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Abstract: Since the onset of antiviral therapy, viral resistance has compromised the 

clinical value of small-molecule drugs targeting pathogen components. As intracellular 

parasites, viruses complete their life cycle by hijacking a multitude of host-factors. Aiming 

at the latter rather than the pathogen directly, host-directed antiviral therapy has emerged as 

a concept to counteract evolution of viral resistance and develop broad-spectrum drug 

classes. This approach is propelled by bioinformatics analysis of genome-wide screens that 

greatly enhance insights into the complex network of host-pathogen interactions and 

generate a shortlist of potential gene targets from a multitude of candidates, thus setting the 

stage for a new era of rational identification of drug targets for host-directed antiviral 

therapies. With particular emphasis on human immunodeficiency virus and influenza virus, 

two major human pathogens, we review screens employed to elucidate host-pathogen 

interactions and discuss the state of database ontology approaches applicable to defining a 

therapeutic endpoint. The value of this strategy for drug discovery is evaluated, and 

perspectives for bioinformatics-driven hit identification are outlined.  
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1. Introduction 

With few exceptions, therapeutic approaches to combat infectious diseases have focused in the past 

decades on targeting unique components or enzymes of viral, bacterial and parasitic origin. It has now 

become perfectly evident that this traditional, pathogen-directed strategy, while highly successful in 

numerous cases [1], is inherently compromised by the rapid emergence of resistance or, increasingly, 

pre-existing pathogen resistance to individual drugs. For example, the efficacy of current 

neuraminidase inhibitors for the treatment of pandemic swine origin influenza H1N1 isolates is 

increasingly compromised by the appearance of viral strains with pre-existing resistance in the field [2–4]. 

Drug-resistant variants have likewise propelled the re-emergence of highly pathogenic bacteria strains 

such as Mycobacterium tuberculosis decades after they were considered contained [5,6]. 

Prompted largely by the onset of the global HIV epidemic, the development of combination 

therapies based on drugs with distinct individual resistance profiles has considerably heightened the 

barrier against the development of pathogen resistance and frequently boosted the effectiveness of 

pathogen-directed therapeutics through synergistic effects [7]. Despite these successes, however, 

combination therapies have not conceptually addressed the problem of pathogen resistance and 

multidrug resistant variants that emerge frequently in clinical settings and cohorts of highly  

therapy-experienced patients. Developing new generations of inhibitors that are inherently prohibitive 

of the rapid development of resistance will rather require a new and complementary paradigm for  

drug discovery. 

1.1. Host-Directed Antivirals, a New Paradigm for Management of Viral Diseases 

Of the strategies entertained towards this goal, targeting host factors that are essential for the 

pathogen life cycle, rather than pathogen components directly, has recently received increasing 

attention [8–10]. While all pathogenic microbes experience interactions with their host organisms, 

viruses as obligatory parasites are directly dependent upon their host cell environment for replication, 

protein expression and assembly of progeny particles. It is anticipated that blocking one or more of 

these critical host components or cellular pathways will be resilient to the rapid development of viral 

resistance, since individual point mutations in viral components are unlikely to compensate for the loss 

of an essential host factor. 

Indeed, the currently available data for the experimental use of host cyclin-dependent kinase (CDK) 

inhibitors to block HSV-1 and HIV-1 replication, for instance, has revealed a remarkably reduced 

frequency of viral escape from inhibition in tissue culture settings [11,12]. In contrast, single point 

mutations in viral components are fully sufficient to abrogate high-affinity binding of pathogen-

directed antivirals as demonstrated by numerous studies investigating the molecular mechanism of 

viral drug resistance [1]. Given that replication of related viral pathogens frequently depends on 
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overlapping host cell pathways, host-directed antiviral strategies have high potential to move beyond 

the one-bug one-drug paradigm by broadening the pathogen target range of a chemical agent.  

1.2. Identification of Suitable Targets for Host-Directed Antivirals 

From a therapeutic perspective, the intricate and complex network of virus-host interactions yields a 

multitude of potential cellular targets for host-directed antivirals. In addition to the aforementioned 

role of CDK host protein kinases in HSV-1 and HIV-1 replication [11,12], some examples include 

regulatory kinases of the Abl [13] and Src [14] tyrosine kinase families, inhibition of which blocks 

poxvirus motility and maturation of West Nile virus particles, respectively. The Raf/MEK/ERK 

kinases of the mitogen-activated protein kinase (MAPK) cascades [15], when inhibited, induce nuclear 

retention of the influenza virus ribonucleoprotein complexes [16], preventing their export 

and ultimately influenza virion assembly. A further example includes inhibition of COX-2, a 

component of the eicosanoid biosynthesis pathway, which reduces yields of human cytomegalovirus 

progeny virus [17]. 

