluoride derivatives [10], 

Boc-Val-Pro-Phe-CO2Me [11], Z-Ile-Glu-Pro-Phe-CO2Me, (F)-Phe-COGlu-Asp-ArgOMe [12],  

N-(2-Naphthyl) carboxamido derivatives [13], N-(2,2-dimethyl-3-(N-(4-cyanobenzoyl)amino) 

nonanoyl)-L-phenylalanine ethyl ester [14], 3-benzylazetidine-2-one derivatives [15],  

1,3-diazetidine-2,4-dione derivatives [16], methyllinderone derivatives [17], chloromethyl ketone 

derivatives [18], 1-oxacephem derivatives [19], and 3-(phenylsulfonyl)-1-phenylimidazolidine-2,4-dione 

derivatives [20] have been reported previously. In general, chymase inhibitors readily decompose in 

plasma, thus the stability of the chymase inhibitors in human plasma has always been a matter of great 

concern. For a drug candidate, it is essential to enhance the stability of the active compound in human 

plasma. So, there is always a dire need to search for more stable inhibitors with high activity against 

human chymase. 

Many studies have indicated that computational approaches, such as predicting drug-target interaction 

networks [21], prediction of body fluids [22], predicting HIV cleavage sites in proteins [23,24], predicting 

protein metabolic stability [25], predicting signal peptides [26], identification of DNA Binding 

Proteins [27], predicting the network of substrate-enzyme-product triads [28], predicting protein 

subcellular locations [29,30], predicting proteases and their types [31], predicting antimicrobial 

peptides [32], predicting membrane proteins and their types [33], predicting GPCRs and their  

types [34], identifying nuclear receptor subfamilies [35], predicting gram-negative bacterial protein 

cellular locations [36], and predicting transcriptional activity of multiple site p53 mutants [37], can 

provide many useful insights and data for which it would be time-consuming and costly to obtain by 

experiments alone. Actually, these data, combined with the information derived from the structural 

bioinformatics tools (see, e.g., [38]), can timely provide very useful insights for both basic research 

and drug development. In view of this, the present study attempts to develop a new computational 

modeling method in the hopes it may become a useful tool for the drug development. 

A quantitative structure-activity relationship (QSAR) study is a helpful approach to quantitatively 

understand the relationships between molecular structures of inhibitors and their biological  

activities [39–46]. Pharmacophore modeling and 3D-QSAR studies have been successfully applied 

previously for various drug discovery research, including glycoprotein (GP) IIb/IIIa antagonists,  

H3-antihistaminics, and dihydrofolate reductase inhibitors [47–51]. Electronic molecular features such 

as electron density, frontier molecular orbital density fields such as lowest unoccupied molecular 

orbital (LUMO), highest occupied molecular orbital (HOMO) and molecular electrostatic map have 

also been revealed to be significant in other QSAR studies to explain biological activity and molecular 

properties [52]. The HOMO density field was useful in a study of ACE inhibitors, and the LUMO 
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density field was found to be important for explaining the TA100 mutagenicity [53,54]. Thus, 

determining molecular electronic properties responsible for the potent activity of selected chymase 

inhibitors should illuminate the fundamental molecular level forces responsible for their potency. 

Various QSAR studies for chymase inhibitors have also been performed. The QSAR analysis of 

anhydride-type chymase inhibitors showed that aromatic substituents played an important role in 

determining the inhibitory potency of the compounds [55]. While, Hayashi and coworkers showed that 

introduction of various substituents in chloromethyl ketone derivatives resulted in a variation in their 

activity against human chymase [18]. A 3D QSAR model for the identification of stable chymase 

inhibitors has also been developed by Yuuki et al. 2003 [56]. 

The subject of the present study is to develop QSAR models and explore the key molecular features 

of chymase inhibitors influencing the protein-ligand binding and interaction, by exploring the 

dependence of inhibitory activities upon various physiochemical properties of these compounds. In 

order to accomplish these tasks, an exclusive computational strategy is applied by using various QSAR 

model building techniques such as pharmacophore modeling, molecular docking, and Density 

Functional Theory (DFT) (Figure 2). 

Figure 2. Flow chart elucidating the computational strategy applied in this study. 
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In the first phase of calculations, a pharmacophore model (Hypo1) comprising key chemical 

features for the identification of novel and diverse chymase inhibitors has been generated. After 

validation, this pharmacophore model is used as a 3D structural search query to find new classes of 

compounds with similar chemical features from chemical databases. The obtained hits are scrutinized 

based on their estimated activity and calculated drug-like properties. Molecular docking is also 

performed for the evaluation of compounds for important binding site interactions and affinity. Finally, 

we have carried out DFT-based QSAR studies on a set of chymase inhibitors retaining structural 

diversity and a wide biological activity range, along with potent hits retrieved by newly developed 

pharmacophore model (Hypo1). The objective of this DFT study is two-fold. One purpose is to derive 

the QSAR model itself and the other is to scrutinize the usefulness of conceptual DFT quantities. 

Moreover, it also served as a validation technique for the generated pharmacophore model. Various 

electronic properties such as LUMO, HOMO, and locations of molecular electrostatic potentials, are 

computed. The results of this study are expected to explore the crucial molecular features contributing 

to binding specificity and be useful for understanding the molecular mechanism by which  

these compounds act and can be further utilized to get compounds with better activity by  

rational modification. 

2. Results and Discussion 

2.1. Pharmacophore Modeling 

One of the main objectives of the present study is to generate a pharmacophore model for the 

identification of novel chymase inhibitors. To accomplish this, ten hypotheses with imperative statistical 

parameters were generated by HypoGen module of DS using a training set of 20 compounds (Figure 3). 

