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Abstract: Anchor residues, which are deeply buried upon binding, play an important role 

in protein–protein interactions by providing recognition specificity and facilitating the 

binding kinetics. Up to now, studies on anchor residues have been focused mainly on 

ordered proteins. In this study, we investigated anchor residues in intrinsically disordered 

proteins (IDPs) which are flexible in the free state. We identified the anchor residues of the 

N-terminus of the p53 protein (Glu17–Asn29, abbreviated as p53N) which are involved in 

binding with two different targets (MDM2 and Taz2), and analyzed their side chain 

conformations in the unbound states. The anchor residues in the unbound p53N were found 

to frequently sample conformations similar to those observed in the bound complexes 

(i.e., Phe19, Trp23, and Leu26 in the p53N-MDM2 complex, and Leu22 in the p53N-Taz2 

complex). We argue that the bound-like conformations of the anchor residues in the 

unbound state are important for controlling the specific interactions between IDPs and their 

targets. Further, we propose a mechanism to account for the binding promiscuity of IDPs in 

terms of anchor residues and molecular recognition features (MoRFs). 

Keywords: anchor residue; intrinsically disordered proteins; binding promiscuity; 

molecular recognition features; p53; MDM2; Taz2 
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1. Introduction 

Proteins are the machines of living systems, and their interaction with other molecules is a central 

step to perform functions. Considerable efforts have been devoted to understanding the principles 

governing protein–protein interactions, including interface contacts, morphology, residue conservation, 

and secondary structures [1–5]. In general, the complex interface is not flat, and some residues from 

one protein deeply insert into the binding groove of the partner, resulting in the greatest changes in the 

solvent accessible surface area (SASA) among all the interface residues. Such residues are called 

anchor residues [6]. Anchor residues have been extensively studied, and their critical roles in specific 

molecular recognition processes have been widely addressed [6–12]. The most remarkable feature of 

anchor residues is their conformational preference in the unbound state. All-atom molecular dynamics 

(MD) simulations have shown that anchor residues in the unbound state are in conformations similar to 

those observed in the bound complexes [6,7]. The conformational preference of the anchor residues 

has been successfully applied to improve docking efficiency [9,10]. Recently, Csermely et al. [13] 

figured out an extended view of binding which embraces a repertoire of conformational selection and 

structural adjustment process, where they highlighted the important role of anchor residues in the 

binding process. In their mechanism, conformational selection of the anchor residues in the transient 

encounter process is critical in the stabilization of the encounter complexes due to their large surface 

area. The encounter complexes then undergo further induced-fit to complete the binding event [14]. 

Up to now, studies on anchor residues have been restricted to ordered proteins, i.e., proteins that 

can be described by defined three-dimensional structures. However, not all proteins form unique 

structures in the free state. There exists another special family of proteins—the intrinsically disordered 

proteins (IDPs)—which are flexible in the free state and should be described by an ensemble of 

conformations [15–30]. The sequence composition of IDPs is very different from that of ordered 

proteins, and therefore IDPs can be reliably predicted through bioinformatics studies. More than  

60 computational tools have been developed for disorder prediction and many of them have been 

reviewed in reference [31]. IDPs are enriched in cellular functions, such as signaling transduction and 

transcription regulation [26,32,33], and conformational flexibility is extremely important for IDPs to 

interact with their targets [34–38]. In experiments, NMR techniques, small-angle X-ray scattering, and 

different spectroscopic and hydrodynamic methods have been widely used to elucidate the structural 

features of IDPs [39–43], including the molecular sizes, secondary structural elements, coupled 

folding-binding processes, and aggregation propensities. In particular, combined with experimentally 

determined restraints, computer simulations have provided the ensemble-level pictures of IDPs [40]. 