Clearly, the most desirable host target is essential for completion of the pathogen life cycle under 

investigation but at least temporarily dispensable for host cell survival, thus supporting the prospect 

that successful inhibition will combine a potent antiviral effect with manageable toxicity. Nevertheless, 

targeting host factors carries an inherently higher potential for undesirable drug-induced side effects 

than pathogen-directed antiviral therapies, particularly when the latter is highly selective. While  

host-directed therapies are being explored for the treatment of some major chronic viral infections  

such as HSV-1 and HIV-1 [11,12], they appear predestined for the therapy of infections by pathogens 

predominantly associated with severe acute disease, since anticipated treatment times and concomitant 

host exposure to the drug remain limited. On the other hand, chronic infections are conceivably 

treatable by host-protein targets where more than one gene pathway regulates the condition. In some 

such cases, sequential application of host-gene modifiers could control disease progression without 

undue side effects associated with chronic application of an anti-viral drug.  

Hit candidates for host-directed drug development programs have resulted from a diverse set of 

experimental approaches. These can be grouped largely into knowledge-driven direct identification of 

individual targets, automated screening of chemical diversity sets with protocols specifically designed 

for the discovery of host-directed hits, and systems-wide screens for host factors essential for  

pathogen replication.  

The evolving understanding of critical host-pathogen interactions through molecular virology 

research of individual viral families has made possible the direct selection of candidate host targets. 

With an arsenal of approved and experimental therapeutics for inhibition of many cellular pathways  

at hand, identified candidate targets may in many cases be immediately testable through repurposing  

of known drugs or commercially available experimental compounds with known bioactivity. The 

demonstration that Gleevec (Imatinib mesylate), an Abl tyrosine kinase inhibitor licensed for the 

treatment of several cancer forms [18], is a poxvirus blocker [13] and the repurposing of the MEK 

kinase inhibitor U0126 to block the Raf/MEK/ERK cascade for influenza virus inhibition [16,19] serve 

as cases in point. While the former originated from the insight that efficient vaccinia virus spread 

requires phosphorylation of the viral A36R protein by Abl and Src family tyrosine kinases [20,21], the 
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latter was triggered by the observation that influenza virus infection induces the activation of MAPK 

family members [16,21]. 

The availability of large robotic capacities in both corporate and academic settings combined with 

the rapid design and production of small-molecule compound libraries in the past two decades has 

accelerated the pace of discovery of novel drug candidates via high-throughput screening exercises. 

Applied to the identification of antiviral hits with a host-directed activity profile, for instance, it should 

be feasible to derive suitable screening protocols based on the hypothesis that host-directed candidates 

will likely show some cellular interference and return a broadened pathogen target range. While  

the former will translate into a lower primary screening score represented by the selectivity 

index (CC50/EC50), the latter should result in efficient inhibition not only of the screening agent but 

also of pathogens of related viral families when assessed in counter-screening assays. When we 

explored the general feasibility of this approach conceptually using a ~140,000-entry diversity set, 

several chemical compound classes were identified that efficiently blocked replication of a panel 

of distinct members of the myxovirus families [22]. Significantly, a subset of these revealed a  

host-directed activity profile in secondary assays and counter-screening exercises.  

To determine the molecular target of host-directed compounds identified through screening of 

chemical libraries, a combination of traditional mechanism of action studies, genomics (i.e., gene 

microarrays), and/or proteomics (i.e., protein profiling) studies is conceivable. Target identification not 

only sets the stage for possible knowledge-based scaffold optimization through rationale design in 

conjunction with hit-to-lead chemistry or repurposing of known inhibitors with identical target profile, 

but also contributes to further elucidating critical pathogen host interactions and, thus, basic insight 

into pathogen biology.  

A second unbiased approach for host-target identification centers on screens for host factors directly 

interacting with viral components or required for successful completion of the viral life cycle. Of these, 

avidity-based extracellular interaction screens (AVEXIS) of protein-protein contacts [23] and yeast 

two-hybrid screens [24,25] appear promising, although they remain inherently limited to specific 

pathogen factors selected as ―baits‖. In contrast, loss-of-function screens based on aptamers [26,27] or 

antisense RNA interference [28–31] and gain-of-function approaches utilizing expression libraries [32,33] 

afford a systems-wide view of host-factors essential for pathogen replication or boosting pathogen 

success, respectively. In recent years, groundbreaking ―loss-of-function‖ antisense screens were 

carried out for major viral pathogens including influenza virus [34,35], human immunodeficiency  

virus (HIV) [36–39] West Nile virus [40] and hepatitis C virus [41]. These have transformed our 

understanding of the virus-host interplay.  

Surprisingly, however, independent large-scale screens directed at influenza virus, for instance, 

returned very little redundancy for essential host factors identified. This suggests that the screening 

efforts still lack saturation, and that cross-study bioinformatics efforts for data mining would benefit 

significantly by commencing on a host cell pathway rather than at the individual protein level. When a 

set of identified pathways essential for virus replication emerges through bioinformatics selection, 

individual components can be subjected to secondary screens using known drugs or experimental 

inhibitors to short-list desirable individual targets. A proposed workflow for a bioinformatics  

lead-identification process is displayed in Figure 1. In the following, we will discuss in detail the 
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current state of data mining approaches and how they have been, or could be, applied to screening 

results reported for HIV-1 and influenza A viruses.  

