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Abstract: MicroRNA (miRNA) is a critical regulator of cell growth, differentiation,  

and development. To identify important miRNAs in a biological process, many 

bioinformatical tools have been developed. We have developed MiRaGE (MiRNA 

Ranking by Gene Expression) method to infer the regulation of gene expression by 

miRNAs from changes of gene expression profiles. The method does not require precedent 

array normalization. We applied the method to elucidate possibly important miRNAs 

during embryonic stem (ES) cell differentiation to neuronal cells and we infer that certain 

miRNAs, including miR-200 family, miR-429, miR-302 family, and miR-17-92 cluster 

members may be important to the maintenance of undifferentiated status in ES cells. 
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1. Introduction 

miRNA is a short (19~22 base) non-coding RNA, which is known to regulate gene expression 

during cancer formation, lineage differentiation and some other biological processes [1]. There are 
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approximately 1000 distinctive miRNAs in the human genome and more than 60% of human genes are 

regulated by miRNA [2].  

The miRNA can suppress multiple messenger RNAs (mRNAs) which have target sites in their  

3′ untranslated regions (3′ UTRs). By base pairing with its “seed sequence” at the 2nd–8th base of  

5′ end, miRNA interacts with 3′ UTR of target mRNAs in a miRNA-protein complex called miRISC 

and suppress the gene expression by suppression of translation and/or degradation of target mRNA. 

Several reports indicate that the majority of gene suppression induced by miRNA is the degradation of 

target mRNA [1].  

Based on the nature of target recognition mechanism by miRNA (base pairing at seed sequence) 

and its primary functional outcome (degradation of target messengers), it may be possible to infer 

which miRNA may play major roles during a biological process from the difference of mRNA 

expression profiles. Based on this notion, we developed a method for inference of miRNA regulation 

from target gene expression profiles and computationally expected miRNA target databases [3,4]. We 

named the new method as MiRaGE (MiRNA Ranking by Gene Expression). Similar algorithms have 

been developed and available in public, such as T-REX [5], SylArray [6], and MirACT [7]. MiRaGE is 

focused on the direct targets of miRNAs for the analysis and normalization procedures between arrays 

are included in the algorithm and therefore one can omit array normalization. 

In this paper, we have applied MiRaGE method to gene expression profile during differentiation 

from mouse embryonic stem (ES) cells. ES cells have pluripotency and their molecular mechanisms of 

cell differentiation are extensively studied. It is reported that miRNAs play critical roles in the 

maintenance of stemness in ES cells as well as in the differentiation to the multiple cell lineages [8]. 

We applied the MiRaGE method to transcriptome data sets during differentiation of mouse ES cells 

available in public and found several miRNAs such as miR-200 family, miR-429, miR-302 family, and 

miR-17-92 cluster members, which seem to be important to the maintenance of undifferentiated status 

in ES cells. 

2. Results and Discussion  

2.1. Development of MiRaGE Method 

The outline of the MiRaGE server [9] is indicated in Figure 1 and the methodological detail has 

been described in [3,4]. When miRNA m is considered, genes are classified into three categories: (1) 

target genes of m; (2) non-target genes of m but targeted by any other miRNAs; (3) genes not targeted 

by any miRNAs. Hereafter, we denote the set of genes which belong to category (1) as ܩ௠ and the set 

of genes ܩ଴௠ includes genes in category (2). Then the statistical significance of difference in gene 

expression between ܩ௠ and ܩ଴௠ for each miRNA is calculated with various methods. 
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Figure 1. Schematic diagram of MiRaGE method. Gene expression profiles of samples 

should consist of control and treated (presented in red and green, respectively), each of 

which can include more than one biological/technical replicates. The 

difference/logarithmic ratio ઢ࢞ between control and treated is computed from gene 

expression profiles or principal component scores (see main text). The server provided 

several choices of analytical parameters (indicated with asterisks). Output files are a 

miRNA ranking with P-value in text format and the virtual heat map of miRNAs as a jpeg 

file. In some cases, it is useful to apply principal component analysis to gene expression 

profiles prior to the analysis. In this case, component scores for each sample can be 

substituted for ઢ࢞ሺࢍሻ (see Materials and Methods). 