The hypotheses are generated with cost functions and correlation values by which they are 

estimated. The fixed cost, total cost and null cost values are calculated by HypoGen module during the 

hypotheses generation. The fixed cost is the lowest possible cost representing a hypothetically simplest 

model that fits all data perfectly, whereas the null cost value is equal to the maximum occurring error 

cost. For a more statistically significant hypothesis, there should be greater difference between these 

two cost values. The possibility of correlating the experimental and estimated activity data enhances to 

75–90% with a cost difference of 40–60 bits between the total and null cost values [57,58]. In the 

present work, the null cost value of the top 10 hypotheses is 182.366 and the fixed cost value is 75.791. 

Thus, a difference of 106.575 bits between fixed cost and null cost consigns to a meaningful 

pharmacophore model. Moreover, the total cost of the generated hypothesis should be closer to the 

fixed cost. All ten generated hypotheses scored a total cost closer to the fixed cost which leads to a 

good model. Statistically significant factors which include cost values, correlation coefficients (r), 

pharmacophore features, and root mean square deviations (RMSDs) of all 10 hypotheses are listed  

in Table 1. 
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Figure 3. 2D molecular structures of training set compounds. 

 

Table 1. Statistical details for top 10 scoring hypotheses. 

Hypothesis Total cost ΔCost a  RMSD (Å) Correlation (r) Features 

1 89.663 92.703 1.176 0.942 HBA, HBA, HY-AR, HY-AR, HY-AR

2 91.454 90.912 1.25 0.934 HBA, HBA, HY-AR, HY-AR, HY-AR

3 94.811 87.555 1.348 0.924 HBA, HY-AR, HY-AR, RA 

4 95.086 87.28 1.388 0.919 HBA, HBA, HY-AR, HY-AR, HY-AR

5 95.379 86.987 1.387 0.919 HBA, HY-AR, RA, RA 

6 95.458 86.908 1.396 0.918 HBA, HBA, HY-AR, HY-AR, HY-AR

7 95.656 86.71 1.406 0.916 HBA, HBA, HY-AR, HY-AR, HY-AR

8 95.855 86.511 1.409 0.916 HBA, HBA, HY-AR, HY-AR, HY-AR

9 95.538 86.828 1.411 0.916 HBD, HY-AR, RA, RA 

10 96.124 86.242 1.421 0.915 HBA, HBA, HY-AR, HY-AR, HY-AR

Null cost = 182.366, fixed cost = 75.791, configuration cost = 16.606; all cost values are in bits;  
a ΔCost = Null cost − Total cost; Abbreviations used for features: HBA, Hydrogen-bond acceptor; 
HY-AR, hydrophobic aromatic; RA, ring aromatic; HBD, Hydrogen-bond donor. 

The configuration cost enumerates the entropy of the hypothetical space and its value should not 

exceed a maximum value of 17 for a significant pharmacophore model [59,60]. The configuration cost 

value of 16.601 was obtained for this pharmacophore generation calculation. 

Seven of the 10 hypotheses were made of five pharmacophoric features while another three had 

shown four features. The HY-AR was the common feature among all hypotheses. Nine of the 
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10 hypotheses had Hydrogen-bond acceptor (HBA), three hypotheses had ring aromatic (RA) while 

only one hypothesis was made of hydrogen bond donor (HBD). Hypo1 consists of two HBA and three  

HY-AR features and scored the better correlation and cost difference values. The RMSD value 

indicates the quality of “prediction” for the training set. The RMSD of all ten hypotheses ranged from 

1.176 to 1.421 Å while the Hypo1 showed the lowest RMSD value of 1.176 Å. The correlation 

coefficient for the Hypo1, 0.942, represents a good correlation by linear regression of the geometric fit 

index. All these results construe that Hypo1 is the best ranking pharmacophore model among other 

hypotheses (Figure 4). 

Figure 4. The pharmacophore model, Hypo1, showing two hydrogen-bond acceptors 

(HBAs) and three hydrophobic aromatic (HY-AR) features (a) and with distance 

constraints (b). 

 

On the basis of the activity, compounds belonging to training and test sets were categorized into 

activity scales: most active (++++, IC50 (inhibitory concentration) < 20 nM); moderately active (+++, 

≥20 IC50 < 200 nM); less active (++, ≥200 IC50 < 2000 nM); inactive (+, IC50 ≥ 2000 nM). Activities 

of all compounds were estimated based on the best ranking pharmacophore model, Hypo1. The 

experimental and estimated activity values for the 20 training set compounds based on Hypo1 are 

listed in Table 2.  

Table 2. Experimental biological activity data and estimated IC50 values of training set 

compounds based on pharmacophore model Hypo1. 

Compound 
Experimental 
activity (nM) 

Estimated 
activity 

Error 
Activity 
scale a 

Estimated 
activity scale 

1 0.46 0.27 −1.7 ++++ ++++ 
2 2.1 1.9 −1.1 ++++ ++++ 
3 11 16 1.4 ++++ ++++ 
4 20 49 2.5 +++ +++ 
5 57 50 −1.1 +++ +++ 
6 91 80 −1.1 +++ +++ 
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Table 2. Cont. 

7 110 650 5.9 +++ ++ 
8 170 170 1 +++ +++ 
9 220 720 3.3 ++ ++ 
10 250 650 2.6 ++ ++ 
11 360 710 2 ++ ++ 
12 410 760 1.9 ++ ++ 
13 730 660 −1.1 ++ ++ 
14 900 610 −1.5 ++ ++ 
15 1300 930 −1.4 ++ ++ 
16 1600 650 −2.6 ++ ++ 
17 2200 860 −2.6 + ++ 
18 3000 850 −3.5 + ++ 
19 3500 830 −4.2 + ++ 
20 5900 4800 −1.2 + + 

a Activity scale: most active (++++, IC50 < 20 nM); moderately active (+++, ≥20 IC50 < 200 nM); 

less active (++, ≥200 IC50 < 2000 nM); inactive (+, IC50 > 2000 nM). 

