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Abstract: Photodynamic treatment (PDT) elicits a diverse range of cellular responses, 

including apoptosis. Previously, we showed that PDT stimulates caspase-3 activity, and 

subsequent cleavage and activation of p21-activated kinase 2 (PAK2) in human epidermal 

carcinoma A431 cells. In the current study, pretreatment with nitric oxide (NO) scavengers 

inhibited PDT-induced mitochondrial membrane potential (MMP) changes, activation of 

caspase-9, caspase-3, p21-activated protein kinase 2 (PAK2) and c-Jun N-terminal kinase 

(JNK), and gene expression of p53 and p21 involved in apoptotic signaling. Moreover, 

PAK2 activity was required for PDT-induced JNK activation and apoptosis. Inhibition of 

p53 mRNA expression using small interfering RNA (siRNA) additionally blocked 

activation of PAK2 and apoptosis induced by PDT. Importantly, our data also show that 

PDT triggers cell death via inactivation of ERK-mediated anti-apoptotic pathway. PDT 

triggers cell death via inactivation of the HSP90/multi-chaperone complex and subsequent 

degradation of Ras, further inhibiting anti-apoptotic processes, such as the Ras→ERK 

signal transduction pathway. Furthermore, we did not observe two-stage JNK activation for 

regulation of PAK2 activity in the PDT-induced apoptotic pathway in HUVECs, which 

was reported earlier in A431 cells. Based on the collective results, we have proposed a 

model for the PDT-triggered inactivation of the survival signal and apoptotic signaling 

cascade with Rose Bengal (RB), which sequentially involves singlet oxygen, Ca
2+

, NO, 

p53, caspase-9, caspase-3, PAK2, and JNK. 
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1. Introduction 

Photodynamic treatment (PDT) of cells involves the selective delivery of a photosensitive dye into 

target cells, followed by visible light irradiation. Interaction of the excited photosensitizer with 

molecular oxygen results in the formation of reactive oxygen species (ROS), such as singlet oxygen 

(
1
O2) and hydroxyl radicals, which damage cellular constituents and are possibly responsible for 

triggering cell destruction [1,2]. Photosensitizers include dyes, such as Rose Bengal (RB) and 

methylene blue (MB), drugs such as tetracyclines and chlorpromazine, and endogenous 

porphyrins [3,4]. Recently, PDT has been applied to treat solid malignancies, non-malignant tumors 

and lung cancer [5,6]. PDT induces a diverse range of cellular responses, including apoptosis [7], 

which plays an important role in embryogenesis and homeostasis of multicellular organisms. 

Impairment of apoptosis may cause several human diseases, including neurodegenerative disorders and 

cancer [8]. We previously showed that PDT triggers apoptosis through multiple biochemical changes, 

including singlet oxygen generation as well as activation of JNK, caspase-3, and PAK2 [9,10]. These 

effects were blocked by the antioxidants L-histidine and curcumin, suggesting that ROS play important 

roles in PDT-induced apoptosis [9,10].  

Nitric oxide (NO) is an important second messenger involved in a variety of cellular responses and 

biological functions, including tumor development, metastasis and apoptosis [11–13]. NO is largely 

produced in mitochondria through the actions of a Ca
2+

-sensitive mitochondrial NO synthase 

(NOS) [14,15]. This NOS-mediated NO production controls oxygen consumption and mitochondrial 

membrane potential through cytochrome c oxidase; the NO molecule is subsequently reactivated with 

superoxide to produce peroxynitrite, which further modifies its target substrates and induces oxidative 

stress [16–18]. Recent studies have shown that oxidative stress and Ca
2+

 influx act as upstream 

regulators of mitochondrial NOS activity [19,20].  

Protein phosphorylation appears to be involved in the regulation of apoptosis. Changes in protein 

kinase activity observed during apoptosis in a variety of cell types [21] signify a role of 

phosphorylation in apoptosis control. In particular, c-Jun N-terminal kinase (JNK) acts as a key 

component in regulating entry into apoptosis in several cell types [22–24]. In addition to JNK,  

p21-activated kinase (PAK) may be involved in cell death signaling events during apoptosis [9,25–28]. 