Experimental and simulation studies have provided evidence that specific functional regions of 

IDPs are spatially exposed and may be the primary contact sites in the binding processes [44]. Through 

analysis of complex structures and disorder predictions, short binding regions within long disordered 

sequences were identified and termed as molecular recognition features (MoRFs) [45–48]. MoRFs 

differ from other disordered regions due to their significant secondary structure propensities, and may 

possess preformed structures similar to those in the complex state [49–52]. To form the complexes, 

IDPs use much of their surface to form the interface [47,53,54]; some residues of IDPs insert deeply 

into the binding partners [47,55]. Consequently, these highly buried residues can also be defined as 

anchor residues as those defined in ordered proteins. Although the overall structures of MoRFs have 
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been extensively characterized [52,56,57], an atomic-level examination of the MoRFs in terms of 

anchor residues is still missing. In addition, IDPs are implicated in multiple interactions as their 

structural plasticity allows them to efficiently interact with different targets. So a residue may be an 

anchor residue when binding to one target, whereas in a different protein complex this same residue 

may not be an anchor. Therefore, it would be of significant importance to investigate the behaviors of 

anchor residues when IDPs bind to different targets. 

In this study, we performed all-atom MD simulations on a helical region of the N-terminal 

transactivation domain (TAD) of the p53 protein (Glu17–Asn29) (abbreviated as p53N hereafter). p53 

is a transcription factor and is critical in preventing cancer development. The p53N region is the 

binding site of multiple targets, such as MDM2, MDMX, CBP/p300, Taz2, and Bcl-XL [58]. Structure 

analysis has shown that the p53N region is highly disordered with a transient helix structure formed 

within residues Thr18–Leu26 [59–61]. When binding to its targets, e.g., MDM2, the p53N helix is 

prolonged and stabilized [62,63]. Therefore, p53N is a MoRF with a preformed helical structure that 

binds to MDM2. Using p53N as an example of IDPs, we analyzed the side chain conformations of 

anchor residues in the unbound state, and compared their conformations with those in the  

p53N-MDM2 and p53N-Taz2 complexes to address the role of anchor residues in the molecular 

recognition processes. 

2. Results and Discussion 

2.1. Anchor Residues in the p53N Complexes 

p53N is versatile and interacts with multiple targets. The binding profile of p53N in the  

p53N-MDM2 complex was different from that in the p53N-Taz2 complex (Figure 1). In the  

p53N-MDM2 complex, Phe19, Trp23, and Leu26 were highly buried in the binding groove 

(Figure 1a,d). In contrast, in the p53N-Taz2 complex, only Leu22 was highly buried (Figure 1b,e). 

Structural superposition showed that p53N used different surfaces of a helix structure to bind to these 

two targets (Figure 1c), i.e., the p53N helix rotated about 90° in these complexes. So the buried 

residues in the p53N-MDM2 complex (Phe19, Trp23, and Leu26) were exposed to solvent in the 

p53N-Taz2 complex (Figure 1a,b). In globular protein complexes, anchor residues are identified based 

on the structure of the complexes. They correspond to solvent exposed residues that are fully buried 

upon binding to a target, yielding the largest change in SASA [6]. However, for complexes formed by 

IDPs, the determination of SASA for the unbound state may not be so straightforward, since an 

ensemble of conformations instead of a unique conformation are needed to describe the unbound state 

of an IDP. We calculated the SASA for the unbound p53N by two different approaches. The simplest 

one was removing the Taz2 and MDM2 proteins from the p53N-Taz2 and p53N-MDM2 complexes 

and then calculating the SASA of the remaining p53N (Figure 1d,e). We further calculated the SASA 

using the simulated conformations of p53N (Figure S1). In general, different approaches gave similar 

results. According to the initial definition of anchor residues [6], we suggested that anchor residues of 

IDPs should expose to solvent in the unbound state and become fully buried (SASA ≤ 15 Å
2
 was used 

here) after binding. Therefore, we identified Phe19, Trp23, and Leu26 as the anchor residues in the 

complex with MDM2, and Leu22 as the anchor residue in the complex with Taz2. It was noted that the 

side chain conformations of Phe19, Leu22, Trp23, and Leu26 in the MDM2 complex were remarkably 
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different from those in the Taz2 complex (Figure 1c). Consistent with conformation ensemble of the 

p53 TAD [64], Phe19, Leu22, Trp23, and Leu26 were not buried in our simulated unbound states. 

