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Abstract: Mitsui and Ohshima (2008) criticized the power-stroke model for muscle 

contraction and proposed a new model. In the new model, about 41% of the myosin heads 

are bound to actin filaments, and each bound head forms a complex MA3 with three actin 

molecules A1, A2 and A3 forming the crossbridge. The complex translates along the actin 

filament cooperating with each other. The new model well explained the experimental data 

on the steady filament sliding. As an extension of the study, the isometric tension transient 

and isotonic velocity transient are investigated. Statistical ensemble of crossbridges is 

introduced, and variation of the binding probability of myosin head to A1 is considered. 

When the binding probability to A1 is zero, the Hill-type force-velocity relation is resulted 

in. When the binding probability to A1 becomes finite, the deviation from the Hill-type 

force-velocity relation takes place, as observed by Edman (1988). The characteristics of the 

isometric tension transient observed by Ford, Huxley and Simmons (1977) and of the 

isotonic velocity transient observed by Civan and Podolsky (1966) are theoretically 

reproduced. Ratios of the extensibility are estimated as 0.22 for the crossbridge, 0.26 for 

the myosin filament and 0.52 for the actin filament, in consistency with the values 

determined by X-ray diffraction by Wakabayashi et al. (1994). 
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1. Introduction 

In 1999, Mitsui [1] criticized the power-stroke model on the muscle contraction mechanism and 

proposed a new model. In 2008, Mitsui and Ohshima [2] refined the new model and discussed the 

steady filament sliding in detail demonstrating that the calculation results were in good agreement with 

experimental observations. They also outlined the discussion on the isometric tension transient and the 

isotonic velocity transient given in [1] by citing some calculation results. Thereafter, however, a few 

readers of [1] commented that it was very difficult to understand the discussion on the transient 

phenomena in [1], since there was no detailed explanation on the molecular processes upon which the 

theoretical treatment was based. In the present paper, we have largely revised that part of [1], trying to 

make the discussion more readable. 

Now the article [2] is regarded as Part I of Remarks series, in which the basic ideas of our model 

are introduced and steady muscle behaviors are discussed. In the present paper (Remarks II),  

non-steady muscle behaviors are discussed. We are preparing an article as Remarks III, in which 

discussion will be done on more recent experimental studies as cited in the articles [3,4]. 

The basic ideas of our model introduced in [2] are summarized as follows. A simple thermodynamic 

relation is derived, which indicates that there is an inconsistency in the power stroke model or 

swinging lever model. Our model is proposed to avoid this difficulty. It is assumed that a myosin head 

forms a complex with three actin molecules when it attaches to an actin filament. Here it should be 

noted that Andreeva et al. [5] found the evidence that the crossbridge can interact with more than  

1 actin monomer. The complex corresponds to the crossbridge. According to the X-ray diffraction  

studies [6–9], the intensity ratio of the [1, 0] and [1, 1] equatorial reflections increases only minimally 

as the shortening velocity increases, indicating that the total number of myosin heads in the vicinity of 

the actin filament decreases only slightly. Taking this fact into account, it is assumed that about 41% 

of the myosin heads forms the crossbridges at any sliding velocity. Then mutual cooperativity takes 

place among the crossbridges in filament sliding, so that energy dissipation becomes reasonable 

magnitude (the order of kT) for one step of the crossbridge movement. Calculation based upon the 

model well reproduce the force-velocity relation given by Hill [10] and the energy liberation rate vs. 

force relation given by Hill [11]. 

Since the present study is based upon ideas that are quite different from the power stroke model and 

others, the basic ideas of our study are explained in some detail in Section 2. In Section 3, discussion is 

done of how variation in the crossbridge binding affects the muscle tension. In Section 4, discussion is 

done on the difference between the molecular processes in Phases 1 of the isometric tension transient 

and of the isotonic velocity transient, and extensibility ratios for the crossbridge, the myosin filament 

and the actin filament are estimated. Time course of the isometric tension transient is studied in 

Section 5. Time course of the isotonic velocity transient is studied in Section 6. The deviation from the 



Int. J. Mol. Sci. 2011, 12            

 

 

1699

Hill-type force-velocity relation is derived in Section 7. Obtained results are summarized and 

discussed in Section 8. 

2. Basic Ideas for Discussion of the Transient Phenomena 

2.1. Deviation from the Hill-Type Force-Velocity Relation 

In the present study, the deviation from the hyperbolic force-velocity relation shown in Figure 1 has 

very important implication. The red line is our calculation results reported in [2] which agrees with the 

empirical hyperbolic force-velocity relation proposed by Hill [10]. The curve will be called Hill-type 

below. Edman [12], however, reported that carefully measured velocity deviated from the Hill-type 

relation as given by the black circles in Figure 1, which he called a double-hyperbolic force-velocity 

relation. In Figure 1, the tension T at which the experimental data start to deviate from the Hill-type 

curve is indicated as Tdev and the tension T at which T becomes 0 is denoted as T0obs. The following 

values are determined by the data presented in Figure 6A of [12]. 

Tdev/T0 = 0.66 (1) 

T0obs/T0 = 0.88 (2) 

Figure 1. Force-velocity relation and definition of Tdev and T0obs. The red curve is the 

calculation result reported in [2], which coincides with the hyperbolic force-velocity 

relation proposed by Hill [10]. Circles are the experimental results cited from Figure 6A of 

the paper by Edman [12]. 

 
 

2.2. MA3 Complex and U*12 Transition 

In our model, about 41% of the myosin heads are bound to actin filaments (cf. Equation 3-1-1  

in [2]), and each bound head forms a complex MA3 with three actin molecules. The complex MA3 

translates along the actin filament changing the partner actin molecules. Figure 2 illustrates the step 

motion of MA3. The translation of the crossbridge along the actin filament is made possible by the 

structural change of MA3 induced by the force fJ which exerts on the junction J between the 

crossbridge and the actin filament.  
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Figure 2. MA3 complex (shadowed) and its step motion along the actin filament (after 

Figure 6 of [2]). A myosin head is expressed as neck domain plus catalytic domain and the 

actin molecules in MA3 as 1, 2 and 3. (a) Just before the myosin head moves to the right; 

(b) Just after the head (and the complex MA3) moves to the new position; (c) The head is 

ready for next movement to the right. (Note that the actin molecule bound to a myosin 

molecule is called 2.) 
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Figure 3 shows the distribution of potential of force exerted on the myosin head in MA3. There are 

three potential wells on the actin filament corresponding to the three binding sites A1, A2 and A3. The 

wells are also as called A1, A2 and A3. Figure 3(a) shows the potential distribution considered in [2], 

where a myosin head exists solely in well A2. It is assumed that the potential barrier U* depends upon 

the force fJ by U* = U*0 − afJ (Equation 3-5-2 in [2])). The kinetics of the myosin head will be 

discussed based upon Eyring’s theory of the rate process (cf. [13]) as was done by Huxley and 

Simmons [14] and in [2]. Then the probability that the myosin head moves from well 2 to 3 across the 

potential barrier U* becomes proportional to exp(−U*/kT). Calculation was done in [2] based upon the 

model in Figure 3(a). An example of calculation results is cited by the red curve in Figure 1. Since the 

calculation well explains the experimental data for T < Tdev. this model seems close to reality when  

T < Tdev. The deviation from the Hill-type relation when T > Tdev suggests that the model in Figure 3(a) 

should be modified, and the model in Figure 3(b) becomes the object to be considered in the present 

study. It is assumed that myosin heads start to move over the potential barrier U*12 when T becomes 

larger than Tdev, and heads are distributed in A1 and A2 when T > Tdev. The potential peak between A1 
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and A2 will be called U*12 and the potential barrier for backward movement from A2 to A1 will be 

denoted as U*12b and the barrier for forward movement from A1 to A2 as U*12f. In the followings, 

transitions of these types will be called U*12 transition. 