Although the direct downstream substrates of PAKs are largely unknown, earlier studies have 

established that these proteins act as upstream regulators of the JNK and p38 MAPK pathways [29,30]. 

Furthermore, we previously reported that PAK2 activation is required for photodynamic treatment 

(PDT)-induced apoptosis of A431 cells [9]. However, despite accumulating evidence on the 

importance of PAK2 in apoptotic signaling, its direct downstream substrates and precise regulatory 

mechanisms remain to be elucidated.  

HSP90, a 90 kDa isoform of the heat shock protein (HSP) family proteins, acts in concert with other 

chaperones and partners to facilitate the maturation and folding of client proteins via formation of a  

HSP90/multi-chaperone complex [31]. Two HSP90 client proteins, Raf-1 and MAPK/ERK kinase 

(MEK), are components of the Ras/extracellular signal regulated kinase (ERK)-dependent pathway 

that is involved in both proliferation and anti-apoptosis [32]. However, there are no documented 

reports on the effects of PDT on ERK-mediated survival signaling in HUVECs. 
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Earlier studies by our group have shown that PDT activates caspase-3 and subsequent p21-activated 

kinase 2 (PAK2) cleavage/activation and DNA fragmentation [9,10]. In this study, we have focused on 

clarifying the precise regulatory mechanisms of PDT-induced apoptosis in HUVECs. 

2. Results and Discussion 

Singlet oxygen is an important cellular mediator for PDT-induced responses [33–35]. We have 

already demonstrated that singlet oxygen mediates the PDT-induced activation of caspase-3 and 

subsequent apoptotic biochemical changes in A431 cells [9,10]. However, the cytotoxic effects of PDT 

on HUVECs have not been established to date. Experiments in the current study showed that PDT 

induces apoptosis and ROS generation in HUVEC cells. Moreover, these biochemical events  

are effectively blocked upon pretreatment with L-histidine, a singlet oxygen-specific scavenger 

(Figure 1A, B), confirming that PDT triggers apoptosis of HUVECs via singlet oxygen generation. 

Figure 1. Photodynamic treatment (PDT) induces apoptosis and reactive oxygen species 

(ROS) generation of HUVECs. HUVECs were incubated with or without Rose Bengal  

(5 μM; RB) and/or L-histidine (500 μM; H) in the dark at 37 °C for 1 h. Cells were treated 

with visible light (L) for 30 min or left untreated, followed by incubation in the absence of 

light at 37 °C for a further 12 h. (A) Apoptosis was detected with the Cell Death Detection 

ELISA kit; (B) ROS generation was assayed using DCF-DA (20 μM) dye. Values are 

presented as means ± SEM of six determinations. *** P < 0.001 versus the untreated 

control group (CON); 
#
 P < 0.001 versus the PDT-treated group. 

   

 

Changes in [Ca
2+

]i in HUVECs subjected to PDT were detected using the Fluo-3AM fluorescence 

dye. Cells cultured in Ca
2+

-containing medium showed a ~2.2-fold increase in [Ca
2+

]i following PDT, 

whereas this increase had no effect in treated cells cultured in Ca
2+

-free medium (Figure 2A). These 

findings indicate that the rise in [Ca
2+

]i is primarily attributed to calcium release from intracellular 

stores, such as those found in the endoplasmic reticulum, mitochondria, nucleus and/or calcium-binding 

proteins (Figure 2A). In addition, L-NMMA, an inhibitor of NOS, and PTIO, an inhibitor of NOS and 

scavenger of NO, had no effect on the PDT-induced [Ca
2+

]i increase, whereas pretreatment with  

L-histidine led to a significant decrease in [Ca
2+

]i (Figure 2A). The results suggest that elevation of 

[Ca
2+

]i induced by PDT is regulated by singlet oxygen generation, but not NO. Experiments using the 

NO-sensitive dye, DAF-2DA, to measure intracellular NO generation during PDT-induced apoptosis 
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revealed increased NO levels in HUVECs (Figure 2B). However, this increase was prevented by 

pretreatment of cells with the NOS inhibitor, L-NMMA, or the Ca
2+

 chelator, EGTA (Figure 2B). 