 

We have already established a web server [9] to perform MiRaGE method. MiRaGE server 

computes these P-values employing either Kolmogorov-Smirnov test, Wilcoxon rank-sum test, or 
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Student t-test. Three sets of miRNAs can be analyzed: conserved, weakly conserved, or no restriction. 

Then P-value is compared to check if miRNA m significantly regulates its target genes between two 

different experimental conditions. After applying FDR correction (BH method [10]) to 162 P-values, 

we have selected ms whose FDR corrected P-values are less than 0.05 as miRNA which regulates 

target genes significantly.  

2.2. miRNAs Underrepresented in ES Cells after the Differentiation to Neuronal Cells 

Aiba et al. [11] measured gene expression profiles of mouse ES cells during differentiation to 

several lineages. Among them, we have analyzed gene expression profile during the differentiation to 

neuronal cells with N2-supplement B medium. They have measured six time points: each day from  

0 to 5 days during differentiation induction. Importantly, they added Universal Mouse Reference RNA 

supplemented with mRNAs of ES cells as internal references (UMRR + ES), labeled with Cy5. All 

sample RNAs were labeled with Cy3 and mixed with Cy5-labeled UMRR + ES and subjected to 

microarray analyses. Addition of UMRR + ES was intended to precise quantification of each gene 

expression in regards to the externally added reference RNA [11]. Since there are two biological 

replicates for each time point, we can have in total 26 = 64 distinct combinations of time points. After 

applying principal component analysis (PCA) to total 64 combinations of normalized profiles, we have 

uploaded all of the first PCs to MiRaGE server. Since the first PCs turn out to be monotonic 

decease/increase of gene expression as time goes (data not shown), we may identify miRNAs which 

effect on the gene expression profiles in a monotonic manner. 

Table 1 indicates the miRNAs underrepresented in ES cells after induction of differentiation to the 

neuronal cells by MiRaGE method. In other words, these miRNAs may be down regulated in ES cells 

after differentiation and important for the stemness of ES cells. There are many miRNAs known to be 

biologically critical in ES cell biology appeared in Table 1. For instance, miR-302a/b/d, miR-290 

cluster (291a-3p, 294 and 295), miR-200, and miR-429 are reported to be upregulated in 

undifferentiated ES cells [8,12]. Recently, induced pluripotent stem cell can be generated with several 

miRNAs including miR-302 and miR-200 [13,14]. It is also remarkable that miR-106a/b are listed in 

miRNAs dominated in ES cells [15]. Most of the above mentioned miRNAs showed statistical 

significance in all three analyses used in MiRaGE method. The MiRaGE could infer many miRNAs 

which are believed to be critical in stemness in ES cells. These results revealed the power of MiRaGE 

method for inference of important miRNAs in biological processes. 

As an analytical method, the MiRaGE can accept the principal component scores (PCs) of the 

expression profiles (see Figure 1 and section 3). It gives us an interesting possibility to MiRaGE for 

inference of miRNAs specific in a PC. In the other words, if a PC is related to a particular 

subpopulation in the sample population, we can infer specific miRNAs important for the subpopulation. 

In addition, changing statistical methods does not drastically affect the list of selected miRNAs  

(Table 1). This suggests the robustness of the MiRaGE method. 
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Table 1. Top ranked miRNAs underrepresented in ES cells after differentiation to  

neuronal cells. 

miRNA underrepresented after 
neural differentiation 

P-values 
KS t Wilcoxon 

mmu-miR-200b 4.14 × 10−16 9.17 × 10−17 5.39 × 10−17 
mmu-miR-200c 4.14 × 10−16 9.17 × 10−17 5.39 × 10−17 
mmu-miR-429 4.14 × 10−16 9.17 × 10−17 5.39 × 10−17 