Figure 3. Potential of the force exerted on the myosin head in the MA3 complex. The 

shape varies depending upon the tension T. (a) The case of T < Tdev, where the force-velocity 

relation is Hill-type. The black circle indicates that the myosin head exists solely in well A2; 

(b) The case of Tdev < T < T0obs, where the existence probability of the myosin head is 

distributed in wells A1 and A2, causing deviation of the force-velocity relation from Hill-type.  
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The displacement of the myosin head from A2 to A1 was briefly mentioned in Section 3.6 of [2] in 

term of “pull-up transition”. In the article [1], the isometric tension transient was discussed in relation 

with the U*12 transition by the statistical mechanics. Although the present study is based upon the 

same idea, we have found that such statistical-mechanical approach as in [1] makes the discussion very 

complex. We shall discuss the problem in a different manner as described below. 

2.3. Definition of Crossbridge Shortening Y 

In the following discussion, a parameter y is frequently used to represent shortening (which is 

positive for negative length change) of the crossbridge as in [2]. Unfortunately, the symbol y was used 

to represent elongation of the crossbridge in [1]. In the present paper, as an extension of the discussion 

of [2], y represents shortening. Figure 4 is to make the definition of y clear. K and J, respectively, are 

ends of the crossbridge on the myosin and actin filaments. The symbol x is defined as the projection of 

the vector from K to J on the myosin filament. Since the positions J are set on the right-handed red 

dotted line indicated as z in Figure 4, x is determined by the position of K. As shown in Figure 4(a), x 

is denoted as xeq when the tilting angle of the myosin head neck domain is at the equilibrium angle 

Equation. Then y is defined by  

y = x − xeq (3) 

The red dotted line indicated as xeq in Figure 4 indicates the origin of y. Thus y = 0 in Figure 4(a),  

y < 0 in (b) and y > 0 in (c). As discussed in [2], the crossbridge with shortening y exerts the force p(y) 

on the myosin filament. The stiffnesses for forward and backward forces are denoted as f and b, and, 

according to Equation 3-4-6 in [2], p(y) is given by 

p(y) = −fy for y < 0 (4a) 
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p(y) = −by for y > 0 (4b) 

Values of f and b are given in Appendix. 

Figure 4. Definition of y, the shortening of the crossbridge: y = x − xeq (after Figure 4 of [2]). 

The binding positions J are set on the dotted red line z. (a) The myosin head is at its 

equilibrium angle, eq. x = xeq and y = 0; (b) The myosin head is pulling the myosin 

filament forward. The crossbridge is elongated and y < 0; (c) The myosin head is pushing 

the myosin filament backward. The crossbridge is shortened and y > 0. 
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2.4. Time Constant of the U* Transition 

To discuss the transition phenomena, it is important to have an idea about the mean time interval of 

occurrence of the U* transition. In the steady filament sliding, the mean time interval is equal to the 

mean time step in which a myosin head moves from one actin molecule to the neighboring one. This 

step is given by 

step = L/v (5) 

where L is the distance between the centers of actin molecules 2 and 3 in Figure 2 (the value of L is 

given in Appendix) and v is the sliding velocity. Values of step are calculated by using v given by the 

red curve in Figure 1, and shown as a function of the relative tension in Figure 5, which indicates that 

step is about 2 ms at T/T0 = 0, becomes 10 ms around T/T0 = 0.5 and increases to 1 s around T/T0 = 1. 
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This result means that U* transition generally does not contribute to the early processes in the 

transition phenomena. 

Figure 5. Time interval step for a step motion of the myosin head as a function of T/T0. 

step = L/v, which is approximately equal to the time interval of the occurrence of the  

U* transition. 

 

2.5. Statistical Ensemble of Crossbridges and Crossbridge Binding Probability  

In discussion of the steady filament sliding [2], the crossbridge shortening y repeats the cycle from 

yc-L to yc through filament sliding and from yc to yc-L through the U* transition (cf, Figure 7 in [2]), 

where yc is the parameter which decreases as the tension T increases (as shown in Figure 8 given later.) 

In the following discussion, this temporal scheme is replaced by a spatial scheme. In our model, the 

ratio r = (number of myosin heads bound to actin filaments)/ (total number of myosin heads) is 

constant independent of tension (r = 0.41, cf. Appendix). Accordingly, we can consider an ensemble of 

bound crossbridges of definite number independent of the tension. 

Suppose that all complexes MA3 in right half sarcomeres are collected and superposed putting A2 

at the same position. This ensemble can be characterized by the ratio y)dy = (number of crossbridges 

having shrinkage between y and y + dy)/(total number of crossbridges). By definition, integration of 

(y) is 1. Actually (y) is a smooth function. The mean value of y in the  distribution is denoted as 

<y> and yc is defined by  

yc = <y> + (L/2) (6) 

Then (y) is expected to be large between yc-L and yc. In the following discussion, (y) is 

approximated to be constant (1/L) between yc-L and yc and zero outside of the region. This will be 

called rectangular  approximation. Equivalent approximation was used in the temporal scheme in [2] 

for studies of the steady filament sliding. 

The force-velocity relation deviates from Hill-type for T > Tdev as shown in Figure 1. The origin of 

the deviation is considered as follows. In Figure 3, the potential of force exerted on the myosin head in 

the MA3 complex is shown. The potential at A2 is lower than that at A1, and all the myosin heads are 

present in well A2 in the case of T < Tdev as shown in Figure 3(a). On the other hand, as seen in  

Figure 4(b), the backward force exerted on the myosin head becomes stronger as y negatively increases, 

so that the myosin heads having negatively large y tend to bind to A1 through the U*12 transition. 
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Accordingly, the distribution of the myosin heads becomes as symbolically shown in Figure 3(b) for  

T > Tdev. This effect is regarded as the origin of the deviation of force-velocity relation from the Hill-type. 

Symbols y0obs and ycdev are defined as yc’s at T0obs and Tdev, respectively, on the Hill-type  

force-velocity relation (cf. Figure 8 given later.) As mentioned above, yc decreases with increasing T, 

and thus T < Tdev corresponds to yc > ycdev.  

Figure 6 shows examples of the rectangular distribution for the steady filament sliding.  

Figure 6(a) is for fast sliding and (b) is for relatively slow sliding in the case of yc > ycdev or T < Tdev. 

Figure 6(c) is for slow sliding in the case of yc < ycdev or T > Tdev. In Figures 6(a1), (b1) and (c1), the 

upper horizontal line is an axis of the crossbridge shortening y and the black thick segment on it shows 

the regions of finite(y) of length L. The lower horizontal lines correspond to the actin filament and 

A1, A2 and A3 represent actin molecules. The crossbridges having negative y produce positive stress 

p(y) according to Equation 4a. The red segments with their ends at A2 are examples of such 

crossbridges. The crossbridges having positive y produce negative stress p(y) according to Equation 4b. 

The blue segments with their ends at A2 or A1 are examples of such crossbridges.  

Figure 6. Statistical ensemble of crossbridges in the steady filament sliding. 
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Figures 6(a2) and (b2) show the  distributions as functions of y, y) by the rectangular 

approximation, where y) is equal to (1/L) between yc-L and yc, and equal to zero outside of the 

region. Crossbridges in the red area produce positive stress, and crossbridges in the blue area produce 

negative stress. As the edge yc shifts to the left from (a2) to (b2), the red region increases and the 
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crossbridge ensemble produce more stress and the filament sliding becomes slow (Note f > b  

in Appendix). 

Figure 6(c) corresponds to the case of T > Tdev and thus yc < ycdev. In (c1), the blue dotted segment 

symbolically indicates that a portion of crossbridges of small y bind to A1 and produces negative 

tension, while the red dotted segment indicates that the rest of crossbridges having the same small y 

still bind to A2 and produce positive tension. In (c2), the violet triangle symbolically indicates that the 

crossbridges in this triangle are bound to A1. As shown in (c3), the violet triangle is replaced by the 

violet rectangle containing the same number of the crossbridges, to make calculation easy. In the 

following calculation, it is assumed that all the crossbridges in the violet rectangle are bound to A1 and 

produce negative tension. 