Analysis of the activity prediction of training set compounds revealed that all the most active 

compounds were predicted in the same scale, whereas only one moderately active compound was 

estimated as less active and three inactive compounds were estimated as less active compounds among 

the 20 compounds of training set. The estimated activity values of most and least active compounds of 

the training set based on Hypo1 were 0.27 and 4800 nM, respectively, which are very close to that of 

their experimental activity values (0.46 and 5900 nM). This result revealed that the structural 

characteristics which can explain the difference in their biological activities are present in  

Hypo1 (Figure 5a). 

Figure 5. Mapping of most active compound 1 (a) and least active compound 20 (b) of 

training set over pharmacophore model Hypo1. 

 

The most active compound 1 could map all the features of the best pharmacophore model, Hypo1, 

with a fit value of 9.04. The carbonyl oxygen atoms attached with the piperazine ring and azetidinone 

moiety were mapped onto the two HBA features. All three phenyl rings present in this most active 

compound mapped over three HY-AR features. The least active compound 20 in the training set maps 

Hypo1 with a fit value of 4.79 missed two HY-AR features as compared to compound 1. Carbonyl 
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group of imidazolidine-dione and the only carboxyl group of this least active compound mapped both 

the HBA features whereas the phenyl ring attached to the imidazolidine-dione mapped over one of the 

HY-AR features (Figure 5b).  

2.2. Pharmacophore Validation  

2.2.1. Test Set Prediction Method 

The validation of suggested pharmacohore model, Hypo1, was performed by two different 

validation methods, namely, test set prediction and Fischer randomization methods. A test set 

containing 97 compounds, representing diverse activity classes and different functional groups, is used 

in this validation process. These test compounds were imported into the DS and diverse conformers 

were built in the same manner as for training set compounds. The estimated activities of these test set 

compounds were calculated based on the geometric fit of these compounds over Hypo1. Analyses of 

the estimated activities of test set compounds demonstrated remarkable results. From the 97 test set 

compounds, 94 compounds showed error values less than 5 which is hardly different from the 

experimental and estimated activity values (Table 3). 

Table 3. Test set compounds listed with their experimental, estimated activities and error values. 

Name 
IC50 nM 

Error c 
Activity scale d

Name
IC50 nM 

Error 
Activity scale 

Exp. a Est. b Exp. Est. Exp. Est. Exp. Est. 

21 0.5 0.48 −1.0 ++++ ++++ 70 500 491.7 −1.0 ++ ++ 

22 1 1.00 −1.0 ++++ ++++ 71 550 592.4 1.0 ++ ++ 

23 2 65.84 32.9 ++++ +++ 72 580 579.668 −1.0 ++ ++ 

24 3.1 3.16 1.0 ++++ ++++ 73 600 601.005 1.0 ++ ++ 

25 5 12.84 2.5 ++++ ++++ 74 609 609.043 1.0 ++ ++ 

26 5.6 16.38 2.9 ++++ ++++ 75 700 1545.30 2.2 ++ ++ 

27 6 6.38 1.0 ++++ ++++ 76 700 697.894 −1.0 ++ ++ 

28 13 15.57 1.1 ++++ ++++ 77 710 709.97 −1.0 ++ ++ 

29 19 19.30 1.0 ++++ ++++ 78 780 779.896 −1.0 ++ ++ 

30 20 524.55 26.2 +++ ++ 79 800 798.863 −1.0 ++ ++ 

31 24 23.99 −1.0 +++ +++ 80 860 860.59 1.0 ++ ++ 

32 26 26.03 1.0 +++ +++ 81 890 889.222 −1.0 ++ ++ 

33 27 27.18 1.0 +++ +++ 82 890 889.127 −1.0 ++ ++ 

34 30 526.07 17.5 +++ ++ 83 1100 1103.48 1.0 ++ ++ 

35 32 42.12 1.3 +++ +++ 84 1200 1209.95 1.0 ++ ++ 

36 37 37.00 −1.0 +++ +++ 85 1200 1193.16 −1.0 ++ ++ 

37 37 35.56 −1.0 +++ +++ 86 1400 1399.23 −1.0 ++ ++ 

38 40 10.60 −3.7 +++ +++ 87 1400 552.461 −2.5 ++ ++ 

39 50 50.85 1.0 +++ +++ 88 1650 1645.71 −1.0 ++ ++ 

40 50 50.17 1.0 +++ +++ 89 1650 551.849 −2.9 ++ ++ 

41 58 56.72 −1.0 +++ +++ 90 1700 524.94 −3.2 ++ ++ 

42 70 71.11 1.0 +++ +++ 91 1800 1821.04 1.0 ++ ++ 
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Table 3. Cont. 