mmu-miR-291a-3p 2.43 × 10−13 5.88 × 10−15 1.36 × 10−16 
mmu-miR-294 2.43 × 10−13 5.88 × 10−15 1.36 × 10−16 
mmu-miR-295 2.43 × 10−13 5.88 × 10−15 1.36 × 10−16 
mmu-miR-302a 2.43 × 10−13 5.88 × 10−15 1.36 × 10−16 
mmu-miR-302b 2.43 × 10−13 5.88 × 10−15 1.36 × 10−16 
mmu-miR-302d 2.43 × 10−13 5.88 × 10−15 1.36 × 10−16 
mmu-miR-141 4.66 × 10−13 3.08 × 10−11 1.68 × 10−11 
mmu-miR-200a 4.66 × 10−13 3.08 × 10−11 1.68 × 10−11 
mmu-miR-23b 2.18 × 10−12 1.30 × 10−14 7.32 × 10−16 
mmu-miR-23a 2.18 × 10−12 1.30 × 10−14 7.32 × 10−16 
mmu-miR-30a 1.02 × 10−11 3.09 × 10−10 3.96 × 10−10 
mmu-miR-30b 1.02 × 10−11 3.09 × 10−10 3.96 × 10−10 
mmu-miR-30e 1.02 × 10−11 3.09 × 10−10 3.96 × 10−10 
mmu-miR-30c 1.02 × 10−11 3.09 × 10−10 3.96 × 10−10 
mmu-miR-30d 1.02 × 10−11 3.09 × 10−10 3.96 × 10−10 

mmu-miR-384-5p 1.02 × 10−11 3.09 × 10−10 3.96 × 10−10 
mmu-miR-129-5p 4.31 × 10−11 8.12 × 10−11 7.63 × 10−11 

mmu-miR-218 1.06 × 10−10 3.11 × 10−11 1.33 × 10−11 
mmu-miR-144 1.75 × 10−10 8.24 × 10−11 1.34 × 10−10 
mmu-miR-130a 3.36 × 10−10 1.20 × 10−8 3.35 × 10−8 
mmu-miR-301a 3.36 × 10−10 1.20 × 10−8 3.35 × 10−8 
mmu-miR-130b 3.36 × 10−10 1.20 × 10−8 3.35 × 10−8 
mmu-miR-301b 3.36 × 10−10 1.20 × 10−8 3.35 × 10−8 
mmu-miR-721 3.36 × 10−10 1.20 × 10−8 3.35 × 10−8 
mmu-miR-135a 4.83 × 10−10 1.91 × 10−10 6.04 × 10−10 
mmu-miR-135b 4.83 × 10−10 1.91 × 10−10 6.04 × 10−10 
mmu-miR-106a 5.35 × 10−10 4.36 × 10−9 1.98 × 10−8 

KS: Kolmogorov-Smirnov; t: Student t; Wilcoxon: Wilcoxon rank-sum test. 

To test whether these highly ranked miRNAs as underrepresented in ES cell differentiation, we 

analyzed another data in the same dataset: the differentiation to trophoblast from ES cells (Table 2).  

Table 2 indicates the miRNAs that mostly appeared in the top 50 underrepresented in ES cells 

between neural and trophoblast differentiation [10]. Among them, 50% (25) of miRNAs are commonly 

underrepresented and all the above mentioned miRNAs appeared in the list. Among the 25, we found 

miRNAs that belong to the miR-17-92 cluster (miR-20, 93, and 17). The miR-17-92 cluster is known 

to be a critical component in the MYC pathway [16] and contributes to tumorigenesis in several 

malignancies [17]. It is a very interesting possibility that the cluster miRNAs may contribute the 

stemness of non-tumor pluripotent stem cells. 
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Table 2. Commonly underrepresented miRNAs in ES cells during differentiation to 

neuronal cells or trophoblast. 

miRNA underrepresented 
after differentiation 

P-values * 
KS t Wilcoxon 

mmu-miR-106a 1.07 × 10−15 6.83 × 10−13 9.39 × 10−15 
mmu-miR-106b 1.07 × 10−15 6.83 × 10−13 9.39 × 10−15 
mmu-miR-20a 1.07 × 10−15 6.83 × 10−13 9.39 × 10−15 
mmu-miR-93 1.07 × 10−15 6.83 × 10−13 9.39 × 10−15 
mmu-miR-17 1.07 × 10−15 6.83 × 10−13 9.39 × 10−15 
mmu-miR-20b 1.07 × 10−15 6.83 × 10−13 9.39 × 10−15 