Now let us calculate values of ycdev and yc0obs. By definition, ycdev and yc0obs are yc’s for T0obs and Tdev 

in the Hill-type force-velocity relation. The mean tension per one crossbridge is denoted as p in [2], 

which can be obtained by integration of the tension p(y). Calculation is done by using p(y) = –fy/L 

(Equation 4a) in the red region and p(y) = −by/L (Equation 4b) in the blue region in Figure 6 (a2) or 

(b2). Result of the integration is 

p = {−(−f/2)(yc − L)2 + (−b/2)yc
2}/L (7) 

This relation leads us to the Hill-type force-velocity relation in cooperation with the U* transition [2]. 

The isometric tension in the Hill-type relation is denoted as p0 and T0 following [2]. Then, by using 

p/p0 = T/T0 (Equation3-1-2 in [2]), the relative tension T/T0 is given by 

T/T0 = {−(−f/2)(yc − L)2 + (−b/2)yc
2}/(Lp0) (8) 

This equation gives relations between Tdev and ycdev and between T0obs and yc0obs. Combining  

Equations 1, 2 and 8 gives 

ycdev = 1.60 nm, (9) 

yc0obs = 1.03 nm. (10) 

In Figure 6, ycdev and yc0obs are indicated by the vertical dotted red lines.  

3. Effect of U*12 Transition on the Tension 

Equation 8 leads us to the Hill-type force-velocity relation. The stress T and yc related by  

Equation 8 is denoted as TH and yc
H, which are in agreement with the observation when yc

H > ycdev. The 

observed T and yc are denoted as T* and yc* when yc
H < ycdev.  

Figure 7 illustrates the  distributions in various cases of yc
H < ycdev. Figure 7(a1) shows the  

distribution by Equation 8 having the edge yc
H. This distribution gives TH even though yc < ycdev. It is 

an imaginary state in which the U*12 transition is absent. Actually, however, the U*12 transition takes 

place and the violet area appears causing decrease of the red area as shown in (a2), where the width of 

the violet area is denoted as x(yc). Naturally T in (a2) is smaller than T in (a1). Then yc in (a2) is 

changed into yc* in (a3) to make T the same as T in (a1), where the width of the violet region is 

denoted as x. The change of the blue area from yc to yc* causes an increase of the tension while the 

change of the violet area from x(yc) to x causes an decrease of the tension. If the effect of the former 

change is larger than that of the latter change, the tension in (a2) will increase and can be the same as 



Int. J. Mol. Sci. 2011, 12            

 

 

1706

in (a1). Below we shall assume that such tension adjustment actually takes place and discuss the 

relation between yc* and T*. 

Figure 7. Compensation of the effect of the U*12 transition by shift of yc
H to yc*. 

Magnitudes of yc0obs and ycdev are exaggerated for illustration. (a) yc0obs < yc
H < ycdev and  

yc* > 0; (b) yc* = 0; (c) yc* < 0. 
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Since the tension is the same in Figures 7(a1) and (a3), the blue area in (a1) is the same as the sum 

of the blue area and violet area in (a3). Figures 7(b1)–(b3) show the case of y* = 0. Similarly to (a1) 

and (a3), the blue area in (b1) is the same as the violet area in (b3). The width x of the violet area in 

(b3) is denoted as x0. Figure 7 (c) shows the case that yc* becomes negative. The brown area means 

that crossbridges in this area bind to A1 and produce positive stress. The width of the violet area is 

indicated as x. Extrapolating the change from x in (a3) to x0 in (b3), x in (c) is assumed to be larger 

than x0. Then sum of the red area and brown area in (c) is smaller than red area in (b3) and thus the 

tension produced in (c) is smaller than the tension in (b3). Then the stress produced in (b3) is the 

maximum that the muscle machine can produce, and should be equal to T0obs. Accordingly, yc
H in (b1) 

should be equal to yc0obs. Since the red area in (b1) is the same as the red area in (b3), yc
H in (b1) is 

equal to x0 in (b3). Thus we have 

x0 = yc0obs (11) 
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The tension T* deviates from TH at yc = yc* = ycdev, and reaches its maximum at yc* = 0. To express 

such characteristics of T* vs. y* relation, the following set of equations are used: 

T*/T0 = −ayc*
2 + b (12) 

a = (T0obs − Tdev)/(T0ycdev
2) = 0.086 (nm)−2 (13) 

b = T0obs/T0 = 0.88 (14) 

In Figure 8, the blue curve illustrates the T*/T0 vs. yc* relation given by this set of equations, and 

the red curve shows the Hill-type TH/T0 vs. yc
H relation. The blue curve deviates from the red curve at  

yc = yc* = ycdev and exhibits its maximum at yc* = 0 where T*/T0 = T0obs/T0. 

Figure 8. Relative tensions as functions of yc. Red line: TH/T0 as a function of yc
H. Blue 

line: T*/T0 as a function of yc*. (For definition of yc0 and yc(0), see Appendix). 
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Up to here, T/T0 is used for the relative tension, where T0 is the maximum tension in the extended 

Hill-type force-velocity relation. The experimentally observed maximum tension, however, is T0obs 

where T0obs = 0.88T0 (Equation 2). Hereafter discussion is concerned with experimental data and 

relative tension is defined as T/T0obs. In our model T/T0 = p/p0 (Equation 3-1-2 in [2]), and the force p 

corresponding to T0obs is denoted as p0obs. Then 

p0obs = 0.88 p0 (15) 

and  

T/T0obs = p/p0obs (16) 

If we put yc = yc0obs in Equation 7 and use x0 = yc0obs (Equation 11), we get theoretical expression of 

p0obs as 

p0obs = {−(−f/2)(−L + x0)
2 + (−b/2)x0

2} /L (17) 
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4. Phases 1 in the Isometric Tension Transient and Isotonic Velocity Transient, and Extensibility 

Ratios for the Crossbridge, Myosin Filament and Actin Filament 

Huxley [15] divided the transient responses to the sudden reduction of length or of load into four 

Phases. In our model, however, there is no exact correspondence between molecular processes of the 

four Phases in the tension transient and those in the velocity transient. To avoid confusion, we use the 

terms, Phase Tn in the tension transient and Phase Vn in the velocity transient, where n = 1, 2, 3, 4. 

Phase T1 is simultaneous decrease of tension in the isometric tension transient, while Phase V1 is 

simultaneous shortening of muscle in the velocity transient. The length change per half sarcomere is 

denoted as Lhs in both transients. The experimentally measured isometric tension is T0obs and the 

relative tension is defined by T/T0obs. The relative load used in the paper by Civan and Podolsky [8] is 

expressed as the relative tension T/T0obs below. Figure 9 shows the experimental results on  

Phases T1 and V1, by circles for the isometric tension transient cited from the paper by Ford et al. [16] 

and by squares for the isotonic velocity transient cited from the paper by Civan and Podolsky [17]. 

Figure 9. T/T0obs vs. Lhs relations in Phase T1 and Phase V1. Circles: experimental data 

cited from Figure 13 of Ford et al. [16]. Squares: experimental data obtained from Figure 3 

of Civan and Podolsky [17], in which the error bar means error of read-out from Figure 3 

of [17]. The green curve: T/T0obs calculated by Equations 18 and 20 with CCBT = 2.2 

(Equation 22). The brown curve: T/T0obs calculated by Equations 19 and 21,  

with CCBV = 4.6 (Equation 23). 