43 70 70.25 1.0 +++ +++ 92 1800 1776.13 −1.0 ++ ++ 

44 77 76.65 −1.0 +++ +++ 93 1800 1530.73 −1.1 ++ ++ 

45 82 408.48 4.9 +++ ++ 94 1900 1901.07 1.0 ++ ++ 

46 109 517.17 4.7 +++ ++ 95 1900 1876.01 −1.0 ++ ++ 

47 110 532.07 4.8 +++ ++ 96 2040 2022.46 −1.0 + + 

48 130 518.66 3.9 +++ ++ 97 2100 2095.67 −1.0 + + 

49 130 60.13 −2.1 +++ +++ 98 2200 1991.66 −1.1 + ++ 

50 140 140.46 1.0 +++ +++ 99 2400 2386.02 −1.0 + + 

51 150 514.80 3.4 +++ ++ 100 2500 2594.48 1.0 + + 

52 150 149.81 −1.0 +++ +++ 101 2500 2373.56 −1.0 + + 

53 170 531.86 3.1 +++ ++ 102 2600 2653.51 1.0 + + 

54 170 520.35 3.0 +++ ++ 103 2600 1980.42 −1.3 + ++ 

55 190 92.38 −2.0 +++ +++ 104 2700 2668.93 −1.0 + + 

56 220 519.50 2.3 ++ ++ 105 3000 2980.04 −1.0 + + 

57 250 249.79 −1.0 ++ ++ 106 3100 3021.26 −1.0 + + 

58 270 40.16 −6.7 ++ ++ 107 3200 3351.54 1.0 + + 

59 300 546.21 1.8 ++ ++ 108 3300 3370.61 1.0 + + 

60 300 521.04 1.7 ++ ++ 109 3300 3333.56 1.0 + + 

61 300 301.67 1.0 ++ ++ 110 3300 3277.62 −1.0 + + 

62 300 289.88 −1.0 ++ ++ 111 3700 4354.53 1.1 + + 

63 370 580.52 1.5 ++ ++ 112 4000 1316.33 −3.0 + ++ 

64 380 531.50 1.3 ++ ++ 113 4300 4440.06 1.0 + + 

65 400 517.75 1.2 ++ ++ 114 4600 3529.94 −1.3 + + 

66 400 513.35 1.2 ++ ++ 115 4700 4603.40 −1.0 + + 

67 430 515.92 1.2 ++ ++ 116 5000 5036.50 1.0 + + 

68 430 515.00 1.1 ++ ++ 117 5860 2779.37 −2.1 + + 

69 430 431.38 1.0 ++ ++       
a Exp.: Experimental activity; b Est.: Estimated activity; c Value in the error column represents the ratio of the 

estimated activity to the experimental activity or its negative inverse if the ratio is less than one; d Activity 

scale: most active (++++, IC50 < 20 nM); moderately active (+++, ≥20 IC50 < 200 nM); less active (++,  

≥200 IC50 < 2000 nM); inactive (+, IC50 > 2000 nM). 

Eight out of nine of the most active compounds were estimated in the same activity scale, whereas 

the ninth compound was predicted as moderately active. Seventeen out of 26 moderately active 

compounds were estimated in the same scale, whereas the remaining nine were estimated as less active 

compounds. All the 40 less active compounds were estimated in the less active scale. Furthermore, 

only three of the 22 inactive compounds were predicted as less active compounds. Thus, the ability of 

Hypo1 to forecast the activity of test set compounds was very impressive and outstanding. A 

correlation value of 0.928 was achieved between experimental and estimated activities of test set 

compounds. A correlation plot showing the correlation between the experimental and estimated 

activity values of training and test set compounds was generated and displayed in Figure 6. 
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Figure 6. The correlation graph between experimental and estimated activity values based on Hypo1. 

 
2.2.2. Fischer Randomization Method 

Another validation method based on Fischer randomization was also performed on the training set 

compounds to verify the quality of Hypo1. In this validation process, a confidence level of 95% was 

selected and thus 19 spreadsheets (Table 4) were generated. 

Table 4. Results of cross-validation by Fischer randomization using DS. 

Trial No. Total cost Fixed cost RMSD Correlation (r) 
Hypo1 89.663 75.791 1.176 0.942 

Results after randomization 
1 114.486 77.911 1.821 0.858 
2 108.259 72.031 1.796 0.863 
3 98.26 74.85 1.529 0.9 
4 113.25 77.605 1.851 0.851 
5 112.27 77.909 1.729 0.874 
6 108.84 75.77 1.749 0.869 
7 141.304 78.861 2.463 0.717 
8 109.86 72 1.857 0.852 
9 112.265 77.915 1.849 0.851 
10 113.941 77.584 1.774 0.867 
11 101.143 72.068 1.593 0.894 
12 116.666 74.077 1.959 0.834 
13 114.356 69.48 1.97 0.834 
14 98.277 77.638 1.433 0.913 
15 108.878 72.047 1.753 0.872 
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Table 4. Cont. 

16 117.228 78.041 1.961 0.831 
17 102.183 78.085 1.359 0.926 
18 113.597 77.563 1.891 0.843 
19 106.121 74.044 1.706 0.876 

The data obtained from this validation method did not produce any better statistical values 

compared with that of Hypo1. Out of the 19 runs, only three had a correlation value between 0.90 and 

0.92 which was comparatively less than the correlation value of Hypo1. The total cost values of all 

randomized models and RMSD values were higher than Hypo1, which is not appropriate for a good 

pharmacophore model. Therefore, this validation test also endows the Hypo1 with a high level  

of assurance. 

2.3. Search for New Potential Compounds Using Database Screening 

The suggested pharmacophore model Hypo1 developed so far divulges a fairly accurate idea of the 

required molecular features for a new lead. Therefore, Hypo1 was applied as a search query to retrieve 

molecules with novel and desired attributes from chemical databases (Maybridge and Chembridge). A 

total of 2202 hit compounds, 1478 compounds from Maybridge and 724 compounds from Chembridge, 

respectively, were obtained. Molecular properties were calculated for all hit compounds retrieved from 

databases. The 181 hit compounds (124 from Maybridge and 57 from Chembridge database, 

respectively) with an estimated activity value closer to the most active compound in the training set 

were selected for further evaluation. These hits were further filtered by using Lipinsiki’s rule of five 

which evaluates drug-likeness, or determines if a chemical compound with a certain pharmacological 

or biological activity has properties that would make it feasible to be an orally active drug in humans. 

The 49 compounds of Chembridge database and 23 compounds from Maybridge database have 

satisfied the requirements of Lipinsiki’s rule of five for a drug-like compound. Thus, these 72 hit 

compounds that satisfied the Lipinsiki’s rule of five from a total of 181 hits were subjected to 

molecular docking. 

2.4. Molecular Docking 

All of the 20 training set compounds along with the 72 database hits retrieved from the database 

screening process were docked into the protein active site using the GOLD (Genetic Optimization for 

Ligand Docking) docking program. GOLD fitness score which differentiates molecules on account of 

their interacting pattern is calculated for all molecules. The most active compound of training set 

(compound 1) scored a docking score of 66.6 and exhibited various hydrogen-bonding interactions 

with the key active site residues (Figure 7a). 
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Figure 7. The molecular docking results: The binding modes and molecular interactions of 

compound 1 of training set (a); HTS12673 (b); BTB02076 (c); JFD00311 (d) at the 

binding site of chymase enzyme. The key active site residues and inhibitors are shown in 

stick and ball-stick forms, respectively. The hydrogen bonds between protein and inhibitors 

are shown in green dashed lines. 