Figure 1. RNAi-Based Lead Identification Workflow. Aberrant expressed genes identified 

in the RNAi screen are categorized into clusters based on biological function. Members of 

the largest clusters are literature and database-mined for known small molecule 

modulators. Candidate inhibitors are subjected to biotesting for hit confirmation. This 

review focuses on the ability of bioinformatics methods to identify potential medicinal  

lead compounds. 

 

2. Methods to Analyze and Process Viral Host Factors Identified as Hits 

As with the output of chemical genomic screens, genome-wide association studies (GWAS) require 

bioinformatics support to analyze high density data points and highlight the important gene or gene 

sets responsible for the phenotype under investigation. False positives need attention beyond the high 

throughput experiment when choosing targets for further study. These data points often arise when 

certain genes have been incorrectly identified due to off-target effects associated with siRNA 

inhibition. In one case, a single siRNA reportedly perturbed the expression of over 300 genes [42]. The 

potential quantity of false positives generated from a single RNAi screening experiment becomes 

alarming, when a single RNAi can potentially affect a large subset of gene expressions. It has been 

hypothesized that clustering methods such as pathway analysis and gene functional analysis are a 

possible means to discard false positives and highlight true positives, since they readily generate a 

biological interpretation of a high throughput result. A number of reviews have summarized the state 

of genetic analysis [43–51]. In this article, we outline the GWAS approach to antiviral identification 

and then highlight how such methods have been used to probe host-virus interactions. 

Currently, several curated databases in the public domain detail known gene product associations (see 

Table 1 for examples). As will be illustrated in the following, different databases may return a diverse 

set of answers even when identical RNAi screening results are used as input.  
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Table 1. Commercial and open source pathway databases. 

Database Description References 

Kyoto Encyclopedia of 

Genes and Genome 

(KEGG) 

Public Resource links genes to crystal structures and drugs 

when information is available 
[52–54] 

Reactome 
Public Resource accepts a gene list for the pathway 

analyzer and returns percentage population per pathway 
[55–57] 

Protein Analysis 

Through Evolutionary 

Relationships 

(PANTHER) 

Free pathway database allows user to identify enrichment 

in biological pathways, GO terms or protein class 
[58,59] 

WikiPathways Community curated pathway database [60,61] 

Ingenuity IPA 
Commercial pathway database to identify enrichment in 

pathways/GO terms; links drugs to specific genes 
[62] 

Gene Ontology (GO) 

Consortium 

Community database that clusters genes by biological 

process, molecular function or cellular location across 

multiple species 

[63] 

Search Tool for the 

Retrieval of Interacting 

Genes/Proteins 

(STRING) 

Freely available functional relationships database displays 

direct neighborhood relationships between proteins that 

interact directly or through an intermediary  

[64–69] 

Search Tool for 

Interactions of 

Chemicals (STITCH) 

Crosslinks gene products with chemical structures from 

PubChem 
[70,71] 

GeneGo Metacore 
Commercial manually curated pathway database annotated 

with 600,000 compounds 
[72] 

Prolexys HyNet 
Commercial database protein-protein interaction identified 

via in-house yeast two-hybrid screening 
[73] 

Biomolecular Interaction 

Network Database 

(BIND) 

Free and Commercial versions describing  

protein-protein interactions, molecular complexes and 

pathways 

[74,75] 

Molecular Interactions 

Database (MINT) 

Public protein-protein interaction database based on peer-

reviewed literature. Accessible through  

web-interface or Simple Object Access 

Protocol/Representational State Transfer (SOAP/REST) 

protocols 

[76] 

Human Protein 

Reference Database 

(HPRD) 

Public proteonomic database with descriptions for 2750 

human proteins taken from the primary literature  
[77–79] 

Application of GWAS frequently employs graphical networks displaying interconnected genes as 

exemplified in Figure 2. The ability to interconnect and cluster genes by known function forgoes the 

need to verify every target that is generated by an RNAi screen through a multitude of single biological 

experiments. Topological representations of biological function identify enriched regions of perturbed 

gene expression and their relevant cellular operations. Usefulness of gene enrichment analyses depends 
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on the quality of the database used [80]. If accurate, gene enrichment separates genes from those that 

were randomly identified during the RNAi screening and offers the largest source of antiviral target 

candidates for drug development, based on the assumption that all members of an enriched region are 

required for efficient viral replication. The fundamentals of network theory and its usage in GWAS 

analysis are reviewed in [80]. Gene expression studies can utilize enhanced methods of pathway 

analysis which go beyond treating pathways as simple sets of genes and incorporate the complex gene 

interactions described by the pathway, such as measurement of total pathway perturbation [81]. 

Unfortunately such methods require quantitative differential expression data to be applicable, a 

component lacking in these RNAi screening studies. It is possible, however, that inclusion of RNAi 

viral inhibition data in a modified version of this enhanced method might lead to improvement in 

pathway enrichment, but this is yet to be exemplified in the literature.  