 

At first sight, it was puzzling to see that distributions of the experimental data are quite different for 

the two cases, since the structural changes seem to be purely elastic both in Phases T1 and V1. Then it 

was reminded that the length change of sarcomere is a sum of those of the crossbridge, myosin 

filament and actin filament, which are proportional to each other (cf. the review by Irving [18]). This 

means that there are three elastic components, and it is a possibility that they have different response 

times in elastic changes from each other. 

In this connection, the experimental data reported by Julian and Sollins [19] seem important. They 

measured tension changes of single frog skeletal muscle fiber at increasing speed of step shortening. 

Their Figures 2 and 4 show experimental data on relative force vs. Lhs relation at different speeds of 
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shortening. The distribution of open circles in their Figure 2 (the length change period of about 1 ms) 

is similar to that of the data by Civan and Podolsky (1~2 ms) cited in our Figure 9. The distribution of 

filled triangles in Figure 4 of [9] (length change period of 0.4 ms) is close to the data by Ford et al. 

(the length change period of 0.2 ms) cited in our Figure 9. These facts seem to indicate that there are 

two kinds of elastic process in the tension response: The fast one occurs within about 0.4 ms and the 

slow one occurs between about 0.4 and 1 ms after the length change. The fast process seems 

responsible to the change in Phase T1 and combination of the fast and slow processes seems 

responsible to Phase V1. 

It seems plausible that elastic response of crossbridge and myosin filament almost simultaneously 

occurs since they belong to the same molecule and elastic response of actin filament occurs with some 

delay. Thus it is assumed that crossbridge and myosin filament are responsible to the change in Phase 

T1 and that all three components are responsible to the change in PhaseV1. Now changes of yc in 

Phases T1 and V1 should be different from each other even when the length change Lhs is the same. 

Calculation is done on this assumption by using the rectangular  distribution shown in Figure 10. 

Figure 10. The  distributions before and after instantaneous changes in the isometric 

tension transient and in the isotonic velocity transient. (a) The isometric tetanus state;  

(b) Just after Phase T1 in the isometric tension transient; (c) Just after Phase V1 in the 

isotonic velocity transient for the same length change as (b).  

(b) Just after phase T1

0

y

-L

(a) Isometric tension

x0 = ycdevx0

-L + x0

(c) Just after phase V1

-L + ycT1

-L + ycV1

ycT1

ycV1

-L +ycT1 + x0

-L + ycV1 + x0

y

y

x0

x0 0  

Figure 10(a) shows the  distribution at the isometric tension (the same as Figure 7 (b3)).  

Figure 10(b) shows the  distribution just after Phase T1 and (c) the one just after Phase V1 for the 

same length change Lhs as (b). The violet areas in Figure 10 (b) and (c) are the same as (a) since U*12 

transition does not occur yet. Changes of the edge yc in Phases T1 and V1 are denoted as ycT1 and 

ycV1. For the same Lhs, the tension T in Phase T1 is smaller than T in Phase V1 in Figure 9. The edge 

ycT1 in Figure 10 (b) is set larger than ycV1 in (c) so as to make the red area in (b) smaller than that in 

(c), in accordance with the fact that the tension T in Phase T1 is smaller than T in Phase V1. 
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Since elastic changes of the crossbridge, myosin filament and actin filament are proportional to each 

other [10], the ycT1 in (b) and ycV1 in (c) are proportional to Lhs, and expressed by 

ycT1 = −Lhs/CCBT (18) 

and  

ycV1 = −Lhs/CCBV (19) 

where CCBT and CCBV are constants.  

Let the tensions in Figure 10(b) and (c) be denoted as TT1 and TV1, respectively. They are given by 

integration of -b{y − (-L)} in the violet area, -fy in the red area and −by in the blue area. Thus we 

have 

TT1/T0obs = [(−b/2){(x0 + ycT1)
2

 −  ycT1
2} − (−f/2)(−L + x0 ycT1)

2 + (−b/2)ycT1
2]/(Lp0obs) (20) 

and 

TV1/T0obs = [(−b/2){(x0 + ycV1)
2 − ycV1

2} − (−f/2)(−L + x0  ycV1)
2 + (−b/2)ycV1

2]/(Lp0obs) (21) 

Calculations were done for various trial values of CCBT (Equation 18) and CCBV (Equation 19). The best 

fit for the experimental data are obtained for the values 

CCBT = 2.2 (22) 

CCBV = 4.6 (23) 

Figure 9 shows the calculation results for TT1/T0obs by the green curve and for TV1/T0obs by the brown 

curve. They are in good agreement with the experimental data. 

Let us denote the ratios of extensibilities of the crossbridge, the myosin filament and the actin 

filament as rCB, rM, and rA at the elastic equilibrium respectively. Shortenings of the three per half 

sarcomere are denoted, respectively, as yCB, yM and yA, and the length change of half sarcomere as 

Lhs. Then, at the elastic equilibrium, they are given by 

yCB = −rCBLhs (24a) 

yM = −rMLhs (24b)

yA − rALhs (24c) 

Naturally, 

rCB + rM + rA = 1 (25) 

On the above assumption, only the length changes of the crossbridge and the myosin filament 

contribute to Phase T1. Then we have 

ycT1 = Lhs/CCBT = {rCB/(rCB + rM)}Lhs (26) 

Thus, 

CCBT = (rCB + rM)/rCB (27) 

As assumed above, the load change period is long enough and elastic changes of the crossbridge, 

myosin filament and actin filament contribute to Phase V1. Thus, ycV1 is given by 



Int. J. Mol. Sci. 2011, 12            

 

 

1711

ycV1 = Lhs/CCBV = {rCB/(rCB + rM + rA)}Lhs = rCBLhs (28) 

Hence, 

CCBV = 1/rCB (29) 

By using the values of CCBT (Equation 22) and CCBV (Equation 23), Equations 25, 27 and 29 give 

rCB = 0.22 (30a) 

rM = 0.26 (30b) 

rA = 0.52 (30c) 

The extensibility ratios were investigated by X-ray diffraction by Huxley et al. [20] and 

Wakabayashi et al. [21]. The values reported by Wakabayashi et al. [21] are rCB = 0.31, rM = 0.27 and 

rA = 0.42. Considering approximate nature of the theory and experimental errors, our values in 

Equation 30 are in reasonable agreement with the X-ray values.  

In this section, it is assumed that elastic change of the actin filament does not take place during the 

fast length change in Phase T1. Then the elastic change of the actin filament should contribute to the 

next step, the tension recovery in Phase T2. This problem is discussed in next section. 

5. Isometric Tension Transient 

As noted in Section 4, Huxley [15] divided the transient responses to the sudden reduction of length 

into four phases. Time courses of these Phases are as follows. Phase 1 is instantaneous drop of tension. 

Phase 2 is rapid early tension recovery in next 1~2 ms. Phase 3 is extreme reduction or even reversal 

of rate of tension recovery during next 5~20 ms. Phase 4 is the gradual recovery of tension, with 

asymptotic approach to the isometric tension.  

As in Section 4, we use the terms Phase Tn (n = 1, 2, 3, 4) in the tension transient to avoid 

confusion. Phases Tn are more related with molecular process rather than time sequence. Phase T1 is 

simultaneous drop of tension caused by elastic shortening of the crossbridge and myosin filament. 

Phase T2 is due to elastic shortening of the actin filament. Phase T3 is related with the U*12 transition, 

and divided into T3a and T3b. Phase T3a is the first part of Phase T3. Both Phases T2 and T3a 

contribute to the rapid early tension recovery (Phase 2 of Huxley). Phase T3b is the second part of T3 

where the extreme reduction or reversal of rate of tension recovery occurs (Phase 3 of Huxley).  

Phase T4 is the gradual recovery of tension, with asymptotic approach to isometric tension (Phase 4 of 

Huxley). (There were misprints in Section 4.4 of the article [2], and the last three sentences of the 

section should be neglected.) 

Figures 11 and 12 illustrate how the rectangular  distribution changes during these Phases.  