 

Moreover, two of the carbonyl oxygen atoms near the middle ring that mapped on the HBA features 

of “Hypo1” showed hydrogen-bonding interactions with Gly193 and Ser195 residues of the active site. 

Previous studies of chymase have also divulged the importance of Gly193 and Ser195 as key amino 

acids in active site region of the enzyme [9,13]. Along with diverse hydrogen-bonding contacts, the 

phenyl group of compound 1, which was mapped on the HY-AR feature of “Hypo1” showed π···σ 

interactions with the aromatic ring of residue F191. Moreover, compound 1 also showed hydrophobic 

interactions with Y215 and L99 amino acids. Several hit compounds obtained from database screening 

process also showed high GOLD fitness scores and formed interactions with the active site residues. 

The hit compounds that showed a fitness score of more than 66 were selected as final hits for further 

evaluation process. Intriguingly, all the final three compounds were obtained from Maybridge database 

and none from the Chembridge database. Compound HTS12673 which showed an estimated activity 

value of 6.716 nM has scored a GOLD fitness score of 78.73. It has also exhibited key interactions 

with the important amino acids like Gly193, Ser195, Y215, and H57 at the active site of the enzyme 

(Figure 7b). The phenyl part of anisole ring and pyridine ring that mapped over the HY-AR features of 
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“Hypo1” instigated the improved binding of this compound through better hydrophobic interactions. 

Compound BTB02076, which was also retrieved from the Maybridge database, with an estimated 

activity value of 8.605 nM has shown a GOLD fitness score of 72.40. This compound has formed 

various close contacts that lead to the important ligand-enzyme interaction such as hydrogen bonding 

interactions with Gly193, Ser195 and hydrophobic interactions with Phe191 amino acid in the active 

site of the enzyme (Figure 7c). Moreover, important π···π interactions between the fused ring system of 

BTB02076 and the side chain imidazole ring of His57 amino acid were also revealed. Furthermore, it 

also showed hydrophobic interactions with Y125 and L99 amino acid residues of protein through the 

hydrophobic groups mapped over HY-AR features of Hypo1. Third hit,  JFD00311, with the estimated 

activity value of 4.661 nM and GOLD fitness score of 74.51 has formed hydrogen bond network with 

the active site residues Gly193, and Ser195 (Figure 7d). The benzene rings and oxygen atoms of the 

benzenesulfonic acid moieties in this hit compound that overlaid the HY-AR and HBA features of 

“Hypo1”, respectively, enabled considerable hydrophobic and polar interactions with the important 

amino acids in the active site. The mapping of these top three database final hits on Hypo1 and their 

2D molecular structures are depicted in Figures 8 and 9, respectively.  

Figure 8. Pharmacophore mapping of three final hit compounds HTS12673 (a); 

BTB02076 (b) and JFD00311(c) over the selected pharmacophore model Hypo1. 

 

Figure 9. 2D molecular structures of hit compounds HTS12673 (a), BTB02076 (b), and 

JFD00311(c). 

 

All three hit compounds have mapped the entire features of the best pharmacophore model, Hypo1. 

Thus, in the design of potent inhibitors of chymase, compounds HTS12673, BTB02076, and 

JFD00311 which showed important results with respect to all properties such as estimated activity, 
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calculated drug-like properties and better GOLD fitness scores can be proposed as potential leads. 

Novelty search using SciFinder Scholar and PubChem compound search has also ascertained that 

these hits were not reported earlier for chymase inhibition. 

2.5. Density Functional Theory Calculations 

2.5.1. Analysis of Orbital Energies 

The electrostatic features impacting the inhibitory effect of chymase inhibitors have been 

investigated aiming at providing useful information for understanding the structure inhibition 

relationships of chymase inhibitors. Structures of the most and least active compounds of the training 

set are optimized along with the three final database hit compounds at B3LYP/6-31G* level. 

Statistically significant factors such as HOMO, LUMO, and MESP, for all compounds are calculated. 

According to Fukui’s frontier orbital approximation, the frontier orbitals HOMO and LUMO of a 

chemical species are very important in defining its reactivity. Fukui first recognized the importance of 

frontier orbitals as principal factors governing the ease of chemical reactions and the stereoselective 

path while Parr and Yang demonstrated that most frontier theories can be rationalized from DFT.  

When the whole dataset of molecules was taken into account, an apparent trend of inhibitory 

activity (IC50) data with an increase in HOMO energy was observed (Figure 10). 

Figure 10. HOMO energies (eV) of chymase inhibitors along with potent hits. 

 

For all compounds, HOMO energy ranges between −5.619 and −6.415 eV. High value of EHOMO is 

likely to indicate a tendency of the molecule to donate electrons to appropriate acceptor molecule of 

low empty molecular orbital energy. The correlation of HOMO energies with IC50 data indicates that 

the HOMO of the inhibitor may transfer its electrons to less energy, LUMO, of some amino residues in 

the active site of chymase. The calculations show that compounds 1 and 20 have shown the highest 

(−5.873 eV) and lowest (−6.415 eV) HOMO level energies respectively. This trend is in good 

agreement with the experimental observations suggesting that compounds 1 and 20 have exhibited the 

highest (0.46 nM) and lowest (5900 nM) inhibitory profile, respectively, in all investigated chymase 
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inhibitors. While BTB (BTB02076) has shown highest (−5.619 eV) HOMO level energy among hit 

compounds even higher than HOMO energy level of compound 1, the other two hit compounds also 

showed higher EHOMO than the least active compound of the data set. In a previous study, a high 

HOMO energy level also played an important part in activity of the most active dual and selective 

LOX inhibitors [61]. Moreover, a clear trend between the inhibitory activity (IC50) data and LUMO 

energy of all compounds was also revealed. For all compounds, LUMO energy ranged between −0.631 

and −2.275 eV. Compound 1 and BTB showed highest LUMO level energies; and least active 

compounds 19 and 20 demonstrated LUMO with lowest energies. 

