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Abstract: The hedgehog signal pathway is an essential agent in developmental patterning, 

wherein the local concentration of the Hedgehog morphogens directs cellular 

differentiation and expansion. Furthermore, the Hedgehog pathway has been implicated in 

tumor/stromal interaction and cancer stem cell. Nowadays searching novel inhibitors for 

Hedgehog Signal Pathway is drawing much more attention by biological, chemical and 

pharmological scientists. In our study, a solid computational model is proposed which 

incorporates various statistical analysis methods to perform a Quantitative  

Structure-Activity Relationship (QSAR) study on the inhibitors of Hedgehog signaling. 

The whole QSAR data contain 93 cyclopamine derivatives as well as their activities 

against four different cell lines (NCI-H446, BxPC-3, SW1990 and NCI-H157). Our 

extensive testing indicated that the binary classification model is a better choice for 

building the QSAR model of inhibitors of Hedgehog signaling compared with other 

statistical methods and the corresponding in silico analysis provides three possible ways to 

improve the activity of inhibitors by demethylation, methylation and hydroxylation at 

specific positions of the compound scaffold respectively. From these, demethylation is the 

best choice for inhibitor structure modifications. Our investigation also revealed that  
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NCI-H466 served as the best cell line for testing the activities of inhibitors of Hedgehog 

signal pathway among others. 

Keywords: QSAR; Hedgehog signal pathway; inhibitor; cyclopamine 

 

Abbreviations 

R2 = correlation coefficient in self fitting of training data set 

Q2 = correlation coefficient in cross validation fitting of training data set 

r2 = correlation coefficient in fitting of test data set 

A = percentage accuracy of binary model = Total accuracy 

A0 = percentage accuracy of inactive subset 

A1 = percentage accuracy of active subset 

At = A in self fitting of training data set 

Av = A in cross validation fitting of training data set 

Ap = A in fitting of test data set 

DLI = Drug-like Index 

PLS = Partial Least Squares 

SVR = Support Vector Regression  

SVM = Support Vector Machine 

ANN = Artificial Neural Networks  

SAReport = Structure-Activity Report 

1. Introduction 

The hedgehog signaling pathway plays a key role in the control of cell differentiation, growth, and 

proliferation [1]. Briefly, hedgehog signal pathway is composed of four important components 

including Sonic Hedgehog, Patched, Smoothened and Gli transcription factors. Sonic Hedgehog is a 

secreted protein that can transduce signals between cells. Patched acts as a receptor protein to be 

binded by Sonic Hedgehog. When Sonic Hedgehog is absent, Patched can block the function of 

Smoothened. In addition, Smoothened would be activated and initiate a signaling cascade that results 

in the activation of Gli transcription factors when Sonic Hedgehog binds with Patched. These Gli 

transcription factors will translocate into the nucleus where the transcription of target genes is 

controlled. Recent studies have found that constitutively activating the pathway can trigger cancer in 

adult humans, leading to basal cell carcinoma, medulloblastoma, rhabdomyosarcoma, prostate, 

pancreatic and breast cancers [2–5]. 

Due to the direct relationship between the activation of hedgehog signaling pathway and 

oncogenesis, cancer researchers have been dedicated to find specific inhibitors of hedgehog signaling 

since it will provide efficient therapies for a wide range of malignancies [6–8]. Until now, only 

specific Smoothened inhibitors have been identified. Cyclopamine, a steroid alkaloid isolated from the 

corn lily (Veratrum californicum), is one of the small chemical compounds that specifically inhibit 



Int. J. Mol. Sci. 2011, 12             

 

 

3020 

Smoothened in the hedgehog signaling pathway [9]. However, there is still no efficient pathway to 

synthesis Cyclopamine because of its low solubility in aqueous or polar solvents and little effort has 

been devoted into the synthesis of cyclopamine derivatives [10–13]. In order to develop clinically 

effective drugs, modifications of parent lead compounds to generate derivatives to study the  

structure-activity relationship (SAR) become necessary [13]. Janardanannair et al. [9,14] have 

pioneered such investigations on the SAR of cyclopamine derivatives. Their results quantitatively 

indicated that modification on secondary amine and oxidation to ketone from 3-Hydroxy could help to 

influence the activities of cyclopamine derivatives. However, both studies had less than 30 samples, 

which is far from satisfactory for a sound QSAR study.  