Figure 1. The analysis of the structures of p53N when bound to different targets.  

(a,b) Complex structures of the p53N-MDM2 complex (a) and p53N-Taz2 complex (b). 

(c) Structure superposition of p53N from p53N-MDM2 and p53N-Taz2 based on the 

backbone RMSD. In (a–c), the MDM2 and Taz2 are presented as surface, whereas the 

p53N is presented as ribbon. Phe19, Trp23, and Leu26 are shown as blue balls in (a,b) and 

sticks in (c), Leu22 is shown in red, whereas other residues of the p53N are colored cyan 

(when in complex with MDM2) or green (when in complex with Taz2). (d,e) SASA 

analysis of the p53N in complex with MDM2 (d) and Taz2 (e). 

 

2.2. Transient Stable Helix of the p53N 

Although the p53N region is rather flexible in solution, experiments indicate that residues  

Thr18–Leu26 form a transiently stable helix which will be further stabilized in the complex state [59]. 

To study the conformational preference of unbound p53N, we conducted multiple simulations on the 

p53N with initial conformations adopted from the p53N-MDM2 and p53N-Taz2 complexes under 

identical conditions (see the Method Section for details). The helical structures were only transiently 

stable and unfolded in the simulations under 300 K (Figures 2 and S2). We defined the unfolding time 

of each trajectory through secondary structure analysis, RMSD relative to the initial helical structure, 

and inspection of the structures (with detailed results in Table S1). The average unfolding time was 

24.5 ± 11.8 ns for the helix from p53N-MDM2 complex and 5.2 ± 3.1 ns for the helix from p53N-Taz2 

complex. Clearly, the helix from the p53N-MDM2 complex was much more stable than that from the 

p53N-Taz2 complex. This may be due to the deformation of the second turn (in the C-terminus) of the 
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p53N helix from the p53N-Taz2 complex, because the unfolding of the p53N helix from either  

p53N-MDM2 or p53N-Taz2 usually started from the deformation of the second turn during the 

simulations. We also compared the properties of our ensemble with those from the Daughdrill’s 

group [64]. Consistent with their results, the distributions of amide nitrogen distances between residues  

i:i + 5 were bimodal, and Phe19–Trp23 showed greater probabilities of collapsed structures (data 

not shown). 

Figure 2. RMSD relative to the backbone of the helical region (Phe19–Leu26) for p53N 

from p53N-MDM2 (a) and from p53-Taz2 (b) during the simulations. Simulation 

trajectories MS1–MS5 and TS1–TS5 are presented. 

 

2.3. Analysis of the Side Chain Conformations of the Anchor Residues 

Since the helix of p53N is transiently stable, it is expected that the free energy of the helix state in 

the free form is higher than the disordered state (Figure S3). The free energy barrier of unfolding is 

lower than the free energy barrier of folding, resulting in a greater unfolding rate than a folding rate. 

To obtain conformations of the helix state, we separated the p53N helix from the complex state and 

carried out simulations. The system quickly relaxed to the free energy basin of the helix state and 

probably got equilibrium in the basin before it unfolded to the disordered state (Figure 2). To obtain 

conformations of the disordered state, randomly selected disordered structures were used as initial 

states from simulations. Then the system got equilibrium in the free energy basin of the disordered 

state. No disorder-to-helix transition was observed in simulations. It was noted that this strategy did 

not produce an equilibrium population between the helix state and the disordered state, although it 

gave the distribution of the side chain conformations within each state (Figure 3). 