Figure 2. Network Association Map of RNAi screening results generated by the  

Brass et al. influenza virus infection. The list of perturbed host cell genes were complied in 

STRING and illustrated as nodes above. Lines between different nodes (edges) represent 

protein interactions that are either known experimentally (purple) or predicted 

computationally (yellow). Significant nodes such as those shown around COPA and 

CRNLK1 suggest these pathways to be critical for the viral life cycle. 

 



Int. J. Mol. Sci. 2011, 12             

 

 

4034 

Thus, pathway analysis and gene function annotation offer the drug screening community 

automated procedures for extracting meaning from a large array of differentially expressed genes. The 

identified genes can be grouped according to the relationships among protein products, while potential 

drug targets associated with enriched pathways can be perceived. 

An illustration of the identification of therapeutic compounds by means of bioinformatics analysis 

is the use of a gene list to link Tamoxifen to the treatment of Systemic Lupus Erythematosus  

(SLE) [82–84]. Investigators discovered that the estrogen receptor pathway is a significantly enriched 

gene category with respect to a list of SLE’s aberrantly expressed genes through the Disease-Drug 

Correlation Ontology (DDCO). Other databases that similarly infuse chemical knowledge into the 

pathway databases include KEGG, the Connectivity Map, Ingenuity IPA and the STITCH database (all 

of which are also included in Table 1). Figure 3 offers an example of a gene interaction map annotated 

with small molecules. 

Figure 3. Gene interaction map overlapped with Tamoxifen via the STITCH database. The 

latter also connects ovals to one another suggesting that these molecules display similar 

biological behavior towards the same target. Edges refer to interactions as determined by 

experiment (purple), manual curation (cyan) or computationally predictions (yellow).  

 

While the previously cited resources offer investigators utmost convenience in immediately 

accessing lists of available small molecule modulators related to a pathway of interest, other databases 

connect small molecule modulators with known protein targets. These require a separate pathway 

analysis to choose a particular set of gene products of interest. Suitable resources include  

DrugBank [85,86], PDB/sc-PDB [87–89], PubChem [90], Sunset Molecular’s WOMBAT-PK  

2010 [91,92] and the BRENDA database [93]. 

Following a bioinformatics selection of target candidates, individual targets must be selected  

for medicinal chemistry, for instance, based on the previous discovery of small-molecule blockers  
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or the availability of crystal structures in the Protein Data Bank (PDB). [88,89]. Then, de novo drug 

discovery can be sustained through 3D virtual screening [94] and structure-based design. Application 

of these methods to the analysis of HIV and flu RNAi screens will be discussed in the next section. 

3. Bioinformatics Approaches for Identifying Host-Factors Required for HIV Replication  

Each of the systematic studies examined in the following sections employed a unique 

bioinformatics approach to pathway analysis. Similar to a chemoinformatics clustering analysis of a 

high-throughput screen to short-list a set of chemical leads for optimization, a goal of the RNAi 

screening studies is to identify, by means of gene pathway or functional analysis, potential host factor 

targets that are essential for viral replication. A key question is whether the resulting bioinformatics 

short list of host factors contains suitable candidates for drug development. 

3.1. Bioinformatics Approaches to Identify Host-Factors Required for HIV Virus Replication 

For HIV, three independent siRNA studies were published in 2008 by Brass et al. [36], Konig et al. [95] 

and Zhou et al. [37]. All three siRNA studies utilized the National Center for Biotechnology 

Information (NCBI) database of HIV-1 and human protein interactions (currently 1443 proteins 

identified) to evaluate the overlap of hit genes with the curated virus-host interactions available in the 

NCBI database [61]. Figure 4 illustrates the total number of genes found as well as the pairwise 

overlap between genes in each study. A meta-analysis of these genome-wide studies was subsequently 

performed by Bushman et al. in 2009 [96]. 

Figure 4. Illustration of the pairwise overlap between hit genes in the three HIV siRNA 

studies and the NCBI database. Circle areas are proportional to the number of genes. For 

clarity, three-way and higher overlaps are not shown. 

 



Int. J. Mol. Sci. 2011, 12             

 

 

4036 

Bushman et al. performed an overlap analysis/random distribution comparison based on these data 

and found associations that were statistically significant (p-values < 0.001). While one may safely 

assume that the hit genes are enriched with respect to independently identified and confirmed host 

factors required for HIV-1 replication, pairwise overlaps between the studies are low, ranging only 

from 3 to 6%. While these were still judged statistically significant (p-values < 0.024 for all pairs) [96],  

the overall very low redundancy suggests considerable experimental variability associated with each 

siRNA screen. 