Figure 11 is for the case of ycT1 < ycdev and Figure 12 is for the case of ycT1 > ycdev, where ycT1 is yc 

just after Phase T1. (cf. Figure 10(b)). 

As mentioned above, it is assumed that the elastic changes of the crossbridge and myosin filament 

occur in Phase T1 and then the elastic change of actin filament occurs in Phase T2. Figure 11(a) 

represents the states just after Phase T1. Figure 11(b) shows the state just after Phase T2. There is a 
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time lag for the U*12 transition to occur, and its effect is neglected in Phases T1 and T2, so that the 

width of the violet area is kept the same as the isometric value x0. 

Figure 11. Changes of the  distribution during the isometric tension transient in the case 

of ycT1 < ycdev. Magnitude of ycdev is exaggerated for illustration. 
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As noted referring to Figure 5, the mean time (step) needed for the U* transition is relatively large 

(e.g., larger than 10 ms for T/T0 > 0.5). It is assumed that the potential barrier U*12f (f: forward) is 

lower than U* as shown in Figure 3 (b) and thus the U*12f transition starts before the U* transition. 

Phase T3a is regarded as the state that the U*12f transition is present but the U* transition does not 

occur yet, while the U*12f and U* transitions coexist in Phase T3b. In Phase 4, only the U* transition 

exists. Figure 11(c) and (d), respectively, show the states at the end of Phases T3a and T3b. The violet 

area in (c) is smaller than in (b) because a portion of the crossbridges in the violet area change their 

binding partners from A1 to A2 through U*12f transition. Thus the red area increases and the stress is 

stored and the tension increases in Phase T3a. The U* transition starts at (c) and the stress stored 

during Phase T3a is released by the shift of the edge yc from ycT3a in (c) to ycT3b in (d). The shift of the 

edge from ycT3a (c) to ycT3b (d) causes increase of the blue area and decrease of the violet area. These 

two effects tend to cancel each other and reduce change of the red area in the time course from (c) to 

(d), i.e., in Phase T3b. The reduced change of the red area may cause the “extreme reduction of rate of 

tension recovery” mentioned at the beginning of this section. In Phase 4, the U* transition and the 

filament sliding continue and the state approaches to the tetanus state (e). 

Figure 12 shows changes of the  distribution in the isometric tension transient for the case of  

ycT1 > ycdev. Figure 12(a) and (b) are similar to Figure 11(a) and (b). Since ycT1 > ycdev, the  

U*12f transition does not leave the violet area and the red area significantly increases in (c). Then the 

U* transition starts and the  distribution shifts to the right as shown in (d). The red area significantly 
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decreases from (c) to (d), and tension decreases and thus the “reversal of rate of tension recovery” 

cited at the beginning of this section is expected. The filament sliding continues in Phase 4, and the  

distribution asymptotically approaches the isometric tetanus state (e). 

Figure 12. Changes ofthe  distribution during the isometric tension transient in the case 

of ycT1 > ycdev.  
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Figure 13 illustrates changes in Phases T1~T4 in another way by the T/T0obs vs. Lhs relation. The 

solid black arrows “Phase Tn” indicate an example of change of relative tension in Phase Tn for the case 

of y < ycdev and the dashed black arrows for the case of y > ycdev. The edge ycT1 in Figures 11(a) or  

12(a) is resulted from the elastic changes of the crossbridge and myosin filament, and is given as a 

function of Lhs by combining Equations 18 and 22: 

ycT1 = −Lhs/2.2 (31) 

The tension variation TT1/T0obs in Phase T1 can be calculated as a function of Lhs by using 

Equations 20 and 31. Calculation results are shown by the green curve in Figure 13. The edge ycT2 in 

Figures 11(b) or 12(b) are the same quantity as ycV1 in Figure 10(c), since they result from the elastic 

changes of the crossbridge, myosin filament and actin filament. Then, from Equations 19 and 23,  

we have 

ycT2 −Lhs/ (32) 

ycT2 = ycV1 means TT2/T0obs = TV1/T0obs. By using Equation 32 and replacing TV1 by TT2 and ycV1 by 

ycT2 in Equation 21, TT2/T0obs can be calculated as a function ofLhs. The calculation result is given 

by the brown curve in Figure 13. In the steady filament sliding, there is the definite relation between 

the tension T and the parameter yc as shown in Figure 8, where the red curve shows the relation for the 
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Hill-type filament sliding and the blue curve shows the relation when the filament sliding deviates 

from the Hill-type. The parameter yc in Figure 8 is related with yc in Figures 11 and 12 by the relation 

yc = yc0obs + yc since yc is the change of yc from the value at the isometric tension (yc0obs). In the 

steady filament sliding, all elastic elongations of the crossbridge, the myosin filament and the actin 

filament contribute to the muscle elongation and thus yc (=yc − yc0obs) is equal to −Lhs/4.6 as in 

Equation 32. The relative tension T/T0 in Figure 8 can be converted to T/T0obs by using the ratio  

T0obs/T0 = 0.88 (Equation 2). Based upon these considerations, the red and blue curves in Figure 8 are 

reproduced with the same colors in Figure 13. 

Figure 13. Phases in the isometric tension transient on the T/T0obs vs. Lhs relation. The 

thick black solid and dashed arrows, respectively, indicate Phases in the cases of  

ycT1 < ycdev and ycT1 > ycdev. Actually the thick solid and dashed arrows are on the same 

vertical lines, respectively, except for the case of Phase T1. 

 

In Figure 13, the Phases are indicated by the solid black arrows “Phase Tn” in the case of y < ycdev 

(the case of Figure 11), and by the dashed black arrows in the case of y > ycdev (the case of Figure 12). 

The rapid tension change in Phase T1 occurs along the green curve as indicated by the solid or dashed 

arrows “Phase T1”. Phase T2 is a result of the elastic change of the actin filament and thus the arrows 

“Phase T2” start from the green curve and end on the brown curve. The main part of Phase T3a 

corresponds to the rapid tension increase from Figure 11(b) to (c) or from Figure 12(b) to (c). It is 

difficult to determine where Phase T3a turns into Phase T3b in Figure 13. Trial calculations, however, 

show that fairly good agreement can be obtained by assuming that Phase T3a ends at the blue curve or 

the red curve. Thus, in the case of y < ycdev, the solid arrow “Phase T3a” is depicted with its tip on the 

blue curve. As discussed above, it is plausible that the red area in Figure 11(d) is nearly equal to that in 

(c). Taking this point into account, the solid arrow “Phase T3b” is depicted almost parallel to the 

abscissa, in accordance with the observation of the “extreme reduction of rate of tension recovery” 

noted at the beginning of this section. In the case of y > ycdev, as discussed above, it is plausible that 

the red area significantly decreases from Figure 12(c) to (d). Accordingly, the dashed arrow “Phase 
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T3b” is depicted downward, in accordance with the observation of the “reversal of rate of tension 

recovery ” noted at the beginning of this section. After Phase T3b, the tension T approaches T0obs by 

the filament sliding as shown by the arrows “Phase T4”. The above argument on the solid and dashed 

arrows “Phase T3b” suggests that the reversal of rate of tension recovery occurs when |Lhs| is large. 

Supporting this conclusion, Figure 1 of the paper by Julian and Sollins [19] shows that the reversal of 

the rate occurs when |Lhs| is large. 

Ford et al. [16] reported experimental data on variation of T/T0obs during 0–9 ms, as cited by green 

circles in Figure 14. The range of Lhs was +1.5~−6.0 nm in their experiment. Since our model is not 

applicable for positive Lhs, the case of +1.5 nm is omitted in Figure 14. Now we shall try to reproduce 

these results by calculation. 