Real-time RT-PCR analyses disclosed significant upregulation of endothelial cell nitric oxide synthase 

(eNOS) in HUVECs exposed to PDT, which was effectively blocked upon pretreatment with  

L-histidine or PTIO (Figure 2C). These results suggest that intracellular Ca
2+

 levels play an important 

role in NOS activation and NO increase observed in HUVECs subjected to PDT.  

Figure 2. PDT triggers changes in the intracellular calcium and nitric oxide (NO) content 

in HUVECs. HUVECs were incubated with or without Rose Bengal (5 μM; RB),  

L-histidine (500 μM; H), L-NMMA (400 μM), PTIO (20 μM), and EGTA (500 μM) in the 

dark at 37 °C for 1 h. Cells were treated with visible light for 30 min or left untreated, and 

incubated in the absence of light at 37 °C for a further 12 h. (A) Intracellular Ca
2+

 level 

changes were measured via estimation of intracellular Fluo-3 fluorescence intensity;  

(B) Intracellular NO generation was measured using the DAF-2DA fluorescence dye;  

(C) The mRNA levels of endothelial cell nitric oxide synthase (eNOS) were analyzed  

using real-time PCR. Data are presented as percentage or fold, compared to the control  

group (CON). *** P < 0.001 versus the untreated control group; 
#
 P < 0.001 versus the  

PDT-treated group. 
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Mitochondrial membrane potential (MMP) changes are directly associated with apoptosis [36–38], 

and MMP changes observed in PDT-exposed cells [39]. Examination of the effects of PDT on MMP 

changes in HUVECs revealed suppression of uptake of DiOC6(3) and TMRE into mitochondria, 

indicative of significant MMP loss (Figure 3A). We additionally monitored activation of caspases-9 

and -3, which are involved in MMP change-mediated apoptosis. Photodynamic treatment of HUVECs 

stimulated the activities of both caspases-9 (Figure 3B) and -3 (Figure 3C). Notably, both MMP loss 

and caspase activation were significantly inhibited upon incubation of cells with 20 μM PTIO prior to 

PDT (Figure 3A–C). Our results indicate that NO acts as an upstream regulator for loss of MMP and 

activation of caspases-9 and -3 during PDT-induced apoptosis of HUVECs.  

Figure 3. PDT induces mitochondrial membrane potential (MMP) changes and caspase 

activation in HUVECs. HUVECs were pre-treated with or without PTIO (20 μM) for 1 h 

and exposed to PDT or left untreated. (A) To examine MMP changes, cells were incubated 

with 40 nM DiOC6(3) or 1 μM TMRE at 37 °C for 1 h, and analyzed using 

spectrofluorometry; (B) Caspase-9 activity was assayed using the Colorimetric Caspase-9 

Assay kit; (C) Caspase-3 activity was analyzed using Z-DEVD-AFC as the substrate. 

Values are presented as means ± SEM of eight determinations. *** P < 0.001 versus the 

untreated control group (CON); 
#
 P < 0.001 versus the PDT-treated group. 
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To further establish the relationship between PAK2 and JNK activation as well as the specific function 

of PAK2 in PDT-induced apoptosis, we incubated HUVECs with anti-sense or sense oligonucleotides 

against PAK2 for three days, subjected the cells to PDT, and analyzed PAK2 activity via 

immunoprecipitation. Pre-incubation of HUVECs with an anti-sense oligonucleotide against PAK2 led 

to a significant decrease in the PAK2 level (by ~40%), compared to control cells exposed to PDT, 

whereas the sense oligonucleotide had no such effect (Figure 4C). This decreased PAK2 activation was 

associated with significant decreases in PDT-induced activation of JNK and apoptosis (Figure 4D, E). 