Variation in individual host factors could be accounted for by a number of factors, including: 

(a) high experimental variance of siRNA transfection efficiencies [42]; (b) harvest of cells at different 

time points post-infection; (c) the use of different analysis methods and filtering thresholds; (d) an 

inherent bias of individual assays towards specific stages of the viral life cycle [96]; and (e) overall 

moderate reproducibility of siRNA-based screens[97]. Some of these variances might be readily 

controlled by additional replicates examined per screen. For instance, only the study by Konig et al. 

performed the screen in duplicate. As a case in point, the experimental data showed large variances 

between the replicates: 24% of hit siRNAs (141) exhibit standard deviations greater than 25% of their 

median values. Furthermore, Bushman et al. demonstrated that adjusting the filtering thresholds in this 

study strongly influences the nature of the identified genes (shown Figure 1D of Bushman et al.) [96]. 

Other parameters, such as non-uniform harvesting time points, are inherent to the design of each 

individual study and cannot be standardized retroactively. Although capturing different stages of the 

viral life cycle in separate studies may ultimately be necessary to fully appreciate the scope of the  

host-pathogen interaction network, different analysis times should be considered as a major contributor 

to the low level of congruity between the currently available data.  

Independent of redundancy between studies, the question remains of whether the gene hits represent 

bona fide host factors required for HIV replication or false positives that may have arisen from 

experimental variability. Equally important for hit confirmation is the organization of the data sets into 

groups by gene function and cellular pathways to illuminate distinct parts of the intricate host-pathogen 

interaction network. Using terms from the Gene Ontology (GO) database Brass et al. noted that  

103 of their hit genes were assigned with 136 statistically significant (p-value < 0.05) biological  

processes [36]. In brief, the GO database is a consortium established to relate genes to one another in a 

fixed file format within three categories: biological processes, cellular components and molecular 

functions [44,63,98,99]. To reduce redundancy, these categories were clustered and manually curated. 

GO analysis yielded 17 enriched cellular functions in the Brass HIV study. Alternatively, the Zhou 

study used Ingenuity Pathway Analysis to determine enriched molecular functions and biological 

pathways. Thirty-two molecular functions were identified, and twelve biological processes were found 

to be statistically significant (p-value < 0.05). 

In contrast, Konig and colleagues employed a multi-tiered bioinformatics approach to identify the 

host factors most important to HIV replication through the use of the Prolexys HyNet database [95]. 

This resulted in networks of 2468, 4080, and 2850 genes in the HIV, MLV, AAV and toxicity assays, 

respectively. Using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) [100], 

the Konig team extracted overrepresented functional clusters for all genes found in the three HIV 

siRNA studies. Filtering for significance (p-value < 0.06 based on a geometric mean for all the terms 

in a group), redundancy, biological relevance and specificity returned 24 functional groups (A listing 



Int. J. Mol. Sci. 2011, 12             

 

 

4037 

of the overlapping pathways and those identified uniquely are presented in Figure 5), most of which 

contained genes that were identified in two or more studies. Although each study contains a significant 

number of genes that may be defined by molecular functions common to each of the three studies, 

consistent function identification across the siRNA screens is lacking due to the distinctions in each 

study’s bioinformatics methods. These functions may be defined differently between methods due to 

redundancies present in each database. Slightly different but biologically meaningless distinctions can 

arise thereby.  

Figure 5. Comparison of HIV-dependent host functions identified by Bushman et al. [96], 

Brass et al. [36], Konig et al. [95] and Zhou et al. [37]. Grey boxes indicate functions 

unique to an individual study. 

 

Although some well-documented host factors required for HIV replication (such as CD4, CXCR4, 

NFκB subunit RELA, activating kinases AKT1 and JAK1, TSG101, and various cofactors of Vpr, Vif, 

Tat, and Rev) [101–105] were identified in at least one of the three siRNA studies, a variety of other 

host factors known to engage with HIV (HLA-B57, HLA-C, PSIP1/LEDBF/p75, Sp1, cyclophilin A, 

ITGB1, ITGB2, and ITGB3) were not discovered [96,106–115]. Of these, the absence of the 

integration cofactor PSIP1/LEDBF/p75, HIV long terminal repeat transcription factor Sp1, HIV Gag 

binding protein cyclophilin A, and the three integrin proteins (ITBG1, ITBG2, ITBG3) is most 

noticeable. [108–112,114–117] These results suggest that even a combined host factor analysis is at 

risk of missing key host components required for viral replication. Furthermore, no single siRNA study 

thus far illuminates all relevant, and currently known, cellular factors associated with the pathogen. 

The meta-analysis was extended by building an HIV-host factor interaction network of 1657 

cellular proteins using an array of protein-protein interaction databases (BIND, HPRD, MINT, and 
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Reactome) [96]. With MCODE’s graph theoretic clustering algorithm, clusters within this interactome 

map having different functions were identified. Of the 11 clusters found, 10 were associated with 

distinct cellular functions: the proteasome, transcription/RNA polymerase, the mediator complex, Tat 

activation/transcriptional elongation, RNA Binding/Splicing, BiP/GRP78/HSPA5 Chaperone, and CCT 

Chaperone. From a drug discovery perspective, however, small molecule testing or counter-screening 

with individual siRNAs against target candidates are required to validate individual pathways. 

