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Abstract: The classical Osborne wheat protein fractions (albumins, globulins, gliadins,
and glutenins), as well as several proteins from each of the four subunits of gliadin using
SDS-PAGE analyses, were determined in the grain of five bread (7. aestivum L.) and five
durum wheat (7. durum Desf.) genotypes. In addition, content of tryptophan and wet gluten
were analyzed. Gliadins and glutenins comprise from 58.17% to 65.27% and 56.25% to
64.48% of total proteins and as such account for both quantity and quality of the bread and
durum wheat grain proteins, respectively. The ratio of gliadin/total glutenin varied from
0.49 to 1.01 and 0.57 to 1.06 among the bread and durum genotypes, respectively.
According to SDS-PAGE analysis, bread wheat genotypes had a higher concentration of
o + B + y-subunits of gliadin (on average 61.54% of extractable proteins) than durum wheat
(on average 55.32% of extractable proteins). However, low concentration of w-subunit was
found in both bread (0.50% to 2.53% of extractable proteins) and durum (3.65% to 6.99%
of extractable proteins) wheat genotypes. On average, durum wheat contained significantly
higher amounts of tryptophan and wet gluten (0.163% dry weight (d.w.) and 26.96% d.w.,
respectively) than bread wheat (0.147% d.w. and 24.18% d.w., respectively).
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1. Introduction

Wheat is one of the most important cereal crops worldwide in terms of production and utilization. It
is a major source of energy, protein, and dietary fiber in human nutrition and animal feeding. It
provides approximately one-fifth of the total calorific input of the World's population [1]. Currently,
about 95% of the wheat grown worldwide is hexaploid bread wheat, with most of the remaining 5%
being tetraploid durum wheat.

The ability of wheat flour to be processed into different foods is largely determined by the proteins.
Mature wheat grains contain 8% to 20% proteins. Wheat proteins show high complexity and different
interactions with each other, thus making them difficult to characterize. Usually, they are classified
according to their solubility. Following the sequential Osborne extraction procedure, albumins,
globulins, gliadins and glutenins are isolated. An alternative classification to that described above has
been proposed based on composition and structure rather than solubility [2].

Albumins and globulins of wheat endosperm represent 20% to 25% of total grain proteins [3,4].
Nutritionally, the albumins and globulins (non-glutens) have a very good amino acid balance. Many of
these proteins are enzymes involved in metabolic activity. However, several other proteins have
unknown functions and are not well characterized. Some proteins, particularly those belonging to a
family of trypsin and oa-amylase inhibitors, are also implicated in plant defense [5], but the role of
a-amylase and trypsin inhibitors as wheat allergens in baker’s asthma has been demonstrated [6]. Most
of the physiologically active proteins also influence the processing and rheological properties of
wheat flour. In recent years, the benefits of the use of amylases, xylanases, lipoxygenase, pentosanase,
glucoseoxidase, has stimulated further interest in the bread-making industry [7,8].

Wheat is unique among the edible grains because wheat flour has the protein complex called
“gluten” that can be formed into dough with the rheological properties required for the production of
leavened bread [9]. The rheological properties of gluten are needed not only for bread production, but
also in the wider range of foods that can only be made from wheat, viz., noodles, pasta, pocket breads,
pastries, cookies, and other products [10]. The gluten proteins consist of monomeric gliadins and
polymeric glutenins. Glutenins and gliadins are recognized as the major wheat storage proteins,
constituting about 75-85% of the total grain proteins with a ratio of about 1:1 in common or bread
wheat [3,11] and they tend to be rich in asparagine, glutamine, arginine or proline [12] but very low in
nutritionally important amino acids lysine, tryptophan and methionine [13].

The gliadins constitute from 30 to 40% of total flour proteins and are polymorphic mixture of
proteins soluble in 70% alcohol, and can be separated into a-, -, y-, and w-gliadins with a molecular
weight range of 30 to 80 kDa as determined by SDS-PAGE. The molecular weights of w-gliadins are
between 46 and 74 kDa, and the a-, B- and y-gliadins have lower Mw, ranging from 30 to 45 kDa by
SDS-PAGE and amino acid sequencing [14]. The latter approach has shown that the a- and B-gliadins
are closely related and thereby they are often referred to as a-type gliadins. a-Gliadins are thought to
be responsible for gluten intolerance [15] while y-gliadins and glutenins are much less [16].

Glutenin polymers are made up of single polypeptides linked through intermolecular disulfide
bonds that account for about 45% of the total proteins in the grain endosperm. Glutenins can be
broadly classified into two groups, the high molecular weight (HMW) and the low molecular
weight (LMW) subunits, with molecular weight (Mw) range of 100 to 140 kDa and 30 to 55 kDa,
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respectively, according to mobility on SDS-PAGE [17]. They link together and form heterogeneous
mixtures of polymers by disulfide bonded linkages of polypeptides. The glutenin proteins, therefore,
are among the largest protein molecules in nature with molecular weights up into tens of millions [18].
Differences in glutenin subunits size, polarity, and number of cysteine residues influence the ability to
form disulfide bonds necessary for building up the glutenin polymer structure. This variation in
glutenin subunits is a critical factor in determining bread dough end-product quality, particularly
through its influence on polymer size distribution [19]. The LMW subunits most closely resemble
v-gliadins in sequence [20] and comprise about 20% to 30% of the total proteins while the HMW
subunits account for about 5 to 10% of the total proteins [21].