In order to better understand Hedgehog signal pathway as well as design efficient inhibitors for this 

pathway, 93 cyclopamine derivatives were synthesized and their activities were tested against four 

different cell lines (BxPC-3, NCI-H446, SW1990 and NCI-H157) respectively [15,16]. Based on these 

experimental data, a systematical investigation was carried out on SAR of inhibitors of Hedgehog 

signal pathway by incorporation of various statistic modeling approaches and comparison of different 

descriptors and statistical division approaches of these data. 

2. Results and Discussion 

Based on the computational framework outlined in Material and Methods, the following results or 

clues were obtained for the QSAR modeling of inhibitors of Hedgehog signal pathway.  

2.1. The Influence of Descriptors on the QSAR Modeling of Inhibitors of Hedgehog Signal Pathway 

As mentioned above, two distinct sets of descriptors were tested to describe the 93 chemical 

compounds respectively (Table 1 and Table 2). For the self-fitting of training data (highlighted in red), 

we found that the models derived from physical properties are more efficient than those derived from 

topological indices for QSAR modeling. It can be seen that almost all the values of σ in this case are 

negative. However, with regard to independent testing (highlighted in royal blue), it seems that QSAR 

models derived from the DLI descriptors [17] are much more robust than those derived from general 

descriptors [18], and in this case almost all the values σ are positive. As an intermediate state, the 

values of σ derived from cross validation (highlighted in yellow-green) contain several negative and 

positive ones respectively. In total, the above mentioned result indicated that when projecting the 

connection table information into physical properties, the general descriptors will lose some structural 

information of a compound. Such loss of information is different for training and testing datasets since 

this information is highly dependent on the conformation and structural essence of a molecule. 

In conclusion, models derived from DLI are much more stable for both training data and testing 

data, while general descriptors cannot guarantee such stability and scale in independent data. 
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Table 1. QSAR results derived from the data divided by Diverse Subset (σ indicates difference). 

 BxPC-3 NCI-H446 SW1990 NCI-H157 

General Drug-like σ General Drug-like σ General Drug-like σ General Drug-like σ 

PLS R2 0.552 0.494 −0.058 0.659 0.526 −0.133 0.644 0.585 −0.059 0.527 0.531 0.004 

Q2 0.000 0.035 0.035 0.001 0.026 0.025 0.021 0.158 0.137 0.038 0.106 0.068 

r2 0.102 0.307 0.205 0.218 0.025 −0.193 0.084 0.193 0.109 0.019 0.118 0.099 

SVR R2 0.994 0.686 0.308 0.966 0.763 -0.203 0.993 0.808 −0.185 0.988 0.705 −0.283 

Q2 0.994 0.000 −0.994 0.962 0.002 −0.96 0.992 0.069 −0.923 0.987 0.001 −0.986 

r2 0.000 0.396 0.396 0.088 0.110 0.022 0.025 0.258 0.233 0.023 0.077 0.054 

Bayesian 

inference 

At 0.883 0.917 0.034 1.000 0.967 −0.033 0.900 0.933 0.033 0.967 0.933 −0.034 

Av 0.783 0.817 0.034 0.917 0.917 0 0.883 0.783 −0.1 0.867 0.867 0 

Ap 0.606 0.576 −0.03 0.758 0.879 0.121 0.576 0.667 0.091 0.485 0.636 0.151 

SVM
 

classification 

At 1.000 1.000 0 1.000 1.000 0 1.000 1.000 0 1.000 1.000 0 

Av 0.550 0.500 −0.05 0.867 0.817 −0.05 0.650 0.533 −0.117 0.633 0.617 −0.016 

Ap 0.455 0.636 0.181 0.788 0.879 0.091 0.545 0.758 0.213 0.697 0.636 −0.061 

Table 2. QSAR results derived from the data divided by Cluster plus Diverse Subset (σ indicates difference). 