HOMO and LUMO sites are plotted onto the molecular surface of most active (1) and least 

active (20) compounds of the data set along with the two hit (BTB, HTS) compounds (Figure 11). 

Figure 11. Plots of HOMO (a) and LUMO (b) of most active (1), and least active (20) 

compounds along with potent hits BTB (BTB02076) and HTS (HTS12673). 

 

Most often, the heteroaromatic rings, which contain the heteroatoms such as nitrogen and oxygen, 

are the regions in all these compounds that can act as electron donors or acceptors to the active site of 
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the chymase. Experimental study also deduced that introduction of heteroatoms to the inhibitor 

compound enhanced its stability in human plasma (20). For instance, the placement of an ethoxy  

group in compound 2 instigated its stability. Electron donor rings can be identified as those with the 

greatest electron density from the HOMO. In the case of compound 1, HOMO is scattered over the  

4-methylpiperazine moiety together with the carbonyl group and LUMO is spread over the region  

2-hydroxyl-4-oxoazetidine containing heteroatoms like oxygen and nitrogen. Docking results also 

showed that this region of compound 1 is involved in important interactions with the key residues of 

protein. For compound 20, HOMO is composed of aniline ring and LUMO spreads over sulfonyl and 

benzoic acid groups. LUMO plot over methylbenzenesulfonamide group in hit compounds BTB 

showed hydrogen bonding interactions with important amino acids Gly193 and Ser195 at the active 

site of the enzyme. Whereas the HOMO plot is scattered on 2-methoxyphenol group and dihydroquinazolin 

moiety, the six membered ring part of dihydroquinazolin group is involved in important π···π 

interactions with the side chain imidazole ring of His57 amino acid. For HTS hit compound, HOMO 

and LUMO are composed of methoxybenzene, benzoindazole moieties, and oxadiazole substituted 

pyridine moiety, respectively. Overlay of HTS on “Hypo1” and its docking with the protein also 

speculated the involvement of these groups in key interactions with the active site of protein. The 

effect of the orbital energies on the inhibition activities can be associated with the charge transfer, π···π, 

or π···σ stacking between inhibitors and aromatic amino acid residues in the binding site of chymase. 

The result of molecular docking studies on chymase inhibitors also proved the presence of such kind  

of interactions.  

2.5.2. Molecular Electrostatic Potential (MESP) Profiles 

Electrostatic potential is widely used in characterizing molecules, especially for biomolecules, and 

takes special effect in the biomolecular recognition and in the prediction of the functional sites [62]. 

Nam et al. reported their discovery that electrostatic interactions accounted for the majority of the rate 

acceleration in the mechanism of RNA transphosphorylation in solutions catalyzed by the hairpin 

ribozyme [63]. Daga and Doerksen have stated the binding mode and the role of stereoelectronic 

properties in binding of spiroquinazolinones showing phosphodiesterase 7 (PDE7) inhibitory  

activities [64]. Recently, the electrostatic funnel illuminated from three-dimensional mapping of the 

electrostatic potential was reported by Dehez et al., driving the diphosphate nucleotide rapidly toward 

the bottom of the internal cavity of membrane-protein mitochondrial ADP/ATP carrier by forming a 

privileged passageway [65]. Considering these discoveries comprehensively, we supposed that the 

electrostatic potential of the inhibitor also played a significant role in the binding and interaction with 

chymase together with orbital energy and consequently influenced the inhibition effect. The 3D 

isosurface maps of MESP were interpolated on the electron density surfaces of constant electron 

charge density (0.0004 e/au3). As is well known, the electrostatic potential is defined as the interacted 

energy of a positively remote charge point with the nuclei and the electrons of a molecule. The  

3D plots of electron density (ED) and the MESP for compounds 1, 20, BTB and HTS are shown  

in Figure 12. 
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Figure 12. Differential maps of total density (a) and MESP (b) of most active, 1, and least 

active, 20, compounds along with potent hits BTB (BTB02076) and HTS (HTS12673). 

The red and the blue color represent the electronegative and electropositive potentials 

whereas the green represents a potential halfway between the two extremes. 

 

The coloring area of the surface represents the overall molecular charge distribution with the 

electrostatic potential. As for the compounds in this study, the electronegative potential (MESPmin) was 

coded with red on the MESP maps in a range from 202.16 to 152.27 kcal/mol indicating a strongest 

attraction while the interpolated blue map represents the electropositive potential (MESPmax) of a 

strongest repulsion varying from 15.68 to 42.67 kcal/mol. The predominance of green region in the 

MESP surfaces corresponds to a potential halfway between the two extremes that are indicated in red 

and blue colors, respectively.  
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MESP plotted onto constant electron density surface for most active compound 1 showed the most 

electronegative potential region (red color) over the oxygen atom of the carbonyl group near the 

piperazine moiety. However, in the case of the least active compound 20, most negative potentials due 

to sulfonyl and carbonyl oxygen atoms are missing. For hit compounds, appearance of localized 

negative potential regions located at the oxygen atoms of the carbonyl and sulfonyl groups and 

nitrogen of the pyridine ring are consistent with the docking results which recognized this region as 

hydrogen bond acceptor. Moreover, one more prominent localized negative charged region protruding 

over the oxadiazole group was oriented adjacent to Gly193, to be recognized as a hydrogen bond 

acceptor. The strong electrostatic interaction of the negative potential with key residues Gly193 and 

Ser195, namely the formation of the hydrogen bond, will enhance the inhibition effect substantially 

together with the orbital interaction through the exchange of energy. The blue electropositive maps of 

these compounds were mainly distributed over the methyl group. The hydrogen atoms attached to the 

six-membered rings also bear the maximum brunt of positive charge (blue region). Due to the 

accumulation of positive potential, these moieties exhibited π···π and π···σ interactions with the 

aromatic residues of active site. These molecular electrostatic potential features are also in concert 

with the key chemical features (HBA and HY-AR) of pharmacophore model (Hypo1) which was 

successfully employed as a 3D structural query for virtual screening of databases for the identification 

of new potent chymase inhibitors. Thus electrostatic potential of the inhibitors can play a significant 

role in the binding and interaction with chymase together with orbital energies, and consequently 

influence the inhibition effect.  