The goals of this study are as follows: (i) to evaluate the magnitude of the classical Osborne wheat
protein fractions (albumins, globulins, gliadins, and glutenins) across the grain of five bread and five
durum wheat genotypes; (ii) to determine different protein components of the four subunits of wheat
gliadin using SDS-PAGE analyses; (iii) to determine the content of tryptophan as an aromatic and
essential amino acid and wet gluten as a quality parameter of wheat flour. A more detailed knowledge
of the variability of proteins and protein fractions accumulation among new varieties, could facilitate
ongoing efforts to improve both quantity and quality of wheat proteins and could influence the
selection of better raw materials for the flour and bread-making industry. Furthermore, to be able to
use whole wheat flour in production of functional food, rich in health-beneficial components, the study
of the whole grain proteins content, their structure and quality are important.

2. Experimental Section
2.1. Wheat Samples

The experimental material consisted of four bread (7riticum aestivum L.) and four durum
(Triticum durum Desf.) wheat genotypes (breeding lines and cultivars) recently developed at the
Maize Research Institute Zemun Polje (MRIZP), Serbia. The genotypes were chosen on the basis
of their differences in agronomic traits such as yield and its components. In addition, one bread
(recently wide spread in Serbia) and one durum (good pasta quality) foreign cultivar was used for
comparison. Their names, pedigrees, origin and growth type are given in Table 1. Grain samples of
bread and durum wheat were collected from plants grown in a field-trial at the MRIZP in 2009-2010
growing season. The experiment was laid out in the randomized complete block design (RCBD) with
two replications. Each plot consisted of eight 5 m rows at 12.5 cm spacing (machine sowing). Standard
agronomic practices were used to provide adequate nutrition and to keep the plots free of diseases.

For the analysis of both wheat species, the wholemeal (particle size < 500 um) was obtained by
grounding wheat grains on a Cyclotec 1093 lab mill (FOSS Tecator, Sweden).
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Table 1. Name, pedigree, growth type and origin of bread and durum genotypes; country
code from the UN website.

Genotypes Parents (Origin) Country  Growth Type
Bread wheat

ZP 87/1 L-99 (SRB) x Pobeda (SRB) SRB winter

ZP Zemunska rosa  Skopljanka (MKD) x Proteinka (SRB) SRB winter

ZP 224 L-4 (SRB) % Dulus/Metso (CIMMYT) SRB facultative
ZP Zlatna Jasenica (SRB) x Rodna (SRB) SRB winter
Apache FRA winter
Durum wheat

ZP 34/1 SOD 55 (SVK) x Korifla (ICARDA) SRB facultative
ZP 10/1 Windur (DEU) x Rodur (ROU) SRB winter

ZP DSP/01 Windur (DEU) x SOD 64 (SVK) SRB winter

ZP 7858 Mina (MKD) x Mexicali 75 (CIMMYT) SRB facultative
Varano ITA facultative

ICARDA = International Center for Agricultural Research in the Dry Areas (SYR);
CIMMYT = International Maize and Wheat Improvement Centre (MEX).

2.2 Chemical Analysis
2.2.1. Osborne Fractionation Method

Albumin-Globulin extraction. Defatted wheat flour (0.5 g) was sequentially extracted by the
Osborne procedure described by [22] (Lookhart and Bean, 1995) with modifications. The flour was
extracted with an aqueous solution of 0.5 M NaCl (10 mL). Extraction was done by repeated stirring
three times for 30 min at 4 °C, followed by centrifugation at 20,000 g for 15 min. All supernatants
(albumin + globulin (Alb) (Glob) extracts) were transferred to the volumetric flask and 0.5 M NaCl
was added to 50 mL. The centrifugate was vortexed with deionized water (10 mL) for 1 min, than set
for 5 min, centrifugated, and the supernatants discarded. This additional wash was made with water to
reduce the effect of the salt in the pellet for the extraction of gliadin in the following steps.

Gliadin extraction. The water-washed pellet from globulin was extracted with 70% aqueous ethanol
(10 mL) for 30 min at 4 °C. The ethanol solution mixture was centrifuged for 15 min at 20,000 g.
Extraction was done three times, the supernatants (gliadin (Gli) extracts) were transferred to the
volumetric flask and 70% ethanol was added to 50 mL.

Soluble glutenin extraction. Glutenins (Glu) were extracted from the gliadin pellet in three steps in a
similar way with 7 mL of 50% 1-propanol + 1% dithiothreitol (DTT). Yield of Glu-1, Glu-2 and Glu-3
extracts were transferred to the volumetric flask and extraction solution was added to 25 mL. Glutenin
extracts are built up from high molecular weight (HMW) and low molecular weight (LMW) glutenin
subunits, but the bulk of the soluble glutenins consists of LMW glutenin subunits [23].

Insoluble glutenin. Content of insoluble glutenin was calculated as a difference between content of
total protein and sum of albumin + globulin, gliadin and soluble glutenin.

