Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis
Abstract
:1. Introduction
2. Angiotensin II Regulates Cbfa1/RANKL via the cAMP Signaling Pathway: The Possible Mechanism for Hypertension-Related Osteoporosis
3. Inverse Effects of ARB on Regulating Cbfa1/RANKL via cAMP Signaling Pathway: The Possible Mechanism for the Antagonistic Effect of ARB on Hypertension-Related Osteoporosis
4. Conclusions and Implications
Acknowledgment
References
- Keen, R. Osteoporosis: Strategies for prevention and management. Best Pract. Res. Clin. Rheumatol 2007, 21, 109–122. [Google Scholar]
- Rodan, GA; Martin, TJ. Therapeutic approaches to bone disease. Science 2000, 289, 1508–1514. [Google Scholar]
- Hanley, DA; Brown, JP; Tenenhouse, A; Olszynski, WP; Ioannidis, G; Berger, C; Prior, JC; Pickard, L; Murray, TM; Anastassiades, T; et al. Associations among disease conditions, bone mineral density, and prevalent vertebral deformities in men and women 50 years of age and older: cross-sectional results from the Canadian Multicentre Osteoporosis Study. J. Bone Miner. Res 2003, 18, 784–790. [Google Scholar]
- Woo, J; Kwok, T; Leung, J; Tang, N. Dietary intake, blood pressure and osteoporosis. J. Hum. Hypertens 2009, 23, 451–455. [Google Scholar]
- Resnick, LM; Laragh, JH; Sealey, JE; Alderman, MH. Divalent cations in essential hypertension: relations between serum ionized calcium, magnesium, and plasma renin activity. N. Engl. J. Med 1983, 309, 888–891. [Google Scholar]
- Cappuccio, FP; Kalaitzidis, R; Duneclift, S; Eastwood, JB. Unravelling the links between calcium excretion, salt intake, hypertension, kidney stones and bone metabolism. J. Nephrol 2000, 13, 169–177. [Google Scholar]
- Lynn, H; Kwok, T; Wong, SY; Woo, J; Leung, PC. Angiotensin converting enzyme inhibitor use is associated with higher bone mineral density in elderly Chinese. Bone 2006, 38, 584–588. [Google Scholar]
- Shimizu, H; Nakagami, H; Osako, MK; Nakagami, F; Kunugiza, Y; Tomita, T; Yoshikawa, H; Rakugi, H; Ogihara, T; Morishita, R. Prevention of osteoporosis by angiotensin-converting enzyme inhibitor in spontaneous hypertensive rats. Hypertens. Res 2009, 32, 786–790. [Google Scholar]
- Izu, Y; Mizoguchi, F; Kawamata, A; Hayata, T; Nakamoto, T; Nakashima, K; Inagami, T; Ezura, Y; Noda, M. Angiotensin II type 2 receptor blockade increases bone mass. J. Biol. Chem 2009, 284, 4857–4864. [Google Scholar]
- Asaba, Y; Ito, M; Fumoto, T; Watanabe, K; Fukuhara, R; Takeshita, S; Nimura, Y; Ishida, J; Fukamizu, A; Ikeda, K. Activation of renin-angiotensin system induces osteoporosis independently of hypertension. J. Bone Miner. Res 2009, 24, 241–250. [Google Scholar]
- Rejnmark, L; Vestergaard, P; Mosekilde, L. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: A nationwide case-control study. J. Hypertens 2006, 24, 581–589. [Google Scholar]
- Shimizu, H; Nakagami, H; Osako, MK; Hanayama, R; Kunugiza, Y; Kizawa, T; Tomita, T; Yoshikawa, H; Ogihara, T; Morishita, R. Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J 2008, 22, 2465–2475. [Google Scholar]
- Teitelbaum, SL. Bone resorption by osteoclasts. Science 2000, 289, 1504–1508. [Google Scholar]