We analyzed the side chain conformations for the helix state and the disordered state. In our 

simulations, the helix of p53N from the p53N-Taz2 complex unfolded very quickly (~5 ns). Within 

such a short period, conformational sampling of the side chains in the helix state was insufficient. So 

we analyzed the side chain conformations based on the simulations of p53N from the p53N-MDM2 

complex which has a much longer unfolding time. The conformational sampling was found to be more 

efficient in this case. For example, more than 130 transitions were observed between the two main χ2 

conformations of Phe19 and the distribution of the χ2 of Phe19 appeared to be perfectly symmetric 

(Figure 3a) which is required due to the symmetric nature of Phe. 
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In this study, we considered two binding targets, so for the four identified anchor residues, each has 

two bound-like conformations: one is an anchor-type (conformations of Phe19, Trp23, and Leu26 in 

the p53-MDM2 complex, and that of Leu22 in the p53-Taz2 complex); the other is a non-anchor 

conformation (conformations of Phe19, Trp23, and Leu26 in the p53-Taz2 complex, and that of Leu22 

in the p53-MDM2 complex). Remarkably, the analysis showed that the anchor residues dominantly 

sampled the anchor-type bound-like conformations rather than the non-anchor bound-like 

conformations regardless of whether the helix or the disordered states were examined (Figure 3 and 

Table 1). The anchor residue with the highest population of the non-anchor bound-like conformation 

was Phe19, but its value was only 12.2% and 6.0% in the helical and disordered states, much smaller 

than the corresponding value of the anchor-type conformation (59.5% and 19.2%). For the other three 

anchor residues, the population of non-anchor bound-like conformation was negligible. It was also 

noted that the formation of a (transient) helical structure enhanced the predominance of the  

anchor-type bound-like conformations. In the p53N-MDM2 complex, χ1 and χ2 of Phe19 are 177° and 

71°. The population of this (anchor-type) rotamer increased by a factor of ~2 (i.e., 19.2% vs. 59.5%, 

Table 1), when the p53N transformed from a disordered state to a helix state. Trp23 showed a similar 

trend. Although the extent of the increase was weaker for Leu22 and Leu26, the formation of a helix 

still increased the population of the anchor-type conformations. 

Although the initial structure for simulations was isolated from the p53N-MDM2 complex, Leu22 

sampled conformations similar to that in the p53N-Taz2 complex but not similar to that in the  

p53N-MDM2 complex (Figure 3b and Table 1). Consequently, the discrimination between the 

populations of the anchor-type and non-anchor bound-like conformations was not caused by a bias of 

the initial states. It could not be solely explained in terms of the side-chain rotamer preferences either: 

rotamer library data [65] indicated that the rotamer of Phe19 preferred the non-anchor bound-like 

conformation (47.08%) rather than the anchor-type (31.71%); however, the trend was reversed in the 

helix state (12.2% vs. 59.5%). The preference of Trp23 on the anchor-type conformation was low in 

the rotamer library (16.21%), which was greatly enhanced in the helix state (62.4%). These 

observations suggest that the preference of the anchor-type conformations is intrinsic to the transient 

helical structure of the unbound p53N. 

Figure 3 and Table 1 show that the extent of the population shift during the helix-disorder transition 

was similar for Phe19 and Trp23, suggesting synchronous dynamics between these residues. χ1 of 

Phe19 sampled three regions (labeled as A, B, and C in Figure 4a. Due to the symmetric nature of Phe, 

χ2 was not distinguished.). In the χ1–χ2 space, Trp23 sampled six regions (labeled from 1 to 6 in  

Figure 4b). So there were 18 possible combinations of the conformations for Phe19 and Trp23, where 

the A1 group was the anchor-type bound-like conformation corresponding to that in the  

p53N-MDM2 complex. The population analysis showed a remarkable feature that the population of 

the A1 group (51%) was significantly higher than all other possible combinations (Figure 4c). 

Furthermore, the population of the A1 group was very close to the individual population of the  

anchor-type bound-like conformations of Phe19 and Trp23 (59.5% and 62.4%, respectively), showing 

a strong correlation between these two residues. In the helical conformation of p53N, Phe19 and Trp23 

drove (or confined) each other to the anchor-type bound-like conformations. 
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Figure 3. Conformational analysis of the anchor residues in the helix state and disordered 

state of the unbound p53N. The bound conformation values in the p53N-MDM2 and  

p53N-Taz2 complexes are denoted by red and green markers, respectively. 

 

Table 1. Population of bound-like conformations of anchor residues of the unbound p53N 

in different states. 