Protein content was calculated, in each fraction, from the nitrogen content determined by micro
Kjeldahl method, using 5.7 as the conversion factor. The results are given as percentage of dry weight
(d.w.), as well as percentage of total protein (protein solubility index-PSI).
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2.2.2. SDS-PAGE Gel Electrophoresis

Extractable protein composition of the defatted samples was detected by the sodium dodecyl
sulfate-polyacrilamide gel electrophoresis (SDS-PAGE) performed according to Fling and
Gregerson [24], on 12.5% separating gels and 5% stacking gels in vertical electrophoretic unit
(LKB, Sweden). Gliadins was extracted by the Osborne procedure described by Lookhart and Bean [22].
Prior to the electrophoresis, extractable proteins have been diluted in the ratio 1:2 (v/v) with the
sample buffer (0.055 M Tris-HCI, pH 6.8, 2% (w/v) sodium dodecyl sulfate (SDS), 20% (v/v)
glycerol, 4.3% (v/v) B-mercaptoethanol, 0.0025% (w/v) bromophenol blue), heated at 90 °C for 5 min
and cooled at the room temperature. Fifty microliters of gliadin fraction were loaded per well. Gels
were run at 50 mA for five hours, fixed and stained with 0.23% (w/v) Coomassie Blue R-250 dissolved
in 3.9% (w/v) trichloroacetic acid (TCA), 6% (v/v) acetic acid and 17% (v/v) methanol for 45 min.
Destaining was performed with 8% acetic acid and 18% (v/v) ethanol. Molecular weights of the
polypeptides were estimated by using low molecular weight standards (Amercham Biosciences,
Sweden): phosphorylase B (94.0 kDa), bovine albumin (66.0 kDa), ovalbumin (45.0 kDa), carbonic
anhydrase (30.0 kDa), soybean trypsin inhibitor (20.1 kDa), and a-laktalbumin (14.4 kDa). The protein
bands on the destained gel were quantitated using SigmaGel sotware version 1.1 (Jandal, San Rafael,
CA). The concentration of wheat proteins and their ration were calculated from the sum of the total
area of their subunits and expressed as percentage of total extractable proteins. To investigate varietals
effect, electrophoresis was performed in triplicate. Namely, three aliquots of the same sample were
analyzed at the same time. Two gels were run simultaneously in the same electrophoretic cell. Also,
three replications of extraction procedure were performed.

2.2.3. Wet Gluten Content

Wet gluten content (%) is determined by washing the dough obtained from wheat flour (10 g), with
2% NaCl solution, followed by water in certain conditions, to remove the starch and other soluble
compounds of the sample [25].

2.2.4. Tryptophan Content

Tryptophan content was determined according to Nurit et al. [26] from defatted wheat flour.
Shortly, flour hydrolysate (obtained by overnight digestion with papain solution at 65 °C) was added to
3 mL reagent containing Fe’" (I g FeCly dissolved in 50 mL 3.5 M H,SOy), 15 M H,SO,4 and
0.1 M glyoxilic acid. After incubation at 65 °C for 30 min, absorption was read at 560 nm. Tryptophan
content was calculated using a standard (calibration) curve, developed with known amounts of
tryptophan, ranging from 0 to 30 ug mL™'. The standard chemical methods were applied to determine
the content of total proteins. Besides tryptophan content quality index (QI), defined as tryptophan to
protein ratio in the sample, was also calculated.

2.2.5. Statistical Analyses

All chemical analyses were performed in three replicates per plot and the results were statistically
analysed. Significant differences between genotype means were determined by the Fisher’s least
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significant differences (LSD) test at, after the analysis of variance (ANOV A) for trials set up according
to the RCB design (MSTAT-C). A t-test was performed to test the significance of differences between
the species means. Differences with P < 0.05 were considered significant in both tests. The coefficient
of variation (CV) was determined for each trait.

3. Results and Discussion
3.1. Results

Data in Table 2 indicate that the content of total proteins was significantly higher in durum
(on average 11.81% d.w. of defatted flour) than bread (on average 11.08% d.w. of defatted flour)
wheat genotypes. However, higher variation for this trait was observed among bread than durum wheat
genotypes (13.54% vs. 5.71%).

Table 2. The content of protein fractions in grains of different wheat varieties.