mmu-miR-291a-3p 1.81 × 10−12 2.05 × 10−13 1.72 × 10−14 
mmu-miR-294 1.81 × 10−12 2.05 × 10−13 1.72 × 10−14 
mmu-miR-295 1.81 × 10−12 2.05 × 10−13 1.72 × 10−14 
mmu-miR-302a 1.81 × 10−12 2.05 × 10−13 1.72 × 10−14 
mmu-miR-302b 1.81 × 10−12 2.05 × 10−13 1.72 × 10−14 
mmu-miR-302d 1.81 × 10−12 2.05 × 10−13 1.72 × 10−14 
mmu-miR-128 9.36 × 10−11 5.70 × 10−8 4.81 × 10−9 
mmu-miR-214 2.64 × 10−10 9.77 × 10−8 4.92 × 10−6 
mmu-miR-761 2.64 × 10−10 9.77 × 10−5 4.92 × 10−6 
mmu-miR-141 4.13 × 10−10 3.10 × 10−8 1.68 × 10−8 
mmu-miR-200a 4.13 × 10−10 3.10 × 10−8 1.68 × 10−8 
mmu-miR-203 1.33 × 10−10 3.22 × 10−9 4.17 × 10−9 

mmu-miR-199a-5p 4.65 × 10−7 4.72 × 10−5 1.91 × 10−5 
mmu-miR-200b 1.16 × 10−6 2.69 × 10−6 1.50 × 10−6 
mmu-miR-200c 1.16 × 10−6 2.69 × 10−6 1.50 × 10−6 
mmu-miR-429 1.16 × 10−6 2.69 × 10−6 1.50 × 10−6 
mmu-miR-96 4.50 × 10−6 3.64 × 10−6 4.93 × 10−7 

mmu-miR-130a 6.00 × 10−6 3.46 × 10−5 1.53 × 10−5 
mmu-miR-301a 6.00 × 10−6 3.46 × 10−5 1.53 × 10−5 
mmu-miR-130b 6.00 × 10−6 3.46 × 10−5 1.53 × 10−5 

KS: Kolmogorov-Smirnov; t: Student t; Wilcoxon: Wilcoxon rank-sum test. * P-values for 
the analysis of ES cell-trophoblast data are indicated.  

2.3. miRNAs May Be Overrepresented in ES Cells after the Differentiation to Neuronal Cells 

There are many miRNAs known to be critical in neurogenesis. We had expected that MiRaGE 

could find some of those characterized miRNAs in the dataset of Aiba et al. [11]. However, we could 

not statistically infer significant miRNA as overrepresented after the neuronal differentiation  

(i.e., potentially critical in neural differentiation) when we tried the standard MiRaGE method. To 

overcome this difficulty, we changed the algorithm of data processing as described in the method 

section and found three miRNAs showed relatively small P-values in t-test (Table 3).  
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Table 3. Highly ranked miRNAs which may be overrepresented in ES cells after 

differentiation to neural cells. 

miRNA overrepresented 
after differentiation 

P-values 
KS t Wilcoxon 

mmu-miR-184 0.809 0.006 0.985 
mmu-miR-10b 0.876 0.039 0.996 
mmu-miR-10a 0.876 0.039 0.996 

KS: Kolmogorov-Smirnov; t: Student t; Wilcoxon: Wilcoxon rank-sum test. 

Among them, miR-184 is known to be overexpressed in the central nervous system [18], indicating 

the biological relevance of the MiRaGE. However, we could not see the well-documented miRNAs for 

neurogenesis such as miR-9 or miR-124 [19]. To address this issue, we have analyzed the other dataset 

by the same group [20] with the modified MiRaGE method. The comparison between ES and adult 

brain tissue indicated that miR-124 showed modest significance as overrepresented in brain  

(P = 0.044), suggesting that the miRNA may be more important in the mature brain tissue than 

neuronal-differentiating ES cells. 

Generally, most of the analyzed miRNAs showed strong statistical significance as underrepresented 

in differentiating ES cells, whereas not many miRNAs were statistically significant as overrepresented 

in our analysis (Tables 1 and 3). We have analyzed the difference of gene expression of the miRNA 

targets with the same data set and more than half the probes of whole miRNA targets used in MiRaGE 

analysis were downregulated in ES cells (53.5%, P < 0.0001). We analyzed the other data set using a 

different group: ES cell differentiation to the Embryonic body [21]. The results showed that much less 

miRNA targets were downregulated in ES cells compared with differentiated cells to embryoid bodies 

(23.6%, P = 0.007) and we did not observe the uneven distribution of P-values in the MiRaGE analysis 

with the dataset (data not shown). Hence the uneven distribution of P-value shown in Tables 1 and 3 

may be caused by the experimental procedure [11]. 