Lack of saturation in host genes identified through current siRNA screens, varying consistency and 

high overlap of genes in specific areas emerge as future challenges for application to system-wide drug 

discovery efforts.  

3.2. Bioinformatics Approaches to Identify Host-Factors Required for Influenza Virus Replication 

In addition to application of system-wide siRNA screens to the HIV system, the technology was 

applied to the influenza virus. Major siRNA studies were reported by Hao et al. [118], Brass et al. [119], 

Shapira et al. [120], Konig et al. [34] and Karlas et al. [35]. Other types of screens were performed by 

Josset et al. [121], which identified a gene list based on gene expression response to influenza; and 

Coombs et al. [122], which performed a quantitative analysis of protein level changes in infected cells. 

While Hao and colleagues employed a Drosophila cell-based host system for their siRNA screens, both 

Konig and Karlas relied on human lung cells (A549) and the influenza A/WSN (H1N1) strain or a 

recombinant variant thereof. Brass and colleagues used a human osteosarcoma cell system (U2OS) and 

the influenza A/PR/8 (H1N1) strain. The Shapira study is unique in that it combined results for yeast 

two- hybrid analyses, genome-wide transcriptional gene expression profiling and siRNA screening. 

Unfortunately, a single publically available resource similar to the NIH/NIAID HIV-1 interaction 

database does not exist for influenza virus, although many distinct virus-host interactions have been 

described in the literature (reviewed in [123]). 

Watanabe et al. summarized five of the six systematic studies reported above and performed 

bioinformatics analysis on the 1,449 identified genes required for influenza replication [123]. Much 

like the Bushman et al. analysis of HIV host factors [96], 128 genes were found in multiple screens 

when pairwise comparisons were performed. The highest pairwise overlap (32 genes) is found in the 

Konig et al. and Karlas et al. studies, possibly due to the overlaps in host cell type (A549 cells) and 

influenza virus strain (A/WSN (H1N1)). This lack of overlap is also illustrated in the pairwise analysis 

given in Table S1. Unlike the meta-analysis for the HIV studies discussed above, this pairwise 

comparison lacked random distribution simulations, preventing the assessment of statistical 

significance. Nevertheless, the observed low overlap rate most likely results from factors similar to 

those discussed above for the HIV siRNA studies, i.e., different harvest times, detection thresholds and 

host cell lines, coupled with the additional complication of variability introduced through the use of 

different viral strains. 

As described in the HIV siRNA analyses, each study examining influenza virus infections 

performed individual bioinformatics analyses on siRNA screening results. A summary of these 

bioinformatics data along with the methodology is reviewed by Min [124]. In unique congruence, three 

of the influenza virus studies explored the use of known small-molecule inhibitors to obtain 
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independent proof-of-concept for the importance of cellular targets identified by bioinformatics for 

virus replication [34,35,121]. 

Konig reported six compounds with EC50 values ranging from 0.5 to 30 μM target FRAP1, 

HSP90AA1, TUBB, FGFR4, GSK3B, or ANPEP. Of these, FRAP1, TUBB, FGFR4 and GSK3B 

home to the same GO Term cluster, protein kinase activity, recommending it as a potentially rich 

source for influenza virus inhibitors. The cytosolic chaperone Hsp90AAP1 was identified in a separate 

GO Term cluster; interestingly, previous reports have already established a link to influenza  

virus [125] and HCV [126] replication. The Karlas study reported another efficacious small molecule 

inhibitor, TG003, which targets the CDC-like kinase 1 (CLK1). CLK1 was retrieved from the 

Spliceosome GO term cluster, where it ranked seventh in significance among the list of enriched 

cellular components.  

While the above studies identified potential host factor targets through GO term enrichment and 

then followed up with small molecules available for viral testing, the Josset project searched 

Connectivity Map with 20 of the most perturbed genes from the 300 initially identified. Of the eight 

compounds available through commercial vendors, six attenuated influenza virus replication with EC50 

values ranging from 5.8 to 30 μM. In-house analysis of the 20 genes used to identify these compounds 

revealed that they are significantly enriched in metabolic processes. Similar to previous studies, the 

Josset report does not explicitly identify a host pathway essential for viral replication based on the 

small molecule inhibition studies. To appreciate the full potential of this approach for antiviral drug 

development, it may be informative to collect all known inhibitors of a particular host pathway and 

determine the complete extent of virus inhibition.  

Watanabe et al. performed a meta-analysis of the siRNA results using the set of 128 genes found in 

two or more studies [123]. The major gene categories were determined through PANTHER, a database 

that also utilizes GO terms to organize gene lists. Several molecular functions were found significant: 

nucleic acid-binding proteins, kinases, transcription factors, ribosomal proteins, hydrogen transporters 

and proteins related to mRNA splicing. Biological processes found to be consequential were protein 

metabolism and modification, signal transduction, protein phosphorylation, nucleoside, nucleotide and 

nucleic acid metabolism and intracellular transport. Reactome analysis tagged as significant eukaryotic 

translation initiation, regulation of gene expression, processing of capped intron-containing pre-mRNAs 

and Golgi-to-ER retrograde transport. This set of 128 genes was further integrated with the viral 

protein interaction partners determined by Konig and Shapira, resulting in a network of virus-host 

interactions. Based on this map, MCODE further identified translation initiation, mRNA processing 

and proton-transport as crucial. Accordingly, mining of the top MCODE cluster in Figure 6 predicts 

that compounds such as spectoinomycin, emetine and quercetin will interfere with influenza  

virus replication. 