Protein Albumins + Gliadins Soluble glutenins Insoluble Sum Ratio
Varieties Globulins glutenins Gli+Glu Gli/Glu
)] )] ®)) )] ®)) )] ®)) )] ®)) ®))
Bread wheat
ZP 87/1 9.51¢ 351 36.93° 231° 2431° 1.16¢  1220°  253°  26.56° 63.07° 0.62°
Apache 9.26¢ 3.87¢  41.79*  271° 2927 138"  1491* 129¢ 13.99¢ 58.17 ¢ 1.01°
ZP Zemunska rosa 12.64%  439° 3473% 271° 21.44° 120  949¢ 434 3433° 65.26* 0.49°¢
7P 224 11.76°  4.62° 3928° 259° 21.93° 130* 11.01° 325° 27.63° 60.57 0.57%¢
ZP Zlatna 12.22%  483% 39.52% 3.63° 2984° 126" 1031 250° 2045° 60.66 © 0.97*
F-tCSt skksk skksk skksk skksk skksk % skksk skksk skksk skksk skksk
CV (%) 13.54 12.11 6.67 16.84 1488  6.73 17.28  38.14  29.92 13.85 31.81
Durum wheat
ZP 34/1 12.15% 479%™  39.44° 267° 21.98° 0.88° 7249 381°%  31.33° 60.55 © 0.57 ¢
ZP 10/1 11.12% 3959 35529 287° 2581° 1.30* 11.69° 3.00¢ 26.98° 64.48 * 0.67°
ZP DSP/01 11.04%  483* 4375% 3.19° 2890° 1.06% 955> 196° 17.80°¢ 56.25 ¢ 1.06*
Varano 1236*  459° 37.15° 3.15° 2576° 1.12°  9.16°  350° 2829¢ 6321 0.68°
7P 7858 12.40°  4.62°° 37.28° 287° 23.16° 126° 10.04° 3.64° 2941° 62.61° 0.58 ¢
F-tCSt % skksk skesksk skesksk skesksk skesksk skesksk skesksk skesksk skksk skeksk
CV (%) 5.71 7.43 7.86 7.07 10.17  14.22 1597 2194  18.50 15.35 27.69
Mean b a a a a a a b b a a
11.08 424%  3845° 2.79* 2536 1.26 11.58 2.78 24.59 61.53 0.73
(bread wheat)
Mean a a a a a b b a a a a
11.81 456°  38.63° 295* 2512 1.12 9.54 3.16 26.76 61.42 0.69

(durum wheat)

Mean of genotypes and species followed by the same letter within same column are not significantly different (P < 0.05);
* = significant at P < 0.05; *** Significant at P < 0.001; CV, coefficient of variation; (1) % of dry weight; (2) % of

total proteins.

No significant differences in the mean of AG (albumin + globulin), as well as gliadin content were
observed between bread and durum wheat. The average values of bread and durum wheat samples
for the PSI of AG fraction were 38.45% and 38.63%, respectively. The gliadin content of bread and
durum wheat samples was lower than AG content and ranged from 21.44% (ZP Zemunska rosa) to
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29.84% (ZP Zlatna), and 21.98% (ZP 34/1) to 28.90% (ZP DSP/01) of total proteins, respectively. A
slightly higher variation for gliadin was found in bread (14.88%) than in durum (10.17%) wheat
genotypes (Table 2).

The protein fraction with the lowest PSI was soluble glutenin, in all the analyzed genotypes (Table 2).
The content of soluble glutenins ranged from 9.49% to 14.91% of total proteins and from 7.24% to
11.69% of total proteins in wholemeal of bread and durum wheat genotypes, respectively. The
significant difference (P < 0.05) was observed between means of bread and durum wheat (11.58% and
9.54% of total proteins, respectively). Also, there was significant difference in the mean content of
insoluble glutenin between bread and durum wheat (Table 2). On average, content of insoluble
glutenin was 26.76% and 24.59% of total proteins in durum and bread wheat, respectively. Relatively
high variations for content of soluble and insoluble glutenin of total proteins were found within both
bread (17.28% and 29.92%, respectively) and durum (15.97% and 18.50%, respectively) wheat
genotypes. According to our study, the gliadins and total glutenins constitute from 58.17% to 65.26%
and 56.25% to 64.48% of total grain proteins, with a ratio from 0.49 to 1.01 and 0.57 to 1.06 in bread
and durum wheat genotypes, respectively.

Gliadins and glutenins are recognized as the major wheat storage proteins. To identify variants of
storage gliadin subunits in bread and durum genotypes, protein extracts were analyzed by SDS-PAGE
and electrophoretic patterns of gliadin extractable proteins are shown in Figure 1. The gliadin
polypeptide composition of bread and durum genotypes is shown in Table 3.

Figure 1. SDS-PAGE patterns gliadins from bread and durum wheat genotypes. o, vy, B
and o indicate subunits of gliadin. 1-5 bread wheat: 1—ZP 87/I, 2—Apache, 3—ZP
Zemunska rosa, 4—7P 224, 5—Z7P Zlatna; 6-10 durum wheat: 6—ZP 34/I, 7—ZP 10/1,
8—ZP DSP/01, 9—Varano, 10—ZP 7858, M—Molecular weight standards.
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Table 3. The polypeptide composition of gliadin fraction in grains of different wheat

genotypes identified by SDS-PAGE (% of total extractable proteins).