Complex compared State of p53N 
Population of bound-like conformation * 

Phe19 Leu22 Trp23 Leu26 

p53N-MDM2 

Helix 59.5% – 62.4% 82.7% 

Disordered 19.2% – 18.7% 76.2% 

Rotamer library 31.71% 3.65% 16.21% 62.52% 

p53N-Taz2 

Helix 12.2% 81.8% – – 

Disordered 6.0% 67.1% – – 

Rotamer library 47.08% 62.52% 5.32% <1% 

* ―–‖ indicates the conformation in the bound state does not match a major group in the simulated 

χ1–χ2 distribution. Data for the rotamer library were adopted from Reference [65]. 
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Figure 4. Combined analysis of the conformations of Phe19 and Trp23 in the helix state. 

(a) Side chain dihedral distribution of Phe19; (b) Side chain dihedral distribution of Trp23; 

(c) The combination of conformations of Phe19 and Trp23. 

 

We also analyzed the side chain conformations of non-anchor residues, e.g., Glu17, Lys24, Leu25, 

and Glu28 (Figure 5). For Glu17 and Glu28, both bound conformations (in the p53N-MDM2 and 

p53N-Taz2 complexes) were rarely sampled in the helix and disordered states (data not shown) during 

the simulations. Therefore, the conformations of these residues in the complex states were induced by 

interactions with the targets. For Lys24 and Leu25, bound-like conformations were frequently sampled 

in the simulations and the formation of the helix increased the populations. 

Figure 5. Conformational analysis of non-anchor residues in the helix state. Bound 

conformations in the p53N-MDM2 and p53N-Taz2 complexes are denoted by red and 

green markers, respectively. 
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2.4. Transient Formation of Helical Structures Promotes the Binding Process 

Figure 6. The roles of anchor residue conformations in the evolution of the transient 

encounter complex towards the bound state. (a,b) p53N in a bound-like conformation; 

(c,d) p53N in a distorted conformation; (e,f) p53N in a bound-like conformation. p53N is 

shown as cyan ribbons and the binding targets are shown as surface. Phe19, Trp23, and 

Leu26, are shown as blue sticks. Leu22 is shown as red sticks. 

 

 

Because atomic information of the MoRFs is missing and how/why MoRFs and anchor residues 

initiate the binding process is unclear. To identify the role of anchor residues and the performed 

structure of MoRFs in the binding processes, we performed binding simulations of p53N to MDM2 

and Taz2. Firstly, we randomly selected five conformations from the A1 group (Figure 4) as initial 

conformations of the p53N. Then, we placed the p53N close to the binding groove of MDM2 with the 

correct orientation (Figure 6a). This was to mimic the encounter of the two proteins. In these encounter 

states, the anchor residues did not insert into the binding groove. Based on these in silico encounter 

states, we conducted MD simulations to track the evolution process. As expected, after the local 

conformational rearrangements on the binding groove of MDM2, Phe19, Trp23, and Leu26 inserted 

into the binding groove within ~1 ns (Figure 6b). This result is consistent with the observations of 

binding the native p53N to MDM2 [66], because conformations in the A1 group were native-like. Our 

results confirm the validity of results which are based on the prerequisite that p53N is in a bound 

conformation during the encounter process [66,67]. Furthermore, we also performed simulations with 

the p53N in other conformations, e.g., conformations from the B3 group and the disordered states. 

Within 10 ns of simulations, p53N did not evolve towards the bound conformations but formed  

non-native interactions with MDM2 (Figure 6c,d). The same conformations of p53N above were also 
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used to simulate binding of p53N to Taz2. For p53N in the helix state (i.e., conformations from the A1 

group and B3 group), Leu22 inserted into the binding groove quickly; however, the correct 

conformations of Phe19 and Trp23 were not observed within 10 ns (Figure 6e,f). This was due to the 

steric constraints at the binding interface. Therefore, induced formation of the correct conformations of 

Phe19 and Trp23 may take longer. For p53N in the disordered state, only non-native interactions 

between p53N and Taz2 were observed. 