Successful outcomes for bioinformatics searches predominantly depend on the accuracy of 

tabulated database interactions. As detailed below, use of different databases may alter the profile of 

pathways that are enriched from the same gene list. In such cases, users are obligated to formulate a 

realistic biological interpretation of the relational data to ensure identification of meaningful candidate 

compounds for an antiviral drug program. 
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Figure 6. Small molecule (ovals) identification of gene products (spheres) associated with 

translation initiation. Green edges represent protein-ligand interactions. These compounds 

have not been reported previously to interfere with influenza infection, although quercetin 

has been demonstrated to attenuate HCV, however through a different host factor [126]. 

 

4. Pathway Database Comparisons: Same Source, Different Interpretation 

As outlined above, it is a primary function of gene databases to extract biological meaning as well 

as potential therapeutic host factors from a high throughput RNAi screen by means of descriptive 

annotations of genes common to a particular biological pathway or gene function. In the realm  

of antiviral drug discovery, this approach aims at identifying host cell components critical for  

virus replication. 

Crucial for the success of this strategy is the quality of the pathway database used, which is 

determined by the curation method of published experimental data of gene associations and the 

expertise of the curators involved. Soh et al. have demonstrated that inconsistencies emerge when gene 

association data are compared across different pathways databases [127]. This came as a surprise, 

since most databases share published literature as a data source, suggesting that methodology for 

curation and criteria for gene associations were not uniform (for this study, the Ingenuity IPA, KEGG, 

and Wikipathways databases were compared). Assuming curation is performed on available 

literature data, however, one expects similar genes and gene pairs to be found across the different 

databases. (Gene pairings are defined as gene product associations confirmed by the database curator).  
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The Wnt signaling pathway provides a tangible example illustrating the current challenges. This 

pathway has been implicated in therapeutic interference with cancer and viral entry. Two-way analyses 

revealed approximately 80% gene similarity when based on the KEGG and Wikipathways 

databases (Table 4 in [127]). However, only 43% similarity is found when Ingenuity and KEGG are 

examined (Table 3 in [127]), while comparison of Ingenuity and Wikipathways databases returns  

only 28% similarity (Table 5 in [127]). Inconsistencies across databases are even more disconcerting  

when gene pair overlaps are examined: KEGG/Wikipathways (18%), Ingenuity/KEGG (8%), 

Ingenuity/Wikipathways (0%). It is the quality of the gene pairing data in each database, however, that 

allows end users to triage the multiple RNAi screening results for pathway congruity.  

Looking on a broader scale across 26 cellular pathways described in Soh et al., gene overlap 

similarity has a mean value of 66.5% when comparing the KEGG database and Wikipathways [127]. 

By contrast, the mean values of similarity for Ingenuity/KEGG and Ingenuity/Wikipathways were 

53.8% (12 pathway categories) and 41% (11 pathway categories), respectively. Despite the higher 

gene overlap between KEGG and Wikipathways, the pairing overlap is still only approximately 50% 

for any listed pathway compared across any three of the databases. KEGG is curated by a single  

lab group, while Wikipathways is curated through a community effort. At the moment, it is not clear  

to what extent the curation procedures contribute to the highly variable data mismatches. However, 

there is little doubt that this and other variables would benefit from cross-consolidation between the  

various databases.  

Soh et al. also analyzed the comprehensiveness of the databases, which was a measure for the total 

number of genes from all three databases [127]. This was followed by evaluation of gene members and 

pairings of each database against the pool, which consisted of 21,314 genes and 60,900 pairings. 

KEGG was shown to be the most comprehensive of the three databases, but this was influenced by  

the result of KEGG’s inclusion of metabolic pathways specifically not curated by either of the  

other databases.  

Concentrating in particular on viral host factors, we performed an in-house analysis that compares 

host proteins involved in the influenza virus life cycle across various databases. Databases used in this 

example included Reactome, Ingenuity IPA and PANTHER. The Reactome database records six  

host factor genes for influenza in each the categories associated with NS1-mediated effects and  

virus-induced apoptosis. Databases such as Ingenuity IPA and PANTHER lack pathway categories 

dedicated to influenza virus. Keyword searches for influenza in the PANTHER database identified no 

host factor associated with influenza virus infection [58]. Conversely, keyword searching of the 

Ingenuity database generated a list of five signaling pathways (Lipids/Lipid Rafts, MAPK, PI3K/AKT, 

Wnt/GSK-3β, hypercytokinemia) involved in the pathogenesis of influenza virus, constituting a list of 

38 genes [128]. Import of the latter into all other databases allows the genes to be categorized into 

signaling pathways such as Wnt, PI3K, and MAPK. However, database annotations suggest that 

Ingenuity is more likely to alert the user to the genes’ roles in influenza virus infection.  