5885

Polypeptides Bread wheat Durum wheat LSDy.s5 CV
Mw (kDa) P Apache ZP Zemunska P 7P 7P 7P P Varano 7P (%)
87/1 rosa 224 | Zlatna | 34/1 10/ | DSP/01 7858
1113 n.d. n.d. n.d. n.d. n.d. n.d. 0.81° 1.23° 0.99° 0.81° 0.056 | 57.26
101.2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 0.79° 1.51° 0.085 88.56
93.55 0.76 © 138" 0.54° n.d. 0.67¢ n.d. 151° n.d. n.d. n.d. 0.072 | 66.25
90.5 n.d. n.d. n.d. n.d. n.d. 1.23° n.d. 2.81° n.d. n.d. 0.148 93.71
87.7 0.97°¢ 1.08¢ 1.15¢ 206¢ | 1.04°¢ n.d. 291° | 1.07¢ 3.69° n.d. 0.101 | 71.06
85.7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 4.14° - -
82.3 n.d. n.d. n.d. 0.64° n.d. n.d. n.d. n.d. n.d. 1.40° 0.101 92.73
80.3 n.d. n.d. n.d. n.d. n.d. 0579 | 1.52° | 1.40° 1.71° 1.39° 0.138 | 58.17
77.2 1.26°¢ 143" 1.15¢ 059° | 132° | 036° n.d. n.d. n.d. 1.64° 0.072 | 58.27
73.6 n.d. n.d. n.d. n.d. 0.14° | 056° | 2.09° | 2.05° 2.17° n.d. 0202 | 8533
62.4 0.60 ¢ 0.50¢ 0.83" 128° | 1.81° | 1.77° | 246 | 229" 1514 224" 0.124 | 45.92
55.7 n.d. n.d. n.d. 125°¢ n.d. 132° | 230° | 265° 2.02¢ 3.24° 0.101 | 56.88
43.9 0.51 n.d. n.d. 1627° | nd 13.70° | 9.95 12.92° | 13.21°° | 13.64° 0.613 | 60.43
427 n.d. n.d. n.d. 0.76 ¢ n.d. 3.17% | 3.25° 1.38° 1.43° 1.50° 0.160 | 69.65
40.2 5.89° 17.19° 517° n.d. 537° n.d. n.d. n.d. n.d. n.d. 0.529 | 88.67
39.5 10.87¢ 731° 236¢ 1237° | 3.847 | 13.44° | 11.63° | 1070 | 10.76% | 11.41° | 0.515 | 38.75
37.6-34.8 41.88° | 3243¢ 47.22° 31.81°¢ | 46.12° | 24.03° | 20.34™ | 2259 | 21.97¢ | 23.15°7 | 0.896 | 32.73
31.4 426° 6.43° n.d. 588° | 3.78% | 6.44° | 739° 5.03 5.58¢ 528° 0202 | 40.07
29.7 0.70 f 0.87F 4.03* 151° | 1.86% | 243% | 237° | 271" n.d. 2.78° 0.263 | 59.71
29.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 1.77°¢ n.d. - -
26.6 n.d. 0.75¢ 122°f 3.089 | 0818 | 3.74° | 271° | 4.68° 487° 571° 0252 | 70.45
20.6 n.d. n.d. n.d. n.d. 0.14° | 0.58° | 2.65° | 245° 3.13° 1.924 0.189 | 80.08
16.2 0.48¢ 12.32°¢ 13.45° 623" | 14.14° | 639" | 589° | 8.17¢ 7.02°¢ 6.60°" | 0529 | 50.19
15.0 1339° | 11.97° 15.09° 1045 | 1128 | 1221° | 1028¢ | 885f 9.76 © 7.82¢ 0.515 | 20.18
14.0 12.37° 4.67°¢ 539° 2855 | 539° | 4.69° | 535° | 3.69¢ 3.95¢ 3.14° 0.409 | 51.10
11.4 6.04° 1.67 ¢ 2371 295° | 226° | 3339 | 456° | 3.32¢ 3.65°¢ 0.68" 0.160 | 47.51

Mean of genotypes followed by the same letter within same row are not significantly different according to the least significant

difference (LSD) (P < 0.05); CV, coefficient of variation; n.d.—not detected.

The protein bands were different among all the wheat genotypes. The bread and durum grain

polypeptides with molecular weight between 31.4 and 43.9 kDa belong of a-, - and y-subunits of

gliadin. These S-poor subunits were consisted of three to six polypeptides depend on genotypes.

However, the resolution of proteins’ region between 34.8 and 37.6 kDa was not clear enough to detect

several components separately. The group of polypeptides with a molecular weight of about 55.7 to

73.6 kDa is S-poor subunits of gliadin or m-gliadins. According to our results, ®-gliadin subunits were

consisted of one to three polypeptides with a molecular weight of 55.7, 62.4 and 73.6 kDa (Figure 1).

Significant differences between bread and durum genotypes for S-rich subunits, as well as S-poor

subunits concentration were determined by the densitometric analysis (Table 4). In both species, S-rich

subunits were the most abundant gliadin subunits. The S-rich subunits concentration of bread wheat
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genotypes ranged from 54.75% (ZP Zemunska rosa) to 67.09% (ZP 224), with an average value of
61.54% of total extractable proteins. Among the tested durum wheat genotypes, the highest S-rich
subunits concentration of 60.78% of total extractable proteins was detected in ZP 34/I, whereas the
lowest concentration of 52.56% of total extractable proteins was detected in ZP 10/I. The average
value of durum wheat genotypes for the S-rich subunits concentration was 55.32% of total extractable
proteins, which was for about 10% lower than that of bread wheat. The mean S-rich subunits
concentration did not vary much among bread and durum wheat genotypes (7.24% and 5.23%,
respectively). However, considerable variation for the S-poor subunits concentration was found among
bread and durum wheat genotypes (57.29% and 39.96%). In average, durum wheat grain had
significantly higher concentration of S-poor subunits (5.73% of total extractable proteins) than bread
wheat grain (1.28% of total extractable proteins). The sum of gliadins’ S-poor and S-rich subunits
ranged from 55.58% to 69.62% and 58.65% to 64.43% of total extractable proteins in bread and durum
wheat genotypes, respectively, and no significant differences were observed between means.