- Tintut, Y; Parhami, F; Tsingotjidou, A; Tetradis, S; Territo, M; Demer, LL. 8-Isoprostaglandin E2 enhances receptor-activated NFκB ligand (RANKL)-dependent osteoclastic potential of marrow hematopoietic precursors via the cAMP pathway. J. Biol. Chem 2002, 277, 14221–14226. [Google Scholar]
- Tintut, Y; Parhami, F; Le, V; Karsenty, G; Demer, LL. Inhibition of osteoblast-specific transcription factor Cbfa1 by the cAMP pathway in osteoblastic cells. J. Biol. Chem 1999, 274, 28875–28879. [Google Scholar]
- McFarlane, SI; Muniyappa, R; Shin, JJ; Bahtiyar, G; Sowers, JR. Osteoporosis and cardiovascular disease: brittle bones and boned arteries, is there a link? Endocrine 2004, 23, 1–10. [Google Scholar]
- Parhami, F; Morrow, AD; Balucan, J; Leitinger, N; Watson, AD; Tintut, Y; Berliner, JA; Demer, LL. Lipid oxidation products have opposite effects on calcifying vascular cell and bone cell differentiation. A possible explanation for the paradox of arterial calcification in osteoporotic patients. Arterioscler. Thromb. Vasc. Biol 1997, 17, 680–687. [Google Scholar]
- Gjesdal, CG; Vollset, SE; Ueland, PM; Refsum, H; Drevon, CA; Gjessing, HK; Tell, GS. Plasma total homocysteine level and bone mineral density: The Hordaland Homocysteine Study. Arch. Intern. Med 2006, 166, 88–94. [Google Scholar]
- Parhami, F; Basseri, B; Hwang, J; Tintut, Y; Demer, LL. High-density lipoprotein regulates calcification of vascular cells. Circ. Res 2002, 91, 570–576. [Google Scholar]
- Silva, TA; Garlet, GP; Fukada, SY; Silva, JS; Cunha, FQ. Chemokines in oral inflammatory diseases: apical periodontitis and periodontal disease. J. Dent. Res 2007, 86, 306–319. [Google Scholar]
- Fox, SW; Chambers, TJ; Chow, JW. Nitric oxide is an early mediator of the increase in bone formation by mechanical stimulation. Am. J. Physiol. Endocrinol. Metab 1996, 270, E955–E960. [Google Scholar]
- Aguirre, J; Buttery, L; O’Shaughnessy, M; Afzal, F; Fernandez de Marticorena, I; Hukkanen, M; Huang, P; MacIntyre, I; Polak, J. Endothelial nitric oxide synthase gene-deficient mice demonstrate marked retardation in postnatal bone formation, reduced bone volume, and defects in osteoblast maturation and activity. Am. J. Pathol 2001, 158, 247–257. [Google Scholar]
- Li, DY; Zhang, YC; Philips, MI; Sawamura, T; Mehta, JL. Upregulation of endothelial receptor for oxidized low-density lipoprotein (LOX-1) in cultured human coronary artery endothelial cells by angiotensin II type 1 receptor activation. Circ. Res 1999, 84, 1043–1049. [Google Scholar]
- Morawietz, H; Rueckschloss, U; Niemann, B; Duerrschmidt, N; Galle, J; Hakim, K; Zerkowski, HR; Sawamura, T; Holtz, J. Angiotensin II induces LOX-1, the human endothelial receptor for oxidized low-density lipoprotein. Circulation 1999, 100, 899–902. [Google Scholar]
- Yu, X; Murao, K; Imachi, H; Cao, WM; Li, JH; Matsumoto, K; Nishiuchi, T; Ahmed, RAM; Wong, NCW; Kosaka, H; Unterman, TG; Ishida, T. Regulation of scavenger receptor class BI gene expression by angiotensin II in vascular endothelial cells. Hypertension 2007, 49, 1378–1384. [Google Scholar]
- Andreozzi, F; Laratta, E; Sciacqua, A; Perticone, F; Sesti, G. Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ. Res 2004, 94, 1211–1218. [Google Scholar]