 BxPC-3 NCI-H446 SW1990 NCI-H157 

General Drug-like σ General Drug-like σ General Drug-like σ General Drug-like σ 

PLS R2 0.506 0.474 −0.032 0.593 0.396 −0.197 0.542 0.493 −0.049 0.587 0.542 −0.045 

Q2 0.011 0.007 −0.004 0.015 0.019 0.004 0.005 0.002 −0.003 0.006 0.040 0.034 

r2 0.178 0.215 0.037 0.055 0.201 0.146 0.000 0.222 0.222 0.087 0.056 −0.031 

SVR R2 0.997 0.716 −0.281 0.965 0.756 −0.209 0.993 0.839 −0.154 0.987 0.655 −0.332 

Q2 0.997 0.021 −0.976 0.962 0.025 −0.937 0.993 0.124 −0.869 0.986 0.019 −0.967 

r2 0.008 0.139 0.131 0.029 0.001 −0.028 0.040 0.075 0.035 0.019 0.087 0.068 

Bayesian 

inference 

At 0.967 0.885 −0.082 0.951 0.934 −0.017 0.934 0.918 −0.016 0.984 0.885 −0.099 

Av 0.852 0.803 −0.049 0.934 0.918 −0.016 0.852 0.836 −0.016 0.820 0.820 0 

Ap 0.656 0.625 −0.031 0.625 0.906 0.281 0.625 0.656 0.031 0.625 0.625 0 

SVM
 

classification 

At 1.000 0.984 −0.016 1.000 1.000 0 1.000 1.000 0 1.000 0.984 −0.016 

Av 0.505 0.475 −0.03 0.803 0.852 0.049 0.590 0.623 0.033 0.656 0.623 −0.033 

Ap 0.656 0.719 0.063 0.875 0.875 0 0.625 0.719 0.094 0.688 0.719 0.031 
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2.2. The Influence of Data Division on the QSAR Modeling of Inhibitors of Hedgehog Signal Pathway  

It is normally known that QSAR predictions are only reliable within or near the property space used 

to train the model. Preparing a robust, unbiased and sufficiently large training set is critically important 

for the building of a proper statistical model. As mentioned above, two data division methods, i.e., 

Diverse Subset and Cluster plus Diverse Set were applied to divide our dataset into training set and 

testing set. 

In order to statistically reveal the difference between the results influenced by two such kinds of 

data divisions, pair t-test was performed and the p-value derived from the above two tables (Table 1 

and Table 2) was 0.88 (>0.05), which indicates that there is no significant statistical difference for 

these two data divisions for QSAR analysis. Our result has shown that clustering data before 

calculating the diverse set does not produce a significant influence on the QSAR models. This result 

was explained by analysis of the detailed algorithm in calculating the diverse set as follows: The 

Diverse Subset method used in MOE [19] ranks entries based on the whole dataset diversity, that is, 

the calculation of Diverse Subset itself is a global diversity comparison procedure. For the Cluster plus 

Diverse Set method, although an extra preprocess of clustering data exists, Diverse Subset still 

happens within every sub-cluster and the main difference, compared with the former, is that 

calculating diverse subset becomes a local procedure based on each clustering. It can be seen that 

essentially the two division methods have little influence on the final distribution of training data and 

testing data. Thus, as expected in our results, no significant differences for the results of these two 

division methods exist. 

2.3. Comparison of PLS and SVR for QSAR Data Regression 

When building a QSAR model, linear regression methods are normally preferred to the advanced 

non-linear methods, since the linear models are easier to use for a physical explanation of the 

prediction results. The most classical liner model in QSAR is PLS, which have been widely used in 

popular computer-aided drug design software [19–21]. In our study, PLS (MOE-PLS) was first chosen 

to derive our QSAR models. However, as indicated in Tables 1 and 2, this linear model failed to 

achieve satisfactory results in QSAR study. The correlation coefficients from self-fitting testing and 

cross validation testing are all less than 0.65. 