Table 4. Concentration of gliadin S-poor and S-rich subunits in grains of different bread
and durum wheat genotypes (% of total extractable proteins).

S-rich subunits  S-poor subunits Sum S-poor/S-rich

(y-+B-+ (o-gliadins) (S-poor + S-rich) ratio

a-gliadins)
Bread wheat
ZP 87/1 63.41° 0.60 ¢ 64.01 ° 0.017 €
Apache 63.36 " 0.50 ¢ 63.86 ° 0.008 ¢
7P Zemunska rosa 54.75 ¢ 0.83 ¢ 55.58°¢ 0.015°¢
ZP 224 67.09 ° 2.53° 69.62 * 0.038 *
7P Zlatna 59.11°¢ 1.95° 61.06 ¢ 0.033°
F—test sksksk sksksk sksksk sksksk
CV (%) 7.24 57.29 7.77 54.29
Durum wheat
ZP 34/1 60.78 * 3.65° 64.43 * 0.060 °
ZP 10/1 52.56 ¢ 6.85° 59.41 ¢ 0.130°
ZP DSP/01 55.33 ¢ 6.99 ° 62.32° 0.126*
Varano 52.95°¢ 5.70° 58.65° 0.108 ©
ZP 7858 54.98 ® 5.48° 60.46 © 0.100 ¢
F—test sksksk sksksk sksksk ksk
CV (%) 5.23 39.96 6.12 26.48
Mean (bread wheat) 61.54° 1.28° 62.83° 0.022°
Mean (durum wheat) 55.32° 573" 61.05° 0.105*°

Mean of genotypes and species followed by the same letter within same column are not
significantly different (P < 0.05); ** = significant at P < 0.01; *** Significant at P < 0.001;
CV, coefficient of variation.

Besides major protein subunits, polypeptides with molecular weight of 111.3 kDa, 101.2 kDa,
93.5 kDa, 90.5 kDa, 87.7 kDa, 85.7 kDa, 82.3 kDa, 80.3 kDa, 77.2 kDa, 29.7 kDa, 29.1 kDa,
26.6 kDa, 20.6 kDa, 16.2 kDa, 15.0 kDa, 14.0 kDa, 11.4 kDa were detected by SDS-PAGE. These
proteins were not presented in all varieties (Figure 1, Table 3).
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Results of the tryptophan in bread and durum wheat genotypes determined by colorimetric method
and levels of statistical significance obtained from analysis of variance, are summarized in Table 5. In
average, durum wheat grain had a significantly higher level of tryptophan (0.163% d.w.) than bread
wheat grain (0.147% d.w.). However, there was a similar QI between bread and durum wheat,
although significant differences were observed among genotypes within each species.

Table 5. Content of tryptophan and protein quality index in grains of different bread and
durum wheat genotypes.

Tryptophan (% d.w.) QI (%)
Bread wheat
ZP 87/1 0.138 ¢ 1.447°
Apache 0.150 1.621°
7P Zemunska rosa 0.148 ¢ 1.171°¢
7P 224 0.159 ® 1.352°
7P Zlatna 0.141 < 1.154°¢
F—test ksk sksksk
CV (%) 6.89 14.44
Durum wheat
7P 34/1 0.154 ¢ 1.268°
ZP 10/1 0.138° 1.245°
ZP DSP/01 0.172° 1.553°
Varano 0.163 © 1.319°
ZP 7858 0.186° 1.496 °
F—test sksksk ksk
CV (%) 10.66 9.94
Mean (bread wheat) 0.147° 1.349°
Mean (durum wheat) 0.163 ° 1.376 °

Mean of genotypes and species followed by the same letter within same column are not
significantly different (P < 0.05); ** = significant at P < 0.01; *** Significant at P < 0.001;
CV, coefficient of variation.

The content of wet gluten of bread and durum wheat wholemeal is shown in Figure 2. Durum wheat
contained significantly higher amount of wet gluten than bread wheat (26.96% vs. 24.18%). Wet
gluten ranged from 17.35% (ZP 87/1) to 29.65% (ZP Zlatna) and 20.00% (ZP 10/T) to 32.20%
(ZP 7858) in bread and durum genotypes, respectively.
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Figure 2. The content of wet gluten in different wheat varieties. 1-5 bread wheat: 1—ZP
87/1, 2—Apache, 3—ZP Zemunska rosa, 4—7P 224, 5—Z7ZP Zlatna; 6—10 durum wheat:
6—ZP 34/1, 7—10/1, 8—ZP DSP/01, 9—Varano, 10—ZP 7858. Bars with different letters
are statistically significantly different (P < 0.05).
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3.2. Discussion

The major emphasis in wheat has been on high protein wheat for nutritional enhancement and
improved processing performance. Vogel et al. [27] reported that protein content of 12,600 wheat lines
from the USDA World Wheat Collection ranged from about 7% to 22% d.w., with the genetic
component accounting for about a third of this (i.e., about 5%). The greater part of the variation was
due to non-genetic factors and this strong environmental impact has made breeding for high protein
difficult [13]. Due to the small number of analyzed genotypes in our study, the total protein contents
varied in the significantly narrower range, i.e., 9.26% to 12.64%. Because grains were collected from
plants grown under equal conditions in a field-trial at the same location during the same growing
season, the influence of environmental factors could be ignored. However, it should be noted that
rainfalls from anthesis to maturity in the season of trial (2009-2010) probably caused overall reduction
in protein content. The mean total proteins did not vary much among durum wheat genotypes (5.71%),
but relatively a high variation was found among bread wheat genotypes (13.54%).