- Sen, U; Herrmann, M; Herrmann, W; Tyagi, SC. Synergism between AT1 receptor and hyperhomocysteinemia during vascular remodeling. Clin. Chem. Lab. Med 2007, 4, 1771–1776. [Google Scholar]
- MacGregor, GA; Cappuccio, FP. The kidney and essential hypertension: a link to osteoporosis? J. Hypertens 1993, 11, 781–785. [Google Scholar]
- Neelon, FA; Birch, BM; Drezner, M; Lebovitz, HE. Urinary cyclic adenosine monophosphate as an aid in the diagnosis of hyperparathyroidism. Lancet 1973, 1, 631–633. [Google Scholar]
- Hokland, BM; Slotte, JP; Bierman, EL; Oram, JF. Cyclic AMP stimulates efflux of intracellular sterol from cholesterol-loaded cell. J. Biol. Chem 1993, 268, 25343–25349. [Google Scholar]
- Mattaliano, MD; Huard, C; Cao, W; Hill, AA; Zhong, WY; Martinez, RV; Harnish, DC; Paulsen, JE; Shih, HH. LOX-1-dependent transcriptional regulation in response to oxidized LDL treatment of human aortic endothelial cells. Am. J. Physiol. Cell Physiol 2009, 296, C1329–C1337. [Google Scholar]
- Chang, PY; Luo, S; Jiang, T; Lee, YT; Lu, SC; Henry, PD; Chen, CH. Oxidized low-density lipoprotein downregulates endothelial basic fibroblast growth factor through a pertussis toxin-sensitive G-protein pathway: mediator role of platelet-activating factor-like phospholipids. Circulation 2001, 104, 588–593. [Google Scholar]
- Pullamsetti, SS; Savai, R; Schaefer, MB; Wilhelm, J; Ghofrani, HA; Weissmann, N; Schudt, C; Fleming, I; Mayer, K; Leiper, J; et al. cAMP phosphodiesterase inhibitors increases nitric oxide production by modulating dimethylarginine dimethylaminohydrolases. Circulation 2011, 123, 1194–1204. [Google Scholar]
- Zou, T; Liu, WJ; Li, SD; Zhou, W; Yang, JF; Zou, CG. TRB3 mediates homocysteine-induced inhibition of endothelial cell proliferation. J Cell Physiol 2010. [Google Scholar] [CrossRef]
- Kubalak, SW; Webb, JG. Angiotensin II enhancement of hormone-stimulated cAMP formation in cultured vascular smooth muscel cells. Am. J. Physiol 1993, 264, H86–H96. [Google Scholar]
- Cola, C; Almeida, M; Li, D; Romeo, F; Mehta, JL. Regulatory role of endothelium in the expression of genes affecting arterial calcification. Biochem. Biophys. Res. Commun 2004, 320, 424–427. [Google Scholar]
- Thaler, R; Spitzer, S; Rumpler, M; Fratzl-Zelman, N; Klaushofer, K; Paschalis, EP; Varga, F. Differential effects of homocysteine and beta aminopropionitrile on preosteoblastic MC3T3-E1 cells. Bone 2010, 46, 703–709. [Google Scholar]
- Lin, IC; Smartt, JM, Jr; Nah, HD; Ischiropoulos, H; Kirschner, RE. Nitric oxide stimulates proliferation and differentiation of fetal calvarial osteoblasts and dural cells. Plast. Reconstr. Surg 2008, 121, 1554–1566. [Google Scholar]
- Hagiwara, H; Hiruma, Y; Inoue, A; Yamaguchi, A; Hirose, S. Deceleration by angiotensin II of the differentiation and bone formation of rat calvarial osteoblastic cells. J. Endocrinol 1998, 156, 543–550. [Google Scholar]
- Franceschi, RT. The developmental control of osteoblast-specific gene expression role of specific transcription factors and the extracellualr matrix enviromment. Crit. Rev. Oral. Biol. Med 1999, 10, 40–57. [Google Scholar]