Since advanced machine learning methods such as ANN [22], Bayesian inference [23], Random 

Forest [24] and SVM [25] have been successfully applied in QSAR study [26–36], our QSAR models 

were rebuilt using the SVR method, which is a derived regression model with powerful fitting ability 

as well as excellent prediction accuracy [36–39]. In anticipating results, this method behaved well in 

the self-fitting testing of our training data (R2 is nearly 0.9) as well as in the cross-validation testing. 

Nevertheless, this method still performed badly in the independent test data, which indicates that such 

machine learning methods may not be generalized enough in the cyclopamine data. This is probably 

due to the fact that a substantial diversity exists in our dataset. Among the 93 data, four different 

scaffolds were found (Figure 1). In addition, there were still six molecules that did not match any of 

the scaffolds (Figure 2). 
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Figure 1. Four scaffolds found in our experimental data. 
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Figure 2. Six molecules that did not match any of the scaffolds, as mentioned above. 
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2.4. Comparison of Binary Bayesian Inference and SVM for QSAR Data Classification 

When the qualities of the data or the underlying mechanism are not suitable for regression 

modeling, the binary classification was applied on the data to uncover their probabilities to be active or 

inactive. MOE has offered a binary filter to filtering the numerical data. Any properties which can be 

represented in a binary (yes/no) way (like active/inactive, toxic/non-toxic, drug-like/non-drug-like, 

permeable/non-permeable, etc.) could be mapped onto such a filter. Thus, the binary classification 

model was used to rebuild the QSAR models to further reveal their intrinsic characteristics. MOE’s 

binary filters (yes/no) are based on the Bayesian inference technique as mentioned in Material and 

Methods. Continuous activity data (non-binary) can be transferred to binary values with a specific 

threshold criterion. In our study the IC50 of the drug compound is used as a cut-off.  

As shown in Table 1 and Table 2, the binary model behaved well on both training data and testing 

data sets. The overall prediction accuracy is improved to nearly 0.8 against NCI-H446 cell line. (Some 
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were up to 0.906). This result has indicated that the binary QSAR classification model is more suitable 

to guide the direction of designing novel inhibitors of Hedgehog signal pathway. 

The SVM classification was also applied to further validate the efficiency of binary classification 

models compared with regression models. The results shown in Table 1 and Table 2 reconfirmed that 

for our data the binary classification model is probably more suitable for QSAR analysis. 

2.5. Cell Line Analysis 

Four different cell lines (NCI-H446, NCI-H157, SW1990 and BxPC-3) were used to test the 

cytotoxicity of the 93 compounds. However, only the data of NCI-H446 can produce a reasonable 

model by QSAR analysis; the prediction accuracy of the models against all the other cell lines  

is about 0.6.  

Why do some specific cell lines not fit well to our QSAR analysis? We speculate that the most 

likely reason is the non-specific cytotoxicity effect of these compounds to the other three cell lines. For 

example, HCI-H157 and BxPC-3 do not express the Gli and Smoothened protein, respectively [40,41]. 

That means that the cytotoxicity effect of these compounds may not directly result from the inhibition 

of hedgehog signaling. In addition, although sustained hedgehog signaling activity can be detected in 

SW1990 cells [41], it is very likely that cell lines grown in vitro may lose their dependence on 

hedgehog signaling for survival [42]. For example, the IC50 of positive compound (cyclopamine) is 

9.13 μg/mL for NCI-H446, 38.11 μg/mL for BxPC-3, 61.05 μg/mL for SW1990 and 58.33 μg/mL for 

NCI-H157. That is to say, firstly, HCI-H466 cells were most sensitive to the hedgehog signaling 

inhibitor. In addition, the SW1990 possibly mutated and lost the hedgehog signaling in our 

experiment. In summary, the non-specific effects may result in the variance of the data of the 

cytotoxicity and finally affect the QSAR analysis.  