The ability of wheat flour to be processed into different foods is largely determined by the gliadins
and glutenins [28] which constitute up to 63—90% of the total grain proteins [29]. Because of their
unique viscoelastic properties, gliadins and glutenins are responsible for the bread-making quality of
wheat flour [18]. In the present study, gliadins and glutenins in grain of bread wheat ranged from
58.17% (Apache) to 65.26% (ZP Zemunska rosa) of total proteins. According to Stehno et al. [30] and
Abdelrahman et al. [31], gliadins and glutenins constitute from 69.12% to 77.71% and 65.83% to
66.36% of the total grain proteins in cultivars grown in Czech Republic and Sudan, respectively.
Among durum wheat genotypes, content of gliadins and glutenins was the highest in grain of
ZP 10/1 (64.48% of total proteins). Also, this genotype had the highest content of soluble glutenin
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(11.69% of total proteins) which mainly consist of low molecular weight proteins. According to
Kovacs et al. [32] the pasta cooking quality and gluten strength were initially related to the beneficial
effects of LMW-2 glutenin. The high molecular glutenin subunits of wheat grain are of immense
importance in determining the quality and the end use properties of the dough [33]. Two features of
HMW subunits structure may be relevant to their role in glutenin elastomers: the number and
distribution of disulphide bonds and the properties and interactions of the repetitive domains [34].
Among analyzed genotypes, the highest content of insoluble glutenin, which mainly consist of high
molecular weight polypeptides, had bread wheat cultivar ZP Zemunska rosa (34.33% of total proteins).
However, this genotype had the lowest gliadin/glutenin ratio (0.49). ZP Zemunska rosa is generally
considered as wheat of not excellent, but sufficient, bread making quality. From measurements on
glutens reconstituted at various glutenin/gliadin ratios, Janssen et al. [35] found that, at constant
protein content, the main factor determining the rheological behavior of hydrated gluten is the glutenin
to gliadin ratio. Generally, it is believed that gliadin controls the viscosity of the dough and glutenin
controls the elastic or strength properties [36]. The precise balance between viscosity (extensibility)
and elasticity (dough strength) is important for bread-making. The gliadin/glutenin ratio range
(0.49 to 1.01) obtained for bread wheat genotypes grown in Serbia were similar with that of 0.59 to
0.84 reported by Stehno ef al. [30] for ten bread cultivars grown in Czech Republic. The highest
content of gliadin (29.84% and 29.27% of total proteins), as well as gliadin/glutenin ratio
(0.97 and 1.01), were in grain of ZP Zlatna and Apache, respectively. ZP Zlatna is registered in Serbia
and classed as high bread-making quality (class A). Also, these genotypes had the lowest content of
insoluble glutenin and the highest content of AG protein fractions. Although the albumin and globulin
fractions are not known to play a direct role in bread-making, as gluten proteins, they may be
necessary for normal baking properties [37]. However, in comparison with the gluten proteins,
albumins and globulins have a better spectrum of essential amino acids (lysine, arginine, aspartic acid,
threonine and tryptophan).

According to alternative classifications, wheat gluten can be separated into three large groups:
sulfur-rich (Mw of ~50 kDa; a-, B-, y-gliadins and B- and C-LMW glutenins), sulfur-poor
(Mw ~50 kDa; w-gliadins and D-LMW glutenins) and high molecular weight (Mw ~100 kDa; HMW
glutenins) proteins. In our study, significant differences between bread and durum wheat for S-poor
subunits, as well as S-rich gliadin subunits concentration were determined. Although the distribution of
total gliadins among the different types is strongly dependent on wheat genotypes and growing
conditions, it can be generalized that a/B- and y-gliadins are major components, whereas the w-gliadins
occur in much lower proportions [38]. In our work, both species had considerable higher concentration
of S-rich gliadin subunits. The Mw of bread and durum gliadins ranged from 31.4 to 73.6 kDa. This
range was in agreement with values (34 to 75 kDa) reported by Abdel-Aal ef al. [11]. It was obvious
that there were differences in the number of w-gliadin bands between bread and durum wheat. The
bread wheat was characterized by the presence of weak intensity w-gliadin bands. However, the bread
wheat genotypes had a distinct strong band in o/B-region with molecular weight of about 37.6 to
34.8 kDa. This finding agrees with Federmann et al. [39]. There was strong-staining band or
polypeptide chain with molecular weight of about 42 to 44 kDa that appeared in all durum wheat
genotypes. This polypeptide chain was in the y-gliadin region and was absent in bread wheat
genotypes, except in the grain of genotype ZP 224. This is in agreement with Abdel-Aal et al. [11]
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who detected that this band was absent in common wheat. Therefore, this y-gliadin band might be used
to differentiate the durum from bread wheat. The Mw ranged from 77.2 to 111.3 kDa, indicating that
bread and durum gliadin extracts contained HMW components which could be polypeptide chains of
glutenin. These polypeptides regions consisted of 1-3 sharp, thin bands with MW’s of 94—111 kDa.
Chakraborty and Khan [40] have shown by SDS-PAGE that some glutenins are extracted with 70%
aqueous ethanol.