Applying this approach to the previously described influenza RNAi screens, we sought to address 

the question of how does target identification change when different pathway databases are applied to 

the same dataset? Databases used in this comparison were PANTHER, Reactome and STRING, and 

the data set analyzed was the commonly identified 128 gene list generated by Watanabe et al. [123]. 

Results are presented in Table 2 with reference to the Wanatabe analysis of the same genes. 
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Table 2. Comparison of pathway results from the Watanabe pairwise influenza gene set. 

GeneGO/MCODE STRING PANTHER Ingenuity IPA Reactome 

Translation 

Initiation 

Translation 

Initiation 

Apoptosis signaling 

pathway 

Chronic Myeloid  

Leukemia Signaling 

Dissolution of Fibrin  

Clot 

Pre-mRNA 

Processing 

Pre-mRNA 

Processing 
T cell activation 

B Cell Receptor  

Signaling 
Influenza Life Cycle 

Proton-Transporter  

V-type ATPase 

Proton-

Transporter  

V-type ATPase 

Angiogenesis 

Production of Nitric 

Oxide and Reactive  

Oxygen Species in 

Macrophages 

MAP kinase cascade 

 
COPI coating 

of Golgi vesicle 
Toll receptor signaling  EIF2 Signaling 

Metabolism of nitric  

oxide 

 
Nuclear 

Transport 

Inflammation mediated 

by chemokine and 

cytokine signaling 

pathways 

Rank Signaling  

in Osteoclast 

Eukaryotic 

Translation  

Initiation 

   Cell cycle CD40 Signaling Signaling by FGFR 

   PDGF signaling  

Molecular 

Mechanisms  

of Cancer 

Eukaryotic 

Translation  

Termination 

   FGF signaling  

Role of PKR in 

Interferon Induction  

and Antiviral 

Response 

Eukaryotic 

Translation  

Elongation 

   FAS signaling    

Regulation of  

beta-cell  

development 

   Ras Pathway   
Signaling by Insulin  

receptor 

   B cell activation   

Processing  

of Capped  

Intron-Containing  

Pre-mRNA 

It becomes immediately obvious when examining the most enriched pathways that only the STRING 

database seems to reproduce the results generated by Watanabe et al. using GeneGO/MCODE. In all 

other cases, the different databases returned remarkably different top pathways when the same gene 

expression set was analyzed. Closer examination reveals that that other top ranking pathways (i.e., 

translation initiation) rank lower on the Reactome enrichment analysis scale. Pathways associated with 

B-Cell metabolism are also identified by the Ingenuity IPA and Reactome enrichments, although 

slightly different naming schemes are used. Since discrete databases identify certain similar pathways 

at different rankings, a consensus scoring function applicable to available databases appears warranted. 

This would afford greater confidence in the identification of individual targets for follow-up through 

small molecule searching. 
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5. Conclusions 

Previous GWAS experiments have attempted to capture the most relevant cellular host pathways 

utilized by pathogens such as HIV and influenza virus for virus replication [96,123]. As shown by 

reviewers such as Bushman et al. and Watanabe et al., gene lists and enriched pathways vary widely 

despite the pursuit of similar biological goals. Indeed, the likelihood to successfully identify novel 

host-directed antivirals would increase significantly if the reproducibility of individual RNAi screens 

were to be increased [97]. Further challenges emerge from differently curated pathway databases that 

return unrelated enriched pathways based on analysis of the same gene data set. Preliminary analysis 

of this situation using the Watanabe 128 pairwise genes suggests that a consensus scoring protocol 

applicable across different databases would be desirable to clarify this issue. Despite these hurdles 

associated with experimental false positives and the complexities inherent in interpreting pairwise gene 

interactions, several tangible examples (i.e., Konig et al., Karlas et al., and Josset et al.) demonstrate 

that RNAi screening coupled with bioinformatics-driven triaging is a viable method to identify small 

molecule inhibitors of virus replication. 

Current databases that infuse chemical knowledge into schemes such as Ingenuity IPA and the 

Connectivity Map are limited to a small number of compounds, mostly FDA-approved drugs. This 

narrow focus limits their application to current translational medicine. The STITCH database makes an 

interesting leap by crosslinking its gene network with multiple chemical-genomic high throughput 

screening results archived in PubChem. These experimental chemicals along with compounds 

currently tested in vitro for various endpoints offer a rich source for hit candidates with optimization 

potential. As more databases are used to analyze potential host targets, validation methods employing 

siRNA are improved and small molecule knowledge is added to the genetic web, more drug discovery 

initiatives are likely to incorporate this approach in their portfolio of standard operations for the 

identification of antiviral therapeutics. 
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