Although experimental and computational studies have shown that MDM2 undergoes structural 

rearrangement, in particular in the binding groove, upon the p53N binding [66,68], it does not 

contradict the concept of a preformed bound-like conformation of the unbound p53N. On the contrary, 

the bound-like conformation of p53N in the unbound state actually promotes the groove opening of the 

unbound MDM2 [66]. Furthermore, the important roles of Phe19, Trp23, and Leu26 in the binding 

process of p53N with MDM2 and Leu22 in the binding process of p53N with Taz2 have been studied 

thermodynamically [69,70]; however, their roles in the kinetic process is not clear. In this work, 

through simulations, we found that preformed bound-like conformations of these anchor residues 

promoted the binding process. 

2.5. Discussions: Roles of Anchor Residues in Molecular Recognition 

In this study, we tried to extend the concept of anchor residues to IDPs and understand the 

conformational properties of the anchor residues within a highly flexible context. To this end, we 

performed atomic MD simulations on an extensively studied system, the p53N region. In the unbound 

state, p53N is rather flexible; however, once the helix is partially and transiently formed, simulations 

showed that the anchor residues were restricted to their anchor-type bound-like conformations and 

were primed for interacting with their targets (Figures 3 and 4, and Table 1). 

A comparison of the bound conformations of the anchor residues and non-anchor residues with the 

rotamer library derived from the Protein Data Bank [65] further supports the concept that anchor 

residues adopt preformed bound-like conformations (Table 1). In the p53N-MDM2 complex, the 

conformations of the anchor residues (Phe19, Trp23, and Leu26) represent the major conformations in 

the rotamer library, whereas the conformations of Glu17, Leu22, and Glu28 exhibit very low values in 

the rotamer library. Conversely, in the complex p53N-Taz2, the conformation of Leu22 is the major 

conformation in the library, whereas the conformations of Trp23 and Leu26 exhibit very low 

populations. The formation of rare rotamers is induced by interactions between p53N and the 

targets [71]. 

Significant efforts have been made to identify the structure of MoRFs and understand the molecular 

recognition processes between IDPs and their binding targets. Experimental and computational studies 

have shown that preformed structures of MoRFs in the unbound state resemble structures in the bound 

complexes and therefore facilitate the recognition processes [49,51,52,57,59,72–75]. However, the 

roles of MoRFs in the molecular recognition processes remain elusive. In this study, we extended the 

understanding through an investigation of the correlation between the side chain conformations and the 

overall structure of MoRFs. We suggest that, as in globular proteins, anchor residues also exist in IDPs 

and are important in the specific molecular recognition processes. Since the side chain conformations 

are backbone dependent, the preformed structure of MoRFs in the unbound state provides a constraint 
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on the side chain conformations to produce bound-like anchor residues. A recent study showed that the 

conformational preference of residues in a disordered 20-mer peptide was closely correlated to 

inhibitory activity [76]. Recently, Kjaergaard et al. determined the core structure of a molten globule 

by NMR and found that the side chain of some hydrophobic residues had preferred rotamers and made 

specific interactions [77]. Characterization of the MoRFs of Sendai virus nucleoprotein also showed 

that the transient formation of a helix optimized the interaction with the negatively charged cleft on the 

surface of the phosphoprotein PX domain [73]. These results support the concept that particular key 

residues in IDPs have preferred (function-related) conformations in the unbound state. 

Combined with the concepts of MoRFs and anchor residues, a feasible mechanism of the 

recognition process between a disordered binding region and its target emerges. For example, in the 

binding process of p53 to MDM2, the binding is initiated by an encounter between the preformed 

bound-like MoRF of p53 and MDM2, which will produce a transient encounter complex. Insertion of 

the preformed bound-like anchor residues (Phe19, Trp23, and Leu26), which are located on the MoRF, 

into the binding groove of MDM2 stabilizes the transient encounter complex (Figure 6a,b). Further 

folding of the backbone and induced-fit of the side chains take place to finally form the native 

complex. Therefore, in this mechanism, a binding process between an IDP and its target is initiated by 

a conformational selection and then proceeds by folding upon binding [51,75]. In the simulated 

binding process of proline-rich motifs to SH3 domains, electrostatic interactions guide the diffusion to 

form a nonspecific encounter complex state which is stabilized by subsequent anchoring of an arginine 

of the peptide into the negatively charged groove of the SH3 domain [78]. This gives some support to 

our proposed mechanism. 