Thus, our findings strongly suggest that PAK2 plays an important role in PDT-induced JNK activation 

and apoptosis of HUVECs.  

Figure 4. PAK2 and JNK are activated during PDT-induced apoptosis of HUVECs. 

HUVECs were pre-treated with or without PTIO (20 μM) for 1 h, followed by PDT. After 

treatment, cells were further incubated in the absence of light at 37 °C in a CO2 incubator 

for 12 h. (A) PAK2 was immunoprecipitated and kinase activities assayed using myelin 

basic protein as the substrate; (B) Cell extracts (60 μg) were analyzed for JNK/AP-1 

activity with the ELISA kit; (C–E) Cells were transfected with buffer (Bu), sense (S) or 

anti-sense (AS) oligonucleotides for 72 h, and subjected to PDT. PAK2 activity (C), JNK 

activity (D), and cell apoptosis (E) were assessed. *** P < 0.001 versus the untreated 

control group (CON); 
#
 P < 0.001 versus the PDT-treated group. 
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Figure 4. Cont. 

 

Real-time RT-PCR analyses disclosed significant upregulation of p53 and p21 mRNA levels in 

HUVECs subjected to PDT. Moreover, these changes were blocked upon pretreatment with L-histidine 

or PTIO (Figure 5A, B). To further ascertain the roles of p53 and p21 in PDT-induced apoptosis, we 

used targeted siRNAs to suppress p53 expression in HUVECs, followed by photodynamic treatment of 

cells and testing for viability. The p53 siRNA-mediated knockdown led to a significant decrease in p53 

and p21 mRNA expression in PDT-exposed HUVECs (Figure 6A). These decreases in p53 and p21 

mRNA were associated with a significant reduction in PDT-induced activation of PAK2 (Figure 6B) 

and apoptosis (Figure 6C). Based on these findings, we suggest that PDT upregulates p53 and p21 

expression levels in HUVECs, which contribute to subsequent apoptosis of treated cells. 

Figure 5. Effects of L-histidine and PTIO on the mRNA expression levels of p53 and p21. 

HUVECs were pre-incubated with or without L-histidine (500 μM; H) and PTIO (20 μM) 

for 1 h, followed by PDT. The mRNA levels of p53 (A) and p21 (B) were analyzed using 

real-time PCR. The given values are representative of five independent determinations. 

*** P < 0.001 versus the untreated control group (CON); 
#
 P < 0.001 versus the  

PDT-treated group. 
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Figure 6. Knockdown of p53 protects HUVECs against PDT-induced apoptosis. HUVECs 

were transfected with siRNA targeting p53, incubated for 24 h, and subjected to PDT. 

(A) The p53 and p21 mRNA levels were analyzed using real-time PCR; (B) PAK2 

activities were assayed using myelin basic protein as the substrate; (C) Cell apoptosis was 

measured as described in Figure 1. *** P < 0.001 versus the untreated control group; 
#
 P < 0.001 versus the PDT-treated group. 
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Figure 7. Effect of PDT on HSP90 and components of survival signaling. HUVECs were 

incubated with or without lactacystin (LC; 10 μM) for 1 h, and subjected to PDT.  

(A) The protein levels of HSP 90, Ras and ERK-1/2, and phosphorylation of ERK-1/2 were 

evaluated. β-actin was used as the loading control; (B) Cell apoptosis was detected with the 

TUNEL assay. Data are representative of five independent experiments. *** P < 0.001 

versus untreated control group (CON); 
#
 P < 0.001 versus PDT-treated group. 
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and non-malignant diseases [5]. Previous studies by our group have shown that PDT elicits singlet 
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increase in intracellular NO (Figure 2B), implying that NO production in PDT-treated HUVECs is 

dependent on the intracellular calcium concentration. Furthermore, consistent with the finding that 

NOS is the main source of NO during stimulus-triggered apoptosis [14,15], we observed ~2.5-fold 

higher eNOS mRNA in PDT-treated HUVECs versus untreated controls (Figure 2C). The regulatory 

role of NO in apoptosis is complex, and NO-mediated apoptotic effects are modulated via distinct 

mechanisms in different cell types [13,47]. NOS substrates and NO donors inhibit photodynamic 

treatment-induced apoptosis in CCRF-CEM cells [48]. In the current study, PTIO treatment attenuated 

MMP loss and decreased caspase activation (Figure 3A–C), suggesting that NO generation is an 

important mediator of apoptosis in PDT-exposed HUVECs. 