2.6. Structure Activity Report 

In our study, SAReport was applied to present a direct instruction on how to modify the structure of 

a compound and make it a better inhibitor of hedgehog signal pathway. All the structure modifications 

are listed in the supplementary material. Here the top three structures were selected with their activity 

improvements according to different modification mechanisms. 

The first important finding is that through such SAReport we validated our former finding that only 

the data to cell line NCI-H446 can obtain a reasonable QSAR modeling result (indicated in  

Figure 3). Secondly, our SAReport has shown that demethylation, methylation and hydroxylation at a 

specific position of the inhibitor scaffold may highly improve their activity. As indicated in Figure 3, 

demethylation at position 8, methylation at position 7 and hydroxylation at position 11 provided three 

possible ways to improve the inhibitor’s activity. In addition, the SAReport shows that demethylation 

seems to be the most efficient approach to improve activity among others. This conclusion provides 

the first proven set of efficient inhibitor structure modification methods in order to improve their 

activities. All these results will definitely shed new light on the future work of inhibitor synthesis.  
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Figure 3. SAReport of Hedgehog inhibitors. 
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(a) Removal of methyl group connected to C8 could increase potency of compounds. 
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of compounds. 
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Figure 3. Cont. 
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(c) Addition of hydroxyl group connected to C11 on the C ring could increase potency  

of compounds. 

3. Material and Methods 

A comprehensive computational workflow was designed to perform QSAR analysis on the 

inhibitors of Hedgehog signaling. This workflow is outlined in Figure 4. Details are listed below. 

Figure 4. General computational workflow used in our study. 
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Our analysis started by using two different descriptors, i.e., general descriptors and drug-like index 

to describe the 93 cyclopamine derivates. In order to construct the training set and testing set for 

statistical modeling, two kinds of data division method were tried, i.e., Diverse Subset and Clustering 
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Diverse Subset for data generations. Then, based on the training data we obtained, different statistical 

modeling approaches including PLS, SVR, Naive Bayesian classification and SVM classification 

were applied to evaluate their abilities for QSAR modeling. It should be noted that the former two 

methods are used to perform regression on the QSAR data and the other two methods are focusing on 

data classification. These approaches were applied in the testing data for further validation and derive 

useful clues for the designing of efficient inhibitors of Hedgehog signal pathway. Finally a SAReport 

of QSAR modeling of such inhibitors was presented for the first time. 

3.1. Dataset and Data Division Methods 

93 cyclopamine derivatives together with their activities against four different cell lines (BxPC-3, 

NCI-H446, SW1990 and NCI-H157) were tested and are listed in the supplementary material.  

Two different approaches were applied to divide these experimental data into training set and 

testing set for our following statistical modeling. Details followed. 

3.1.1. Diverse Subset 

Briefly, the Diverse Subset method presented in MOE ranks compound entries based on diversity. 

In the procedure of data division, the first entry of the original dataset is taken as a reference and will 

always be viewed as part of a diverse subset. Then the most “distant” compound data is assigned #2, 

and then the most distant compound to these two is assigned #3 and so on until the required number of 

diverse compounds is identified or the whole dataset is ranked in diversity order. To determine which 

unranked entry is farthest from all already-ranked entries, the distance between each unranked entry 

and each ranked entry is calculated. For each unranked entry, the minimum of its distances to each 

ranked entry is found. The entry with the largest such “minimum distance” is deemed to be the 

farthest. Then such ranked dataset is divided into two parts as a training dataset (65% of the original 

set) and testing dataset (35% of the original set). 

3.1.2. Cluster plus Diverse Subset 

Compared with the above method, a clustering process is used here before Diverse Subset. Then the 

Diverse Subset is performed on each cluster to rank them respectively. Finally the training dataset and 

testing dataset are generated by summarizing the sub-training dataset (65% of every sub-cluster 

dataset) and testing dataset (35% of the every sub-cluster dataset) from every sub-cluster, respectively. 