To account for the specific recognition process, various mechanisms have been proposed, including 

the lock-and-key model [79], the induced-fit mechanism [80], and the conformational selection 

model [81,82]. Recently, Boehr et al. proposed a general mechanism constituted by a primary 

conformational selection event followed by an induced-fit of side chains and the backbone to account 

for the role of dynamics in the biomolecular recognition process [83]. Similarly, Csermely et al. 

figured out an extended view of binding which embraces a repertoire of selection and adjustment 

processes [13]. All these mechanisms mainly focus on ordered proteins and the discussions on IDPs 

are very limited. Our study adds important insights into the molecular recognition mechanisms and 

extends them to molecular interactions involving IDPs. 

IDPs have been proposed to have the ability to bind to multiple targets [38] and p53 is a typical 

example. The N-terminus of p53 binds MDM2, MDMX, Taz2, and Bcl-XL, while the C-terminus of 

p53 interacts with S100ββ, Sirtuin, CBP, and Cyclin A2 [58]. SASA analysis shows that p53N uses 

different anchor residues to bind to different targets (Figure 1). Forming a complex with MDM2, 

Phe19, Trp23, and Leu26 are the anchor residues, whereas binding with Taz2, Leu22 is the anchor 

residue. By analyzing the complex structures, Oldfield et al. found that the same residues from the  

C-terminus of p53 are used to a different extent in binding to different targets and interactions 

involving the same residue may exclude each other in different complexes [55]. Our simulations 

showed that, in the helix state of unbound p53N, Phe19, Trp23, and Leu26 significantly sampled 

conformations similar to those in the complex with MDM2, whereas Leu22 sampled conformations 

similar to that in the complex with Taz2 (Figures 3 and 4, Table 1); these indicate a new mechanism to 

account for the binding promiscuity of IDPs. It is possible that all the anchor residues in the MoRFs 
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frequently sample the bound conformations of the corresponding targets and that a particular target 

selects a particular group of anchor residues in the binding process. This binding mechanism is 

advantageous in smoothing molecular interactions [84], and reconciles the binding promiscuity and 

binding kinetics in the binding process and provides a clearer picture for the one-to-many signaling 

processes where flexibility has been considered as the main source [55,85,86]. A similar mechanism 

has been proposed to interpret the structural basis of pregnane X receptor binding promiscuity, where 

the pregnane X receptor has five hot spot regions and, depending on their sizes and shapes, individual 

PXR ligands extend into two, three, or four hot spot regions [87]. 

To extend the mechanism obtained from p53N to other IDPs, great efforts are still required. For 

example, because not all MoRFs adopt helical conformations [46,47], whether the non-helical MoRFs 

have preformed structures or anchor residues in these non-helical MoRFs also adopt bound-like 

conformations is unclear. It would also be valuable to experimentally test the side chain conformational 

preference observed in our simulations. 

3. Method Section 

3.1. Systems Setup 

A series of simulations were performed based on the p53 N-terminal domain (Glu17–Asn29, p53N) 

(Table S1). Initial conformations for MD simulations were taken from the p53N-MDM2 complex 

(PDB ID 1YCR) [62] (trajectories MS1–MS10), the p53N-Taz2 complex (PDB ID 2K8F) [88] 

(trajectories TS1–TS5), or the disordered state of unbound p53N (trajectories DS1–DS5). The 

disordered states of unbound p53N were randomly selected snapshots ranging from 60 ns to 100 ns in 

the trajectory MS1. The duration for each trajectory varied between 20 and 100 ns (see Table S1). In 

the binding simulations, we randomly selected five conformations from the A1 group, B3 group 

(Figure 4), and the disordered state, respectively, as initial conformations of p53N; then we placed 

p53N close to the binding groove of MDM2 or Taz2 with the correct orientation (Figure 6). All 

binding simulations lasted for 10 ns. 