Based on the statistical algorithm, the number of suppressed target mRNA species, rather than the 

absolute suppression of target gene expression, achieves lower (i.e., more significant) P-values using 

the miRNAs in the original MiRaGE method. This characteristic of the original MiRaGE is apparent in 

the difference of P-values shown in Tables 1 and 3. The biological logic of this algorithm is based on 

the notion that the miRNA with more target species should be biologically more important. As 

mentioned above, we had to modify the analytical method of MiRaGE to see the known critical 

miRNA in neural differentiation as high-ranked ones. This experience suggested that some miRNAs 

may function by suppression of fewer targets with the larger absolute differences of mRNA expression. 

That type of miRNAs may be more difficult to significantly infer using the original MiRaGE method 

as the absolute differences of mRNA expression is not used in the analysis. Further experimental and 

analytical studies will be needed to define which calculation method of MiRaGE may be more suitable 

to individual types of datasets and/or miRNAs. 

The present study showed the potential of the MiRaGE method in the prediction of miRNAs critical 

for cellular differentiation. MiRaGE at present, however, may be more suitable for the inference of 

differently functioning miRNAs between two quite similar but distinct cell populations such as 

histopathological subtypes in various human cancers. For example, ovarian cancers consist of several 
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different morphological subtypes (serous, mucinous, endometrioid, clear cell and undifferentiated) and 

some of them show poorer prognosis. MiRaGE may be useful to find out the specific miRNAs for poor 

prognostic subtypes and give an insight for the molecular therapeutic targets of the cancers. 

How then, can we improve the MiRaGE method to analyze the difference of miRNAs functions 

between the two datasets with quite different expression profiles? One possibility is by analyzing the 

datasets of gene expression profiles with miRNA overexpression or suppression. This type of 

experiment reveals important parameters for MiRaGE such as valid targets of miRNAs in a cell and 

the extent of maximum gene suppression by the miRNAs for each target. We can adjust the strength of 

the miRNAs in suppression of each target gene expression more precisely. We may give further 

additional parameters such as the state of chromatin modifications in the promoter regions of target 

genes in the two different states of the cells; we may delete target genes whose promoter is inactivated 

in a particular cell. Curating of potential targets by experimental data and promoter activities may also 

improve the precision of the MiRaGE method. 

3. Materials and Methods  

3.1. Detailed Method of MiRaGE 

Suppose that ࢞ሺࢍ,  are ࢓ࡳ The genes in the set .ࢋ at the experiment ࢍ ሻ is the expression of geneࢋ

denoted as ࢓ࢍ and those in ࡳ૙࢓ as ࢍ૙࢓ (see main text for ࢓ࡳ and ࡳ૙࢓). The control experiment is 

denoted as ࢒࢚࢔ࢉࢋ and the treated experiments is as ࢊࢋ࢚ࢇࢋ࢚࢘ࢋ. First, we compute the logarithmic ratio ∆࢞ 

of gene ࢍ as 

ሺ݃ሻݔ∆ ൌ log ቈ
,ሺ݃ݔ ݁௧௥௘௔௧௘ௗሻ

,ሺ݃ݔ ݁௖௡௧௟ሻ
቉ (1) 

or the difference 

ሺ݃ሻݔ∆ ൌ ,ሺ݃ݔ ݁௧௥௘௔௧௘ௗሻ െ ,ሺ݃ݔ ݁௖௡௧௟ሻ (2) 

For principal component analysis, we have taken the coordinate of each gene along the 1st principal 

component as ∆࢞ሺࢍሻ. 
P-value which reject the null hypothesis to the alternative hypothesis, that is, target genes of 

miRNA m is overrepresented than non-target genes, is indicated as 

ܲሺሼ∆ݔሺ݃௠ሻሽ ൐ ሼ∆ݔሺ݃଴௠ሻሽ) (3)

Similarly, P-value which rejects the null hypothesis to the alternative hypothesis, that is, target 

genes of miRNA m is underrepresented than non-target genes, is indicated as 

ܲሺሼ∆ݔሺ݃௠ሻሽ ൏ ሼ∆ݔሺ݃଴௠ሻሽ) (4)

If we have n and n’ replicates for control and treated experiments, we compute P-values for all of all 

nn’ pairs of experiments. 
  