It should be noted that MOE can cluster the whole data based on the descriptors or fingerprints. For 

time purposes, the descriptor-based clustering in MOE was used in our study because it is a simple 3N 

algorithm whereas fingerprint-based clustering uses the N2 Jarvis-Patrick algorithm.  

3.2. Structural Descriptors 

There are lots of descriptors to describe a chemical compound, including constitutional descriptors, 

physiochemical property descriptors, electronic descriptors, topological indices, geometrical 

descriptors, and quantum chemistry descriptors, etc. However, no set of descriptors is capable of 

performing spectacularly better than the others. Thus, to build our QSAR model, the widely applicable 
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set of descriptors, i.e., the general descriptors was selected. Also, DLI descriptors was adopted for a 

complementary comparison. 

General descriptors include atomic contributions to van der Waals surface area, log P 

(octanol/water), molar refractivity and partial charge. These descriptors are applied to the construction 

of QSAR models for boiling point, vapor pressure, free energy of salvation in water, solubility in 

water, thrombin/trypsin/factor Xa activity, blood-brain barrier permeability and compound classification. 

The wide applications of these descriptors have suggested their important usage in the QSAR 

modeling, combinatorial library design and molecular diversity work. 

On the other hand, DLI descriptors acts as an approach to measure drug-like compounds, as first 

presented by Xu et al. Then it was used and modified as a set of descriptors by MOE. These 

descriptors characterized the hierarchy of drug structures in terms of rings, links, and 

molecular frameworks. 

Although these two sets of descriptors are both computable from connection table information, they 

partly complement each other. Normally, general descriptors have a preference for physical 

prosperities of compounds, while DLI descriptors favor simple topological indices of compounds. 

3.3. Statistic Modeling 

In our computational framework, various statistical models were incorporated to evaluate their 

performance in QSAR analysis of inhibitors of Hedgehog signal pathway, and we wanted to find the 

most suitable statistical analysis method for the QSAR modeling of such data. Detailed descriptions of 

each statistical method are listed below. 

3.3.1. PLS Method 

The PLS QSAR method [43,44] was widely employed in the study of QSAR modeling by the 

QuaSAR-Model module of MOE 2008. This is arguably the most traditional and least sophisticated 

QSAR approach among those explored in this study. It was explored here to test if it could build reliable 

models for underlying data sets using the simplest approach. In our study, we applied the PLS method 

presented in MOE and the number of components was set to no limit on the degree of the fit. The 

maximum condition number of the principal component transform of the correlation matrix S, the 

condition limit, was set at 1.0 × 10
6
 which is a very high setting. The leave-one-out cross validation 

(LOO-CV) scheme was used to validate the models and the correlation coefficient (Q2) and  

root-mean-square error (RMSE) were reported. 

3.3.2. SVR 

SVR was used here to compare with PLS regression, which has proven to be a powerful regression 

technique in many applications. SVR is the regression version derived from SVM which was proposed in 

1996 by Vladimir Vapnik et al. [45]. This regression method depends only on a subset of the training 

data and the cost function for building the model ignores any training data close to the model prediction 

(within a threshold ε). Intrinsically, SVR maintains all the main features that characterize the maximal 

margin algorithm and a non-linear function is learned by a linear learning machine in a kernel-induced 
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feature space while the capacity of the system is controlled by a parameter that does not depend on the 

dimensionality of the space. In summary, the basic idea of SVR is to map the data into a  

high-dimensional feature space via nonlinear mapping, and perform linear regression in this space. 

3.3.3. Binary Bayesian Inference 

The binary bayesian QSAR method was employed by using the QuaSAR-Model module of MOE 

2008. In this modeling, the numerical values of inhibitor activity were transferred to binary 

classification labels, thus greatly reduced the noise of the data. That is, the binary model is used to 

predict a probability of a given compound to be either active or inactive rather than their numerical 

values. Since no quantitative estimation of the actual activity is derived, the compounds are referred to 

as “active” if its predicted probability of being active is more than 0.5. 