Figure 14. T/T0obs as functions of time t for various length change steps Lhs in the 

isometric tension transient. The origin of t is set as the moment that Phase T1 finishes. Green 

circles: Experimental data cited from Figure 23 of Ford et al. [16]. Red lines: Values of  

T123a /T0obs calculated by using Equations 34, 35, 36 and the parameter values in Equation 38.  
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In Figure 14, values of T/T0obs quickly increase within about 1 ms and then gradually approach to 

the value at 9 ms. The mean time duration needed for one U* transition is longer than 10 ms for  

T/T0 > 0.5 in Figure 5. Accordingly, effect of U* transition is not considered. The experimental length 
changes ｜Lhs｜are smaller than 7.0 nm as seen in Figure 14. Hence, the following discussion is 

done referring to the solid arrows which are in this ｜Lhs｜range. The tension changes in Phases T1, 

T2 and T3a are denoted as T1, T2 and T3a, respectively. Also symbols T12 and T123a are defined  

as follows: 

T/
T 0

o
b
s 
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T12 = T1 + T2 (33) 

T123a = T12 + T3a (34) 

According to the scheme in Figure 13, the change of T1 is given by the green curve, and T2 changes 

from the green curve to the brown curve. In Figure 14, the origin of time t is set equal to 0 when the 

change of Phase T1 finishes. The parameters Cini2 and C fin2 are defined as the initial and final values 

of T2/T0obs, which are given by the green and brown curves, respectively in Figure 13. If T2 is 

approximately expressed by a single decay constantT2, T12/T0obs is given by, 

T12/T0obs = Cfin2 − (C fin2 − Cini2)exp(−t/T2) (35) 

The constant T2 is related with the elastic change of the actin filament and is independent of Lhs. The 

solid arrow “Phase T3b” is drawn between the brown curve and the blue curve in Figure 13, so that the 

magnitude of tension of T/T0obs in T3b is given by the difference between these curves. It is uncertain 

when the U*12 transition and thus Phase T3a start. To make calculation simple, it is assumed that it 

starts at the same moment as Phase T2, i.e., at t = 0. Also the change of T3a is approximately expressed 

with a single decay constant T3a: 

T3a/T0obs = (C fin3a − Cini3a){1 − exp(−t/T3a)} (36) 

where (Cini3a − Cfin3a) represents the magnitude of the tension variation. Cini3a and Cfin3a are given by 

the brown and blue curves, respectively in Figure 13.  

Now the problem is how the parameter T3achanges with Lhs. In the discussion on the  

force-velocity relation in [2], the average time tc for a myosin head at yc to cross over the potential 

barrier U*(yc) is expressed as tc = (1/A) exp (U*(yc)/kT) (Equations 4-2-1 in [2]), and U*(yc) is 

expressed by U*(yc) = U*0 − byc (Equations 4-2-2 in [2]). These formulae give tc = B exp (−cyc) where 

B and c = b/kT are constants. In Figure 11(b) the boundary between the violet and red areas is 

indicated as −L + ycT2 + x0. The relative relation between this boundary and A1 is similar to that 

between yc and A2. Then, in analogy to the above relation, with constants B’ and c’, the relation  

T3a = B’ exp (−cyc’) is expected as an approximate expression, where yc’ = −L + ycT2 + x0 (Figure 11(b)). 

Then, as L and x0 are constants, T3a in Equation 36 is approximately given by T3a = Bexp(−c’ycT2), 

where c’ is constant. Since ycT2 = −Lhs/4.6 (Equation 32), this relation can be rewritten as, 

T3a = A3aexp(c3aLhs) (37) 

where A3a and c3a are constants. This relation implies that T3a becomes small and the tension variation 
becomes fast when ｜Lhs｜increases. 

Trial calculations were done for T123a = T12 +T3a (Equation 34) to explain the experimental 

observations by changing parameters T2, A3a and c3a in Equations 35, 36 and 37. Fairly good 

agreement with the experimental data is obtained as shown in Figure 14 by using the following 

parameter values: 

T2 = 0.7 ms (38a) 

A3a = 3 ms (38b) 
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c3a = 0.5 (1/nm) (38c) 

In Section 4, it is assumed that the elastic change of the actin filament occurs 0.4–1 ms after the length 

changes of the crossbridge and myosin filament. The time constant T2 = 0.7 ms is in consistency with  

this assumption. 

6. Isotonic Velocity Transient 

Isotonic velocity transients were studied by Civan and Podolsky [17], Huxley et al. [15] and Sugi 

and Tsuchiya [22,23]. A muscle was stimulated and initially held at a constant length. It was then 

released suddenly and allowed to shorten under a constant load. In this section, discussion will refer to 

the experimental data presented in Figure 3 of the article by Civan and Podolsky [17]. Responses of 

muscle to the sudden load change are classified into four Phases by Huxley [15]. Analogously, we use 

terminology “Phase Vn” as mentioned in Section 4. While Phase number of Huxley is related with 

time sequence of the length changes, Phase Vn is more related with molecular processes rather than 

the time sequence. Phase V1 is the length change which simultaneously occurs with load change. 

Phase V2 is rapid early shortening. Phase V3 is extreme reduction or reversal of shortening speed. 

Phase V4 is responsible to the fact that the filament sliding velocity temporarily becomes larger than 

the steady value. Phases V2, V3 and V4 overlap each other in their time courses. 

Figure 15 shows changes of the  distribution in these four Phases. Figure 15 (a) is the  distribution 

just after Phase V1. Since yc = 0 at the isometric tension (cf. Figure 10 (a)), yc in Figure 15 (a) is equal to 

the variation from the isometric tension, ycV1 (cf. Figure 10 (c)). We shall discuss the case of  

ycV1 > ycdev, since most experiments on the velocity transient were done for yc > ycdev. 

In Figure 15, the vertical red arrows show time courses of Phases V2, V3 and V4. They overlap 

each other indicating the overlap of their time courses. The width of the violet area x0 in Figure 15(a) 

is the same as in the isometric tension since the U*12 transition does not occur yet. Then the U*12 

transition starts, i.e., Phase V2 starts. As mentioned above, there is a time delay in occurrence of the 

U* transition and thus of the filament sliding. Figure 15 (b1) shows the state in midway of Phase V2, 

where the U* transition starts. In (b1), a portion of the violet area has turned into red due to the U*12f 

transition and internal stress increases, which causes shrinkage of the  distribution, and thus of the 

muscle. At (b2), the U*12f transition is over and all the violet area is turned into the red area as  

ycV1 > ycdev. The process from (a) to (b2) is related with the U*12 transition and is called Phase V2, 

where the red area increases and the internal stress increases. The width of  distribution changes from 

L in (a) to L-L in (b2). Accordingly, a fast shortening of the muscle is expected. 

During Phase V2 the U* transition starts at (b1). There is a mutual interaction between the U* 

transition and the internal stress. The U* transition causes the filament sliding, releases the internal 

stress and tends to make yc larger. The internal stress tends to expand the  distribution, increases yc 

and accelerates the U* transition. The former process is called Phase V3. The latter process is called 

Phase V4. The mutual interaction almost disappears leaving a large value of yc at (c). Then the 

frequency of the U *transition and yc change toward their steady values from (c) to (d), where the  

distribution at the steady filament sliding is shown. Phases V3 and V4 occur in parallel starting with 

the U* transition at (b1) and end near (d). 
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Figure 15. Changes of the  distribution in the isotonic velocity transient when ycV1 > ycdev. 
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Figure 16 illustrates changes in Phase V1~V4 in another way. This figure is drawn considering the 

case of small T/T0obs. (An example of the experimental data for small T/T0obs can be seen in  

Figure 18 (c) given later where T/T0obs = 0.87, i.e., T/T0obs = 0.13.) The red, blue and brown curves 

are the same as the curves of the same colors in Figure 13. The black arrows indicate an example of 

changes of Lhs in the four Phases. As discussed above, there is the overlap between the Phases, and 

the arrow “Phase Vn” indicates the Phase which mainly contributes to the process. 