Recently, our laboratory and other researchers showed that PAK2 is a target substrate for caspases 

activated by various apoptotic stimuli, including anti-Fas antibodies, tumor necrosis factor-α, ceramide 

and environmental stress factors, such as UV irradiation, heat shock and hyperosmotic shock [26–28,49]. 

Activation of PAK2 appears to be a critical step for stimulation of JNK activity during PDT-induced 

apoptosis [9,10]. However, the functional role of caspase-generated activation of PAK2 remains 

obscure at present. In previous experiments, apoptosis was delayed upon transfection of  

dominant-negative PAK2 (full-length or N-terminally truncated) into CHO cells stably expressing a 

CD4-Fas chimera [26]. Similarly, microinjection of active PAK into early frog embryos caused 

cleavage arrest [50,51]. Recent studies further demonstrated that an anti-activated PAK2 polyclonal 

antibody recognizes several phosphoproteins in mitotic HeLa and A431 cells, including lamins A 

and C [52]. PAKs are significantly involved in cell cycle control. Our group recently showed an 

association of decreased PAK2 protein expression and activation with significant inhibition of 

methylglyoxal-induced apoptosis in human osteoblasts [53], strongly suggesting that PAK2 plays an 

important role in apoptosis triggered by methylglyoxal. Data from the current study demonstrate that 

PAK2 is an important upstream regulator of JNK activation in PDT-directed apoptosis of HUVECs 

(Figure 4). JNK plays critical roles in apoptosis [23,24]. Based on the results, we propose that PDT 

triggers singlet oxygen generation and caspase-3 activation, in turn, inducing PAK2 and sequential 

activation of JNK, and ultimately, apoptosis. 

NO-mediated apoptotic processes are associated with p53 gene activation, which is essential for 

regulation of the cell cycle and/or apoptotic signaling occurring through p21
Waf1/Cip1

 or Bax [54,55]. In 

our current study, p53 and p21 mRNA levels were upregulated upon treatment with PDT, and these 

increases were blocked upon pretreatment with PTIO (Figure 5A,B). Furthermore, siRNA-mediated 

knockdown of p53 mRNA expression prevented the PDT-induced increase in p21 mRNA and PAK2 

activation, and led to a decrease in subsequent apoptosis (Figure 6A–C). These results indicate that 

genes encoding p53 and p21 are activated during PDT-induced apoptosis of HUVECs.  

Heat shock proteins (HSP) protect proteins against proteasome- and ubiquitin-dependent 

degradation [56,57]. HSP90, the most abundant molecular chaperone protein in the intracellular 

system, is involved in maintaining the correct conformations of intracellular proteins and kinases, such 

as Raf-1 [58,59], which regulates cell proliferation and survival. Data from the present study showed 

an association between PDT-induced apoptosis and reduced expression of survival components, such 

as Ras. Inactivation of ERK-1 and ERK-2 and pretreatment with lactacystin, a proteasome inhibitor, 

prevented the PDT-mediated decrease in protein expression or activity (Figure 7A). Moreover, PDT 

suppressed HSP90 expression, thus promoting the degradation of client proteins (Figure 7A). 
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Accordingly, we hypothesize that the PDT-induced reduction of HSP90 stimulates Ras targeting for 

degradation, leading to its downregulation and changes in the related signal pathways. 