3. Materials and Methods 

3.1. Pharmacophore Modeling 

3.1.1. Selection of Training Set Compounds and Diverse Conformation Generation 

A set of 117 structurally distinct compounds reported as chymase inhibitors with their diverse 

experimentally known inhibitory activity (IC50) data was compiled from the literature such as life 

science journals [14–20,55,66–68]. All of the inhibitory activities were obtained using the same 

biological assay method [14]. To form a training set, 20 compounds with distinctive structural motif 

and wide activity range (0.46 to 5900 nM) were selected. For all compounds in the training set, energy 

minimization process was performed with CHARMM forcefield. Poling algorithm was applied to 

generate a maximum of 255 diverse conformations with the energy threshold of 20 kcal·mol−1 above 

the calculated energy minimum for every compound in the dataset. These conformers were generated 

using Diverse Conformer Generation protocol running with Best/Flexible conformer generation option 

as available in Accelrys Discovery Studio v2.5 (DS), Accelrys, San Diego, CA, USA. This method 

ensures the best coverage of conformational space by performing a more rigorous energy minimization 

in both torsional and cartesian space by using poling algorithm.  
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3.1.2. Pharmacophore Model Generation 

All the 20 training set compounds associated with their conformations were submitted to the 

HypoGen module of DS. The HypoGen algorithm implemented for the pharmacophore hypothesis 

generation process is executed in three phases, namely, constructive, subtractive, and optimization 

phases. In constructive phase, identification of features common to the most active compounds takes 

place whereas all pharmacophoric features that are also present in the least active compounds are 

removed in subtractive phase. Finally, in the optimization phase, the hypothesis score is improved by 

regression parameters which are used for the estimation of the activity value of each training set 

compound. The relationship between the geometric fit value and activity value is utilized for this 

computation. Pharmacophore hypotheses showing best correlation in the 3D arrangement of features in 

a given training set compounds with the corresponding pharmacological activities are formed and 

ranked. Several structure activity relationship (SAR) pharmacophore models were derived from 

training set compounds using HypoGen module of DS. In this study, the top 10 hypotheses which were 

returned by the hypotheses generation process with significant statistical parameters were selected for 

further calculations. 

3.1.3. Pharmacophore Model Validation and Database Searching 

The generated quantitative pharmacophore model was validated to find out whether it is competent 

enough to identify the active structures and estimate their activity values precisely. This validation 

process was performed based on test set prediction and Fischer randomization methods. In developing 

statistical models, the following three cross-validation methods are often used to examine a model or 

predictor for its effectiveness in practical application: independent dataset test, subsampling test, and 

jackknife test [69]. However, of the three test methods, the jackknife test is deemed the most  

objective [29]. The reasons are as follows. (i) For the independent dataset test, although all the samples 

used to test the model or predictor are outside the training dataset used to train it so as to exclude the 

“memory” effect or bias, the way of how to select the independent samples to test the model or 

predictor could be quite arbitrary unless the number of independent proteins is sufficiently large. This 

kind of arbitrariness might result in completely different conclusions. For instance, a model or 

predictor achieving a higher success rate than the other model or predictor for a given independent 

testing dataset might fail to keep so when tested by another independent testing dataset [69]; (ii) For 

the subsampling test, the concrete procedure usually used in literatures is the 5-fold, 7-fold or 10-fold 

cross-validation. The problem with this kind of subsampling test is that the number of possible 

selections in dividing a benchmark dataset is an astronomical figure even for a very simple dataset, as 

elucidated demonstrated by Equations 28–30 in [70]. Therefore, in any actual subsampling cross-validation 

tests, only an extremely small fraction of the possible selections are taken into account. Since different 

selections will always lead to different results even for a same benchmark dataset and a same model or 

predictor, the subsampling test cannot avoid the arbitrariness either. A test method unable to yield a 

unique outcome cannot be deemed as a good one; (iii) In the jackknife test, all the samples in the 

benchmark dataset will be singled out one-by-one and tested by the model or predictor trained by the 

remaining samples. During the process of jackknifing, both the training dataset and testing dataset are 
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actually open, and each sample will be in turn moved between the two. The jackknife test can exclude 

the “memory” effect. Also, the arbitrariness problem as mentioned above for the independent dataset 

test and subsampling test can be avoided because the outcome obtained by the jackknife cross-validation 

is always unique for a given benchmark dataset. Accordingly, the jackknife test has been increasingly 

and widely used by those investigators with strong math background to examine the quality of various 

predictors (see e.g., [30,71–75]). However, to reduce the computational time, we adopted the 

independent testing dataset cross-validation in this study as done by many investigators with SVM as 

the prediction engine. A test set comprising 97 compounds with experimentally known chymase 

inhibitory activity values was used in test set prediction method. Ligand Pharmacophore Mapping 

protocol running with BEST/Flexible conformation generation option was used to map the test set 

compounds. Fischer randomization method as available in DS was applied on training set compounds 

to prove that the generated pharmacophore model was not obtained by chance. A pharmacophore is 

only useful as a predictive model in finding novel, potential leads suitable for further development 

only if it is able to detect the compounds with known inhibitory activity. In order to identify new 

potential lead compounds, the selected pharmacophore model was subsequently used as 3D structural 

search query to screen the Maybridge and Chembridge chemical databases consisting of 60,000 and 

50,000 of structurally assorted compounds, respectively. All queries were performed using  

Ligand Pharmacophore Mapping protocol running with Best/Flexible search method in DS. To be 

retrieved as a hit, a molecule must fit all the features of the pharmacophore hypothesis. The hits 

obtained through database screening were further filtered using Lipinsiki’s rule of five in order to carry 

only drug-like compounds in further studies. 