The length change in Phase V1 occurs along the brown curve, since the elastic changes of the 

crossbridge, the myosin filament and the actin filament contribute to this change. The arrow “Phase 

V2” corresponds to the rapid decrease of muscle length from Figure 15 (a) to (b2). The length of the 

arrow “Phase V2” is tentatively depicted as 6 nm (the same order of magnitude of the rapid drop of  

5 nm in Figure 18 (c) given later). As discussed above, the time courses of Phases 3 and 4 overlap each 

other. The direction of arrow “Phase V3” is reversed, representing the muscle elongation from  

Figure 15 (b2) to (c). Through “Phase 4”, the system approaches to the red curve corresponding to the 

change from (c) to (d) in Figure 15. The green arrow “Lhsv” symbolically represents the steady filament 

sliding corresponding to the state in Figure 15 (d). 

Now let us numerically reproduce the experimental data presented in Figure 3 of the paper by Civan 

and Podolsky [17]. The length change per half sarcomere at the steady filament sliding is denoted as Lhsv 

which corresponds to the dashed line in Figure 3 of [17]. Discussion will be done referring to Lhsv 

expressed by 

Lhsv = −vt (39) 

Here v is the sliding velocity determined by the experimental data in [17].  
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Figure 16. Phases in the isometric tension transient on the T/T0obs vs. Lhs relation. The 

black arrows indicate an example of changes of the relevant Phases in the case of  

ycV1 > ycdev. Actually the arrows are on the same horizontal lines, except for the case of 

Phase V1. 
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The length change caused by the U*12 transition in Phase V2 is denoted as Lhs2. The speed of Lhs2 

depends upon the frequency of U*12 transition and will be large at the beginning and gradually decay. 

Its time course is approximately expressed with decay constant V2 by 

Lhs2 = −BV2(1 − exp(−t/V2)) (40) 

where BV2 is a constant.  

As discussed above, there is the mutual interaction between the U* transition and the internal stress. 

(a) The U* transition causes the filament sliding which releases the internal stress. (b) The internal 

stress tends to expand the  distribution, pushes yc forward and accelerates the U* transition. The 

interaction (a) is discussed first. The interaction (b) will be discussed later in relation with Phase 4. 

The interaction (a) releases the internal stress and thus elongates the muscle. As shown in Figure 15, 

there is an overlap between Phase V2 and V3, and thus there is an overlap between length change Lhs2 

and the length change due to the interaction (a). The combined length change is denoted as Lhs23, 

which is expressed by multiplying Lhs2 by exp(−t/V3):  

Lhs23 = −BV2{1 − exp(−t/V2)}exp(−t/V3) (41) 

An example of Lhs23 is shown by the dotted black curve in Figure 17 to demonstrate its characteristics, 

together with Lhsv (the blue line). 

The decay times V2 and V3 should be functions of T/T0obs or v. The magnitude of V2 is 

proportional to the time duration of occurrence of the U*12 transition. Analogously to the manner to 

derive Equation 37, the relationT3a = Bexp (−cyc’) is expected as an approximate expression, where yc’ 

is the y at the boundary between the violet area and red area in Figure 15(a), where yc’ = −L + ycV1+x0. 

The tension T becomes smaller as  ycV1 becomes larger. As a simple approximation, T = T0obs − T is 

set proportional to  ycV1. Then the decay time V2 is given approximately by  

V2 = aV2exp(cV2T/T0obs) (42) 
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where aV2 and cV2 are constants. The time constant V3 in Phase V3 is related with the U* transition, 

and its magnitude seems to be an order of step = L/v (Equation 5). Hence V3 is set as 

V3 = bV3(L/v) (43) 

where bV3 is a constant. 

To see the characteristics of combination of Lhsv and Lhs23, Lhs23v is defined by  

Lhs23v = Lhsv + Lhs23 (44) 

An example of Lhs23v is illustrated by the dashed violet curve in Figure 17. 

Figure 17. Characteristics of Lhs4, Lhsv, Lhs23, Lhs23v and Lhs’ are illustrated in the case of 

T/T0obs = (T0obs T)/T0obs = 0.87, by using the equations and parameter values given in text. 
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Now let us consider about the part (b) of the interaction that the internal stress tends to expand the  

distribution, pushes yc forward and accelerates the U* transition. This effect causes muscle elongation. 

In Figure 15, this effect is illustrated by depicting ycVc in (c) larger than ycVd in (d). In Phase 4, ycVc 

changes into ycVd and the filament sliding approaches to the steady value. As shown by the overlap of 

the arrows of Phases V3 and V4 in Figure 15, these effects overlap with each other. The length change 

in Phase V4 is denoted as Lhs4. In analogy to the expression of Lhs23 (Equation (41)), Lhs4 is 

approximately expressed by 

Lhs4 = BV4{1 − exp(−t/V4)}
2exp(−t/V5) (45) 

The characteristics of Lhs4 expressed by this equation are illustrated by the dashed green curve in  

Figure 17. The internal stress is zero at t = 0 and increases by the term {1 − exp(−t/V4)}
2. The term 

exp(−t/V5) corresponds to the decrease of the muscle length due to the filament sliding. Concerning 

the magnitude of BV4, it is plausible that the internal stress pushes yc forward more effectively when 

the internal stress rapidly increases, i.e., when the frequency of the U*12 transition rapidly increases. 

The frequency of the U*12 transition is given by the reciprocal of the duration V2 given by  

Equation 42. Thus Bv4 is expressed by 

BV4 = GV4/V2 (46) 
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where Gv4 is a constant. The time constants V4 and V5 will be mainly related with the U* transitions, 

and in analogy to Equation 43 they are expressed as  

V4 = bV4(L/v) (47) 

V5 = bV5(L/v) (48) 

where b4 and b5 are constant.  

Since the sum of Lhsv, Lhs23 and Lhs4 is the total length change, it is denoted as Lhs’  

Lhs’ = Lhs23 + Lhs4 + Lhsv (49) 

Note that Lhs’ is the length change from the moment when Phase 1 finishes, while the abscissa Lhs in 

Figure 16 includes the length change in Phase 1. 

Time course of Lhs’ was calculated with various trial values of the parameters looking for good 

agreement with the experimental data in the cases of (T0obs – T)/T0obs = 0.22, 0.44 and 0.87. Calculation 

results with the following parameter values are shown in Figure 18. 

Figure 18. Length change Lhs’ vs. time t for three values of T/T0obs= (T0obs − T)/T0obs.  

(a) T/T0obs = 0.22; (b) T/T0obs = 0.44; (c) T/T0obs = 0.87. Green data points are obtained 

from Figure 3 of the paper by Civan and Podolsky [17]. Blue straight lines are Lhsv = −vt 

(Equation 39). Red curves are Lhs’ calculated by using Equation 49 and the parameter 

values in Equation 50. 
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BV2 = 12 nm (50a) 

aV2 = 0.14 ms (50b) 

cV2 = 7.6 (50c) 

GV4 = 15.0 pm/s (50d) 

bV3 = 0.20 (50e) 
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bV4 = 0.8 (50f) 

bV5 = 0.3 (50g) 

Characteristic features of the series of experimental data are fairly well reproduced by the 

calculation. The drastic change of the curve shape for different T/T0obs is mainly due to the T 

dependence of the frequency of the occurrence of the U*12 transition, i.e., the relation  

V2 = aV2exp(cV2T/T0obs) (Equation 42). 

7. Deviation from Hill-Type Force-Velocity Relation 

Let us consider the deviation from Hill-type force-velocity relation in connection of the  

U*12 transition. The deviation is determined by change of crossbridge population in well A2 and the 

U* potential barrier height. The maximum ratio of crossbridge population in A1 per that in A2 is given 

by x0/(L−x0) in Figure 7 (b3). This ratio is not very large and the effect of population change is 

neglected in the following approximate formulation. 