Importantly, previous studies have shown that PDT triggers cell apoptosis through the Ca
2+

 and 

NO-mediated signal pathway. Moreover, our group has demonstrated that singlet oxygen-mediated 

JNK activation is required for caspase and PAK2 activities that further elicit second-stage activation of 

JNK to trigger PDT-induced apoptosis [9,14]. The present report reveals for the first time that PDT 

triggers apoptosis through Ca
2+

 influx and NO production to affect P53 protein expression, and causes 

sequent apoptotic biochemical changes, including loss of MMP as well as activation of caspases, 

PAK2 and JNK in HUVEC cells. Furthermore, we did not observe two-stage JNK activation for 

regulation of PAK2 activity in the PDT-induced apoptotic pathway in HUVECs, which was reported 

earlier in A431 cells [9]. The results clearly indicate that PDT induces apoptosis through different 

mechanisms, depending on cell type. 

3. Experimental Section 

3.1. Chemicals 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2-phenyl-4,4,5,5-

tetramethylimidazoline-1-oxyl-3-oxide (PTIO), L-histidine, 2’,7’- dichlorofluorescein diacetate (DCF-DA) 

and goat anti-rabbit immunoglobulin G (IgG) antibodies conjugated with alkaline phosphatase were 

purchased from Sigma (St. Louis, MO, U.S.). Anti-p53, anti-p21, anti-JNK1 (C17), anti-p-JNK (G-7) 

and anti-β-actin antibodies were from Santa Cruz Biotechnology (Santa Cruz, CA, U.S.). Z-DEVD-

AFC was obtained from Calbiochem (La Jolla, CA, U.S.). The CDP-Star
TM

 chemiluminescent 

substrate for alkaline phosphatase was acquired from Boehringer Mannheim (Mannheim, Germany). 

3.2. Cell Culture and PDT  

Human umbilical vein endothelial cell (HUVEC) strain (ECV-304) was obtained from the ATCC, 

and the cells were cultured at 37 °C in a CO2 incubator in M199 medium containing 10% fetal calf 

serum, with medium changes every 24 h. For PDT, cells were incubated in medium containing 5 μM 

Rose Bengal (RB) in the dark for 30 min at 37 °C, followed by irradiation with a commercially 

available 120 W lamp from a fixed distance of 30 cm for 30 min. Cells were incubated in the absence 

of light at 37 °C in a CO2 incubator for another 12 h. The spectral output of the light source and 

fluence rate at the surface of cultures in the visible light region were as reported previously by our 

group [9]. PDT treatment conditions were similar for all the experiments performed in this study. 

During all treatment periods, cells were incubated with medium containing 5 μM RB. Cells were then 

washed twice with ice-cold PBS and lysed on ice for 10 min in 400 μL lysis buffer (20 mM Tris-HCl 

at pH 7.4, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 1 mM benzamidine, 1 mM 

phenylmethylsulfonyl fluoride, 50 mM NaF, 20 μM sodium pyrophosphate and 1 mM sodium 

orthovanadate). Cell lysates were sonicated on ice for 3 × 10 s, then centrifuged at 15,000 × g for 

20 min at 4 °C, and the supernatants used as cell extracts. 
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3.3. Apoptosis Assay 

Oligonucleosomal DNA fragmentation in apoptotic cells was measured using the Cell Death 

Detection ELISA
plus

 kit according to the manufacturer’s protocol (Roche Molecular Biochemicals). 

Cells (1 × 10
5
) were treated with or without PDT for 30 min at 37 °C. Spectrophotometric data were 

obtained using an ELISA reader at a wavelength of 405 nm. 

3.4. ROS Assay 

ROS were measured in arbitrary units using 2’,7’-dichlorofluorescein diacetate (DCF-DA) dye. 

Cells (1.0 × 10
6
) were incubated in 50 μL PBS containing 20 μM DCF-DA for 1 h at 37 °C, and 

subsequently exposed to PDT. Cells were further incubated in the absence of light at 37 °C in a CO2 

incubator for 12 h, and the relative ROS units determined using a fluorescence ELISA reader 

(excitation 485 nm, emission 530 nm). An aliquot of the cell suspension was lysed, the protein 

concentration was determined, and the results were expressed as arbitrary absorbance units/mg protein. 