3.2. Molecular Docking 

Computational docking operation is a useful vehicle for investigating the interaction of a protein 

receptor with its ligand and revealing their binding mechanism as demonstrated by a series of  

studies [18,46,76–84]. Docking plays a significant role in predicting binding orientation and affinity of 

small molecule drug candidates to their protein targets with known 3D structures [85,86]. Hence, 

docking serves as an important tool in the rational computer-assisted drug design [87,88]. GOLD 4.1 

(Genetic Optimization for Ligand Docking) from Cambridge Crystallographic Data center, UK uses a 

genetic algorithm for docking ligands into protein binding sites to explore the full range of ligand 

conformational flexibility with partial flexibility of protein [89]. In this study, it has been utilized for 

the docking of training set compounds along with the new hits retrieved from chemical databases. 

Protein coordinates from the crystal structure of chymase co-crystallized with β-ketophosphonate 

(PDB ID: 1T31), determined at a resolution of 1.9 Å were used to define the active site [9]. All the 

water molecules present in the protein were removed and hydrogen atoms were added. The active site 

was defined with a 10 Å radius around the ligand present in the crystal structure. At the end of the 

computation, the 10 top-scoring conformations of every ligand were saved. Early termination option 

was applied to pass over the genetic optimization calculation when any five conformations of a 

particular compound were envisaged within an RMS deviation value of 1.5 Å. The GOLD fitness score 

is calculated from the contributions of hydrogen bond and van der Waals interactions between the 
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protein and ligand, intramolecular hydrogen bonds and strains of the ligand. The protein–ligand 

interactions were scrutinized by DS. 

3.3. Density Functional Theory (DFT) Calculations 

As far as computational technique is considered, many practices have ascertained that DFT, which 

takes into account the exchange and correlation effects effectively, is most likely one of the best 

methods to study medium-size or larger molecular systems and appropriate for QSAR study, with 

exhibiting excellent performance than semiempirical method or some other ab initio methods. 

Complete geometry optimization for data set compounds was carried out using DFT with Becke’s 

three-parameter exchange potential and the Lee-Yang-Parr correlation functional (B3LYP), using basis 

set 6-31G* level [90]. A useful kind of net atomic charges, called electrostatic potential (ESP)-fitting 

charges, were derived from the DFT calculated molecular electrostatic potential distribution using 

CHelpG method, which produces charges fit to the electrostatic potential at points selected. 

Vibrational frequencies were computed at the same B3LYP/6-31G* level to characterize the stationary 

points on the corresponding potential energy surfaces. All calculations were performed using the 

Gaussian 03 suite of programs.  

3.3.1. Data Set of DFT Study 

Based on structural diversity and wide biological activity range, four chymase inhibitors including 

most and least active compounds, were selected from the training set. While, three final hits 

BTB02076, HTS12673, JFD00311 retrieved from Maybridge database by the selected pharmacophore 

model, which showed important results with respect to all properties like molecular interactions with 

the active site components, estimated activity, calculated drug-like properties, and high GOLD fitness 

score, were also selected. Thus, data set employed for  DFT study consisted of seven compounds. 

Various quantum-chemical descriptors such as LUMO, HOMO, and locations of molecular 

electrostatic potentials (MESP), were computed.  

3.3.2. Calculation of Molecular Electrostatic Potential (MESP) 

The mapping of the electrostatic potential is an established technique for investigation of 

biologically active compounds because it plays a key role in the initial steps of ligand-receptor 

interactions. The formatted checkpoint files of the compounds generated by the geometric optimization 

computation were used as input for CUBEGEN program interfaced with Gaussian 03 program to 

compute the MESP. The MESP isopotential surfaces was produced and superimposed onto the total 

electron density surface (0.0004 e/au3). The electrostatic potential of the whole molecule is finally 

obtained by superimposing the electrostatic potentials upon the total electron density surface of  

the compound. 
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4. Conclusion 

Since user-friendly and publicly accessible web-servers represent the future direction for 

developing practically more useful models or predictors [91], we shall make efforts in our future work 

to provide a web-server for the method presented in this study. 

Combining various theoretical methods like pharmacophore modeling, database screening, 

molecular docking and DFT calculations, an investigation for identification of novel chymase 

inhibitors and to specify the key factors crucial for the binding and interaction between chymase and 

inhibitors was performed. The highly correlating (r = 0.942) pharmacophore model (Hypo1) with two 

hydrogen bond acceptors, and three hydrophobic aromatic features was generated. After successfully 

validating “Hypo1” using test set and Fischer randomization methods, it was further used in database 

screening. Hit compounds were subjected to various drug-like filtrations and molecular docking 

studies. Finally, three structurally diverse compounds with high estimated activity and strong 

molecular interactions with key active site amino acids were identified. Furthermore, a DFT study, 

which articulated the influence of the electrostatic features of compounds on their inhibitory activity 

well, was performed. Analysis of orbital energies and plots of MESP has shown very clear trends 

between electronic properties and inhibitory activity (IC50) data. An increasing trend was observed 

between IC50 and HOMO energy values. The molecular electrostatic potential features were also 

consistent with the key chemical features of “Hypo1” thus successfully validating “Hypo1” by the 

DFT method. Therefore, the results of this study will be helpful, not only in the development of new 

potent hits for chymase, but also in providing a better understanding of the interaction between the 

chymase and inhibitors. This will in turn assist in the rational design of novel potent enzyme inhibitors. 
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