The relative tensions TH/T0 and T*/T0 are given as functions of yc
H and yc* in Figure 8. The same 

relationship can be expressed by giving yc
H and yc* as functions of T/T0. From Equation 8, we have 

yc
H = L[f − {f

2 − (f − b){f − 2p0T
H/(T0L)}1/2}]/(f − b) (51) 

From Equation 12, we have 

yc* = [{b − (T*/T0)}/a]1/2 (52) 

These relations and yc
H − yc* are shown as functions of T/T0 = TH/T0 = T*/T0 in the range between 

Tdev/T0 and T0obs/T0 in Figure 19 (a). 

The filament sliding velocity of Hill-type is denoted as vH and the velocity in the presence of the 

U*12 transition as v*. The period for the crossbridge to move over L is given as step = L/vH in Figure 5, 

which should have a similar nature as the time duration of U* transition, tc = (1/A)exp(U*/kT) 

(Equation 4-2-1 in [2]), where A is a constant and U* is the potential barrier for the U* transition. Thus 

vH = L/step is approximately proportional to 1/exp(U*/kT). Here U* is the potential barrier height when 

there is no U*12 transition. The difference yc
H − yc* shown in Figure 19 (a) can be regarded as a 

measure of the magnitude of structural change in MA3. The potential barrier U* should be affected by 

this structural change, and the change of the U* height is approximately set as bV(yc
H − yc*) where bV 

is a constant proportional to 1/kT. Then exp(U*/kT) changes into exp((U*/kT) + (bV(yc
H − yc*)) in  

Tdev < T < T0obs. Then, if we put vH = C/exp(U*/kT) and v* = C/exp((U*/kT) + bv(yc
H − yc*)) with a 

constant C, we have 

v* = vH/exp(bV(yc
H − yc*)) (53) 

Since yc
H = yc* = ycdev (cf. Figure 8), Equation 53 gives v* = vH at ycdev, as required. The blue curve in 

Figure 19(b) shows results of calculation by Equation 53 with the parameter value 

bV = 7.9 (1/nm) (54) 
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Agreement with the experimental data is fairly good. Accordingly, the deviation from Hill-type  

force-velocity relation is mainly due to the change of the potential barrier height U* caused by 

occurrence of U*12 transition. 

Figure 19. Explanation of the deviation of the force-velocity relation from Hill-type.  

(a) yc
H, yc*, yc

H − yc* as functions of T/T0, calculated by Equations 51 and 52; (b) Brown 

circles: Experimental data of the sliding velocity per half sarcomere cited from Fig, 3A of the 

paper by Edman [12]. Red curve: vH, the Hill-type velocity calculated in [2]. Blue curve: v*, 

the velocity in the presence of the U*12 transition calculated by Equations 53 and 54.  
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8. Summary and Discussion 

In our previous paper [2] (the first part of this Remarks series), difficulty of the power stroke model 

is pointed out and a new model is proposed to avoid the difficulty. In the model, it is proposed that 

about 41% of the myosin heads are bound to actin filament and each bound head forms complex MA3 

with three actin molecules. The complex MA3 translates along the actin filament changing its partner 

actin molecules in cooperation with U* transition. This model well explains the properties in the 

steady filament sliding such as the tension-dependence of the muscle stiffness, the Hill-type force 

velocity relation and the tension-dependence of energy liberation rate. In the present paper, the 

isometric tension transient and isometric velocity transient are studied based upon the model. 

Statistical ensemble of crossbridges is considered and the binding probability density  is introduced. 

On rectangular  approximation, the edge of the rectangle, yc determines dynamic properties of muscle 

in cooperation with U* and U*12 transitions. The internal structure of the MA3 complex becomes 

temporally unstable by the sudden length change or by the sudden load change. The complex muscle 

behaviors observed in these transients are related with the process that the disturbed internal structure 

returns to its stationary state. 
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Results reported in the present paper are summarized as follows. 

(1) The tension variations in the first Phases in the isometric tension transient (Ford et al. [16]) 

and the isotonic velocity transient (Civan and Podolsky [17]) are well explained as shown  

in Figure 9.  

(2) Ratios of extensibilities of crossbridge, myosin filament and actin filament are estimated as 

0.22, 0.26 and 0.52 (Equation 30), in reasonable agreement with the approximate values  

(0.31, 0.27, 0.42) determined by X-ray diffraction by Wakabayashi et al. [21]. 

(3) The experimental data on the isometric tension transient reported by Ford et al. [16] are fairly 

well explained as shown in Figure 14. 

(4) The characteristic features of muscle in the isotonic velocity transient observed by Civan and 

Podolsky [8] are fairly well explained as shown in Figure 18. 

(5) The deviation from the Hill-type force-velocity relation observed by Edman [12] is reproduced 

as shown in Figure 19(b). 

It should be noted that the above-mentioned agreements between experimental data and calculation 

results are obtained by using the muscle stiffnesses f and b determined in [2], whose numerical 

values are given in Appendix. 

The obtained results suggest that the ideas of the ensemble of crossbridges and the rectangular 

approximation are useful tools in theoretical studies of muscle contraction.  

In Figure 8, tangent of the T*/T0 vs. yc* relation (the blue curve) is 0 at yc* = 0. Accordingly, small 

fluctuation of tension around T0obs can produce significant variation of the muscle length. In this 

connection, the spontaneous oscillatory contraction (SPOC) of muscle (cf. the review by Ishiwata and 

Yasuda [24]) seems interesting. As mentioned in [24], it is a possibility that SPOC has some relation 

with the activities of cardiac muscles (cf. [25]). 
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Appendix. Symbols and Their Values 

kT: 3.77 ×10−21 at 0 °C. 

f: stiffness of an elongated crossbridge. 2.80 pN/nm (Equation 4-1-13 in [2]). 

b: stiffness of a shrinked crossbridge. 0.26 pN/nm (Equation 4-1-14 in [2]). 

L: period of binding sites of the myosin head along the actin filament, 5.46 nm. 

Lhs: length of the half sarcomere. 

p: mean force produced by one crossbridge. 

p0: maximum p in the extended Hill-type force-velocity relation.  

p0obs: p in isometric contraction. 5.7 pN (Equation 2-2-3 in [2]). 

r: ratio = (number of myosin heads attached to actin filaments)/(total number of myosin heads) in 

contracting muscle. 0.41 (Equation 3-1-1 in [2]). 
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rCB: extensibility ratio of crossbridge. 0.22 (Equation 30a). 

rM: extensibility ratio of myosin filament. 026 (Equation 30b). 

rA: extensibility ratio of actin filament. 0.52 (Equation 30c). 

s: sarcomere length of muscle with a full filament overlap. 2.10 m [3]. 

T: tension (P is used for T in [2]). 

T0: maximum T in the extended Hill-type force-velocity relation (P0 in [2]). 

T0obs: isometric tension of muscle with a full filament overlap. 4.1 × 105 N/m2 [3]. T0obs/T0 = 0.88  

(cf. Figure 1). 

Tdev: T at which the velocity starts to deviate from Hill-type force-velocity relation.  

Tdev/T0 = 0.66 (cf. Figure 1). 

T*: observed tension for T > Tdev. 

vmax: velocity of the filament sliding under no load on muscle. 2.36 m/s at 1.8 °C [3].  

y: srinkage shortening of the crossbridge (cf. Figure 4). 

yc: maximum y in the rectangular  distribution. 

yc(0): yc for v = vmax. 4.2 nm (Equation 4-1-11 in [2]). 

yc0: yc for v = 0 in the Hill-type force-velocity relation. 0.73 nm (Equation 4-1-12 in [2]). 

ycdev: yc for Tdev/T0 = 0.66. 1.60 nm (Figure 8). 

yc0obs: yc for T0obs/T0 = 0.88. 1.03 nm (Figure 8). 

yc*: yc observed in the presence of the U*12 transition (Figure 7). 
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