3.5. Detection of Intracellular Calcium Concentration ([Ca
2+

]i) 

The [Ca
2+

]i was detected with Fluo-3 AM fluorescence dye, using a modification of the previously 

reported method [14,60]. Briefly, HUVECs were PDT treated, harvested and washed, and then loaded 

with 6 μM Fluo-3 AM in standard medium (140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 5.6 mM 

glucose, 1.5 mM CaCl2, and 20 mM Hepes, pH of 7.4). After 30 min, the cells were washed 3 times 

with PBS and then resuspended in standard medium or Ca
2+

-free standard medium. The fluorescence 

intensity of Fluo-3 was determined using a fluorescence spectrophotometer (Hitachi, F-2000; 

excitation at 490 nm, emission at 526 nm).  

3.6. Detection of Intracellular NO Content 

The DAF-2DA fluorescence dye was used to detect intracellular NO, according to a modification of 

the previously reported method [14,61]. Briefly, treated or control cells were collected and washed, 

and then incubated with 3 μM DAF-2DA. After 60 min, the cells were washed 3 times with PBS and 

the fluorescence intensity was measured by a fluorescence spectrophotometer (Hitachi, F-2000; 

excitation at 485 nm, emission at 515 nm). 

3.7. Detection of Mitochondrial Membrane Potential (MMP) 

HUVECs were plated and grown on 96-well plates for 24 h, and then treated by PDT. The cells 

were then separately exposed to the fluorescent dyes, DiOC6(3) (40 nM/well) or TMRE (1 μM/well), 

for 15 min, and fluorescence was measured with a plate spectrofluorometer (excitation: 485 nm 

(DiOC6(3)), 535 nm (TMRE); Emission: 535 nm (DiOC6(3)), 590 nm (TMRE)). 
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3.8. Caspase Activity Assays 

Caspase-9 activity was assayed using the Colorimetric Caspase-9 Assay Kit (Calbiochem, CA, 

U.S.). Caspase-3 activity was measured using the Z-DEVD-AFC fluorogenic substrate, as previously 

described [62,63].  

3.9. Immunoprecipitation and PAK2 Activity Assay 

The PAK2 antibody was prepared in our laboratory as described previously [64]. In brief, the  

anti-PAK2 (C15) antibody was produced in rabbits using the antigen peptide, TPLIMAAKEAMKSNR, 

which corresponds to C-terminal residues 510–524 of the human and rabbit PAK2 sequences [65,66]. 

A cysteine residue was added to the N-terminus to facilitate coupling of the peptide to keyhole limpet 

hemocyanin, as previously described [67]. Glutaraldehyde was used as the cross-linker. The anti-peptide 

antibody was produced and affinity purified as previously described [64]. Before immunoprecipitation, 

cell extracts were diluted to equal protein concentrations (1.0 mg/mL) with cell lysis solution. For 

immunoprecipitation of the C-terminal catalytic fragment of PAK2, 0.5 mL of cell extract was 

incubated with 10 μL of anti-PAK2 (C15) antibody (200 μg/mL) at 4 °C for 1.5 h, and then further 

incubated with 40 μL of Protein A-Sepharose CL-4B (30%, v/v) for 1.5 h with shaking. The 

immunoprecipitates were collected by centrifugation, washed three times with 1 mL of Solution A 

(20 mM Tris/HCl, pH 7.0, and 0.5 mM DTT) containing 0.5 M NaCl, and resuspended in 40 μL of 

Solution A. For measurement of PAK2 activity, the immunoprecipitates were incubated in a 50 μL 

mixture containing 20 mM Tris/HCl, pH 7.0, 0.5 mM DTT, 0.2 mM [γ-p
32

]ATP, 20 mM MgCl2 and 

0.1 mg/mL myelin basic protein (MBP) at room temperature for 10 min with shaking. For 

determination of 
32

P incorporation into the MBP protein, 20 μL of each reaction mixture was spotted 

onto Whatman P81 paper (1 × 2 cm), which was then washed with 75 mM phosphoric acid and 

processing as previously described [68]. 