Int. J. Mol. Sci. 2011, 12 9273 

 

3.2. Inference by MiRaGE Server for the Differentiation from ES Cell 

Application of MiRaGE method (Figure 1) has been done by MiRaGE server [9]. It provides the 

following analytical parameters as pull-down menu choices to compare target/non-target genes: the set 

of miRNAs for inference (conserved, weakly conserved, or no restriction), species (human or mouse), 

types of gene identification (several gene IDs or microarray probe IDs), statistical tests  

(Kolmogorov-Smirnov test, Student t-test, or Wilcoxon test), and calculation method (one by one, 

mixed, or mean). The calculation methods for P-values to reject the null hypothesis (the target and 

non-target genes are not differently expressed) are computed in the three ways: one by one (MiRaGE 

for all possible pairs between control and treated experiments independently and medians of the  

P-values are used as representatives), mixed (all of control or treated samples are handled as one set 

for MiRaGE), or mean (mean values of gene expression among control or treated samples are used for 

MiRaGE calculation). The parameters set as following; “Select type of identifier” is set to be RefSeq. 

“Select Statistical test” is tested all three (Kolmogorov-Smirnov test, t-test, and Wilcoxon. test). 

“Select how to treat samples” is set to be “one by one” such that we can get all of combinations 

between controls and treated. Other options including “conservation of miRNA” remain as default. 

Thus, we consider only 162 conserved miRNAs for the analyses. The coordinate itself of each gene 

along the 1st PC is taken to be ∆࢞ሺࢍሻ as mentioned in Sec. 3.1. 

We have improved the MiRaGE method from our previous studies [2,3]. First, the target gene tables 

are generated by us. We have downloaded sequences of 3′ UTR of all RefSeq genes using genome 

browser table [22] and miRNA sequences from miRbase [23]. Then, we have counted seed match 

between 3′ UTR of RefSeq genes and 2nd to 8th bases from 5′ end of miRNAs. Based upon this count, 

genes having at least one seed match are selected as target genes of the miRNA. Secondly, we have 

added the option for selecting statistical methods other than t-test. 

To obtain P-values to get ranking in Table 3, we calculated all of the ratio of each Cy3 signal with 

corresponding Cy5 signal and the relative expression profiles of each gene for ES cells and ES cells 

induced neuronal differentiation for five days to MiRaGE server. Then we have picked up miRNAs 

which are ranked as top 30 among 162 microRNAs analyzed. We calculated the difference (1) instead 

of the logarithmic ratio (2) between day 0 and day 5 without applying PCA. Other parameters of the 

analyses were same as above. 

3.3. Principal Component Analysis (PCA) 

Principal component analysis is a method to reduce the dimensionality of multiple, possibly 

correlating variables into new sets of uncorrelated variables as principal components (PCs) and it has 

been applied to the gene expression profiling analysis (see an example in [24]). The information of the 

dataset can be summarized into the series of PCs. PCs are ordered variables as first PC has the largest 

information of the original dataset. To generate the PCs, the orthogonal transformation using the 

correlation among the variables in data matrix is serially applied to the dataset and PC is generated at 

each step of transformation. We calculated the PCs of the dataset of gene expression profiles by the 

use of R packages (prcomp or princomp function in the base package). 
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By applying PCA to gene expression from ES cell to neuronal cell/trophoblast, we have found that 

monotonic decrease/increase is the most significant component (i.e., the first principal component) to 

express gene expression diversity. Thus, we employ it as the representative of gene expression profile 

during the differentiation from ES cell to neuronal cell/trophoblast.  

4. Conclusions  

In this paper, we have applied the MiRaGE method to differentiation of ES cell to neuronal cells to 

infer biologically critical miRNAs in ES cell stemness or neuronal differentiation. With some 

modifications to the methods, we can successfully list biologically critical miRNAs during 

differentiation from ES cell to neurogenesis and the present study revealed potential and suitable 

applications of the MiRaGE method as an analytical tool for the study of miRNA functions. 
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