In binary Bayesian inference for each compound, the following steps were applied to predict their 

probability of being active [46]: 

• Estimates two distributions: one for the active compounds and one for the inactive ones in  

the training set. The separation of active and inactive sets is manually defined by a  

Binary Threshold.  

• Counts the frequency of occurrence of a particular descriptor value in active and inactive cases.  

• Accumulates a histogram of the observed sample values over the classes. The distribution is 

convoluted with a Gaussian ( = 0.25, the smoothing width) to avoid sensitivity to  

bin boundaries. 

• A histogram of property distributions is derived for each descriptor for “active” and “inactive” 

(yes/no) sets. Those descriptors which differentiate the two sets will have a high impact in the 

model, those which do not, will drop out.  

3.3.4. SVM Classification 

Compared with binary Bayesian classification, the SVM classification was also applied for our 

QSAR data. SVM works by mapping the training data into a feature space with the aid of a so-called 

kernel function and then separating the data using a large margin hyperplane. Intuitively, the kernel 

computes a similarity between two given examples. Most commonly used kernel functions are radial 

basis function kernels and was used in our experiments. SVM classifiers are generated by a two-step 

procedure: First, the sample data vectors are mapped (“projected”) to a very high-dimensional space. 

The dimension of this space is significantly larger than the dimension of the original data space. Then, 

the algorithm finds a hyperplane in this space with the largest margin separating classes of data. It was 

shown that classification accuracy usually depends only weakly on the specific projection, provided 

that the target space is sufficiently high dimensional. Sometimes it is not possible to find the separating 

hyperplane even in a very high-dimensional space. In this case a tradeoff is introduced between the 

size of the separating margin and penalties for every vector which is within the margin. 
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3.4. SAReport 

SAReport [47] is an important tool for the visualization and analysis of project SAR data introduced 

by MOE recently. SAReport contains sophisticated analysis methods to help scientists identify 

important groups and make more effective choices for synthesis. 

Briefly, the Suggestions table in SAReport consists of a list of hypothetical molecules, constructed 

from available pieces, which are predicted to have a high probability of activity. The pool of 

hypothetical molecules is prepared by enumerating all of the input molecules, and performing 

 single-point mutations at each of the substitute positions, with each of the R-groups that have been 

observed in the equivalent position for some other molecule in the dataset. The unique list of 

chimerical molecules is then rated according to an estimate of probability, scaled and balanced to 

match the distribution of activities found in the input set. The scores are scaled in such a way that a 

value of 0 indicates that the hypothetical molecule is as likely to be active as an average molecule in 

the input set, while positive values are more likely. The chimerical molecules are ranked by their 

probability of activity, multiplied by a weighting factor, which is a measure of cumulative similarity to 

other molecules in the database. A higher weighting implies that a larger statistical base is available to 

make the prediction. The most promising candidates are listed first. The molecule from which the 

candidate was mutated is shown, along with its property information. The new structure is shown to 

the right, along with the prediction. The percentage value is the increased probability of activity, and 

the number in brackets is the weighting.  

4. Conclusions 

In this study, different descriptors, different data dividing approaches as well as different statistic 

methods are used to build QSAR models for inhibitors of Hedgehog signal pathway on  

93 cyclopamine derivatives together with their activities against four different cell lines. Our 

investigation has shown that NCI-466 may serve as the best cell line for testing the activities of 

inhibitors of Hedgehog signal pathway. Due to the lower qualities of the data, the binary classification 

method is a much better choice in building QSAR models than regression. Furthermore, for synthesis 

and medical scientists, our results indicate that demethylation, methylation and hydroxylation at a 

specific position may highly improve the activity of inhibitors of Hedgehog signal pathway. 

Demethylation is also found to be a better choice than methylation or hydroxylation for compound 

modification. Based on these conclusions, demethylation is preferred to methylation or hydroxylation 

in compound modification and such work is currently being actively pursued in our laboratory.  
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