- Luegmayr, E; Glantschnig, H; Wesolowski, GA; Gentile, MA; Fisher, JE; Rodan, GA; Reszka, AA. Osteoclast formation, survival and morphology are highly dependent on exogenous cholesterol/lipoproteins. Cell Death Differ 2004, 11, S108–S118. [Google Scholar]
- Tintut, Y; Morony, S; Demer, LL. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler. Thromb. Vasc. Biol 2004, 24, e6–e10. [Google Scholar]
- Nenseter, MS; Ueland, T; Retterstol, K; Strom, E; Morkrid, L; Landaas, S; Ose, L; Aukrust, P; Holven, KB. Dysregulated RANK ligand/RANK axis in hyperhomocysteinemic subjects: Effect of treatment with B-vitamins. Stroke 2009, 40, 241–247. [Google Scholar]
- Fan, X; Roy, E; Zhu, L; Murphy, TC; Ackert-Bicknell, C; Hart, CM; Rosen, C; Nanes, MS; Rubin, J. Nitric oxide regulates receptor activator of nuclear factor-kappaB ligand and osteoprotegerin expression in bone marrow stromal cells. Endocrinology 2004, 145, 751–759. [Google Scholar]
- Nishiya, Y; Sugimoto, S. Effects of various antihypertensive drugs on the function of osteoblast. Biol. Pharm. Bull 2001, 24, 628–633. [Google Scholar]
- Fliser, D; Buchholz, K; Haller, H. Antiinflammatory effects of angiotensin II subtype 1 receptor blockade in hypertensive patients with microinflammation. Circulation 2004, 110, 1103–1107. [Google Scholar]
- Watanabe, T; Suzuki, J; Yamawaki, H; Sharma, VK; Sheu, SS; Berk, BC. Losartan metabolite EXP3179 activates Akt and endothelial nitric oxide synthase via vascular endothelial growth factor receptor-2 in endothelial cells: Angiotensin II type 1 receptor-independent effects of EXP3179. Circulation 2005, 112, 1798–1805. [Google Scholar]
- Papadakis, JA; Mikhailidis, DP; Vrentzos, GE; Kalikaki, A; Kazakou, I; Ganotakis, ES. Effect of antihypertensive treatment on plasma fibrinogen and serum HDL levels in patients with essential hypertension. Clin. Appl. Thromb. Hemost 2005, 11, 139–146. [Google Scholar]
- Kohno, M; Yokokawa, K; Kano, H; Yasunari, K; Minami, M; Hanehira, T; Yoshikawa, J. Adrenomedullin is a potent inhibitor of angiotensin II-induced migration of human coronary artery smooth muscle cells. Hypertension 1997, 29, 1309–1313. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Guan, X.-X.; Zhou, Y.; Li, J.-Y. Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis. Int. J. Mol. Sci. 2011, 12, 4206-4213. https://doi.org/10.3390/ijms12074206
Guan X-X, Zhou Y, Li J-Y. Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis. International Journal of Molecular Sciences. 2011; 12(7):4206-4213. https://doi.org/10.3390/ijms12074206
Chicago/Turabian StyleGuan, Xiao-Xu, Yi Zhou, and Ji-Yao Li. 2011. "Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis" International Journal of Molecular Sciences 12, no. 7: 4206-4213. https://doi.org/10.3390/ijms12074206
APA StyleGuan, X. -X., Zhou, Y., & Li, J. -Y. (2011). Reciprocal Roles of Angiotensin II and Angiotensin II Receptors Blockade (ARB) in Regulating Cbfa1/RANKL via cAMP Signaling Pathway: Possible Mechanism for Hypertension-Related Osteoporosis and Antagonistic Effect of ARB on Hypertension-Related Osteoporosis. International Journal of Molecular Sciences, 12(7), 4206-4213. https://doi.org/10.3390/ijms12074206