3.2. Molecular Dynamics Simulations 

The MD simulations were performed using the program GROMACS 4.07 [89,90] and the  

OPLS-AA/L force field [91]. The water molecules were modeled by the SPC/E representation [92]. 

Each of the starting conformations was placed in the center of a cubic water box with at least 10 Å 

from the box edge. Periodic boundary conditions were used. Counter ions (Na
+
 or Cl

−
) were added to 

neutralize the net charges. The long-range electrostatic interactions were treated with the particle mesh 

Ewald method [93]. The cutoff distances were set to 10 Å for short-range coulomb and van der Waals 

interactions. The bond lengths were fixed by the LINCS algorism [94], and a time step of 2 fs was 

used. Coordinates were saved every 5 ps. 

Each system was first relaxed by 1000 steps of the steepest-descent energy minimization. After the 

minimization, the system was equilibrated at 300 K by 100 ps under an NVT ensemble and further 

equilibrated for 200 ps at constant pressure (1 bar). V-rescale [95] and Parrinello-Rahman [96] were 

used to couple the system to the simulation temperature and pressure with coupling constants of 0.1 ps 
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and 2.0 ps, respectively. Production simulations were performed at constant temperature (300 K) and 

pressure (1 bar). 

3.3. Analysis 

Secondary structure analysis was assigned by the DSSP program [97]. NACCESS 

(http://wolf.bms.umist.ac.uk/naccess/) was used to calculate the SASA, using a default solvent probe 

radius of 1.4 Å. We monitored the side chain dihedral angles (χ1 and χ2) distribution of anchor residues 

in the helix state and disordered state. χ1 is defined by N-Cα-Cβ-Cγ and χ2 is defined by Cα-Cβ-Cγ-Cδ(1). 

Protein figures were produced by the VMD program [98]. 

4. Conclusions 

In this study, we identified the anchor residues of the disordered p53N when binding to different 

targets, i.e., Phe19, Trp23, and Leu26 for the p53N-MDM2 complex, and Leu22 for the p53N-Taz2 

complex. From the all-atom simulations of the unbound p53N, we found that, as in ordered proteins, 

these anchor residues in p53N frequently sampled conformations similar to those in the complex states 

where anchor residues act as anchors, but seldom sampled those in the alternative complexes. We 

suggest that the bound-like conformations of anchor residues in the unbound state are an important 

factor in controlling the specific interaction between IDPs and their targets, in particular, stabilizing 

the transient encounter complexes. We also propose a new mechanism to account for the binding 

promiscuity of IDPs. 
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Supplementary Materials 

Figure S1. SASA analysis of the p53N in the disordered state (a,c) and the helix state 

(b,d) using the simulated trajectories. For comparison, the corresponding values of SASA 

in the complex states are presented. 
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Figure S2. Secondary structure analysis of p53N from p53N-MDM2 (a) and p53-Taz2 (b) 

during simulations. Simulations MS1–MS5 and TS1–TS5 are presented. 

 

Figure S3. Schematic free energy landscape of p53N. The orange arrow indicates the 

relaxation of the initial complex structure to the helix state. The two green arrows indicate 

the transitions between the helix state and the disordered state. 
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Table S1. Details of the simulations. 

Simulations Initial 

Conformation
*
 

Simulation Duration (ns) Unfolding Time 

(ns) 

MS1 M 100 43 

MS2 M 20 11 

MS3 M 100 42 

MS4 M 100 25 

MS5 M 20 17 

MS6 M 60 28 

MS7 M 20 10 

MS8 M 20 15 

MS9 M 60 23 

MS10 M 60 31 

TS1 T 20 2 

TS2 T 20 4 

TS3 T 20 3 

TS4 T 20 9 

TS5 T 20 8 

DS1 D 50 - 

DS2 D 50 - 

DS3 D 50 - 

DS4 D 50 - 

DS5 D 50 - 

* M denotes the initial p53N structure from p53N-MDM2 complex; T for the initial p53N structure 

from p53N-Taz2 complex; D for the disordered state. 
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