3.10. JNK Assays 

JNK activity, as assayed by the presence of phosphorylated c-Jun protein, was analyzed with the 

AP-1/c-Jun ELISA kit, according to the manufacturer’s protocol (Active Motif, Carlsbad, CA, U.S.). 

Briefly, AP-1 heterodimeric complexes were collected from cellular nuclear extracts by binding to a 

consensus 5’-TGA(C/G)TCA-3’ oligonucleotide coated on a 96-well plate. The phospho-c-Jun was 

assayed using a phospho-c-Jun primary antibody and a secondary horseradish peroxidase-conjugated 

antibody in a colorimetric reaction. 

3.11. Inhibition of PAK2 by Anti-sense Oligonucleotides 

PAK2 sense (5’-ATC ATG TCT GAT AAC GGA GAA) and anti-sense (5’-TTC TCC GTT ATC 

AGA CAT GAT) oligonucleotides, representing amino acids −1 to +7 of human PAK2, were obtained 

from Life Technologies (Grand Island, NY). The oligonucleotides were synthesized under 

phosphorothioate-modified conditions, purified by HPLC, and dissolved in 30 mM HEPES buffer, 

pH 7.0. For transfections, cells grown in 60 mm culture dishes were incubated at 37 °C in 1 mL of  

Opti-MEM I medium (modified Eagle’s minimum essential medium buffered with HEPES and sodium 
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bicarbonate), containing lipofectAMINE4 (12 μg) and oligonucleotides (70 μM) for 72 h (all reagents 

from Life Technologies, Grand Island, NY, U.S.). The cells were then subjected to PDT, and the cell 

extracts were analyzed as described above. 

3.12. Real-Time RT-PCR Assay 

Total RNA was extracted with the TRIzol reagent (Life Technologies) and purified with an RNeasy 

Mini kit (Qiagen), according to the manufacturers’ protocols. Real-time PCR was carried out with an 

ABI 7000 Prism Sequence Detection System (Applied Biosystems). The β-actin mRNA levels were 

quantified as an endogenous control, and used for normalization. The primers used for PCR were as 

follows: eNOS, 5′-CCT TTG CTC GTG CCG TGG AC-3′ and 5′-GCC CTC GTG GAC TTG CTG 

CTT-3′; p53, 5′-CCC ATC CTC ACC ATC ATC AC-3′ and 5′-GTC AGT GGG GAA CAA GAA 

GTG-3′; p21, 5′-GCC GAA GTC AGT TCC TTG TGG A-3′ and 5′-GTG GGC GGA TTA GGG CTT-3′. 

3.13. siRNA Knockdown 

Lipofectamine was used to transfect HUVECs with 150 nM of siRNA for targeting against  

p53 (5'-GACUCCAGUGGUAAUCUACTT-3'; sip53), or a scrambled control duplex  

(5′-GCGCGCUUUGUAGGAUUCG-3′; siScr). Twenty-four hours post-transfection, fresh culture 

medium was added, and the cells were treated by PDT.  

3.14. Immunoblots 

Immunoblotting was performed essentially as described in a previous report by our group [69]. 

Briefly, proteins were resolved by SDS-PAGE, transferred to PVDF membranes, and immunoblotted 

with anti-HSP 90, anti-Ras, anti-phospho ERK1/2 and anti-ERK1/2 antibodies (0.25 μg/mL). Proteins 

of interest were detected with secondary alkaline phosphatase-conjugated goat anti-rabbit or  

anti-mouse IgG antibodies, and visualized using the CDP-Star
TM

 chemiluminescent substrate, 

according to the manufacturer’s protocol. 

3.15. Statistics 

Data were analyzed using one-way ANOVA, and differences were evaluated using a two tailed 

Student’s t-test and analysis of variance. P < 0.05 was considered significant. 

4. Conclusions  

Based on the present findings, we have proposed a model of the PDT-induced apoptotic signaling 

pathways in HUVEC cells (Figure 8). 
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Figure 8. Scheme of events occurring during PDT-induced HUVEC cell death. 
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