Most m-gliadins lack cysteine, so that there is no possibility of disulphide crosslinks. These proteins
consist almost entirely of repetitive sequences rich in glutamine and proline. However, o/p-gliadins
contain six, and y-gliadins eight, cysteines located in the C-terminal domain and they form three and
four homologous intrachain crosslinks, respectively [41]. It is known that the ratio of o/f- and
v-gliadins to ®-gliadin influence the sulfur amino acid content, quality of wheat grain proteins and
structure and functionality of gluten. In this study, the ratio of S-poor/S-rich gliadin subunits varied
from 0.008 to 0.038 and 0.060 to 0.130 among the bread and durum genotypes, respectively. In durum
wheat a highly significant correlation has been detected between specific durum wheat y-gliadin and
gluten strength. y-Gliadins 45 and 42 are useful markers for good and poor pasta quality, respectively
and this is due to the genetic linkage with low molecular weight glutenin subunits [42]. On the other
hand, B-gliadin subunits may be associated with elevated loaf volumes, and could be the target for
indirect selection for breeding programs improving durum wheat for bread-making quality. Generally,
a high content of gliadins in the grain gives a poor nutritional quality of the flour, because the gliadins
are a very poor source of lysine, tryptophan, and sulfur containing amino acids [29]. In addition to
sulfur amino acid, reliable information concerning the tryptophan content of cereals is essential,
especially when cereals are a major source of proteins. Tryptophan plays a role as a precursor of the
neurotransmitter serotonin and the epiphyseal hormone melatonin [43]. According to our study,
tryptophan constitutes from 1.171% to 1.621% and 1.245% to 1.496% of total grain proteins in bread
and durum wheat genotype, respectively. Obtained contents for tryptophan in analyzed wheat genotypes
were lower than the contents reported by Gafurova et al. [44] (1.8% to 2.0% of total grain proteins).
Nevertheless, our results are similar to those reported by Comai et al. [45] for the tryptophan content of
different wheat varieties purchased from the Italian market (on average 1.160% of total proteins).

4. Conclusions

The quality of wheat protein is genetically determined and varies between wheat cultivars and
species. There were significant differences in the mean soluble and insoluble glutenin between bread
and durum wheat. The genotypic variation in the contribution of glutenin to bread-making quality is
due to variation in the number of specific HMW subunits. The results of SDS-PAGE showed that
concentration of o/B-, y-gliadins and w-gliadin was statistically significant among bread and durum
wheat. The bread wheat had weak intensity of w-gliadin band and strong band in o/B-region. Also, the
polypeptide chain in the y-gliadin region was absent in bread wheat, except in the grain of genotype
ZP 224. 1t appears that even among small samples of bread and durum genotypes considerable
differences in amount of protein fractions can be found that could be manipulated in the future for a
desired level of the protein components. However, more research is needed to evaluate the effects of
different sites and years on the wheat protein characteristics in order to quantify the environmental
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factors affecting these characteristics. Also, the breeders would need to evaluate their own materials in
their own geographic regions before definitive decisions could be made in their breeding programs.

Acknowledgments

This study was supported by the Ministry of Education and Science of the Republic Serbia
(Grants no. 31069).

References

1. Food and Agriculture Organization (FAO). FAOSTAT database. Available online:
http://www.faostat.fao.org (accessed on 10 December 2010).

2. Shewry, P.R.; Tatham, A.S.; Forde, J.; Kreis, M.; Miflin, B.J. The classification and nomenclature
of wheat gluten proteins: a reassessment. J. Cereal Sci. 1986, 4, 97-106.

3. Belderok, B.; Mesdag, J.; Donner, D.A. Bread-Making Quality of Wheat: A Century of Breeding
in Europe; Kluwer Academic Publisher: Dordrecht, The Netherlands, 2000; pp. 30-31.

4. Merlino, M.; Leroy, P.; Chambon, C.; Branlard, G. Mapping and proteomic analysis of albumin
and globulin proteins in hexaploid wheat kernels (7riticum aestivum L.). Theor. Appl. Genet.
2009, /8, 1321-1337.

5. Carbonero, P.; Salcedo, G.; Sanchez-Monge, R.; Garcia-Maroto, F.; Royo, J.; Gomez, L.;
Mena, M.; Diaz, L. A multigene Family from Cereals Which Encodes Inhibitors of Trypsin and
Heterologous-Amylases. In Innovations of Proteases and Their Inhibitors; Aviles, F.X., Ed.;
Walter de Gruyter: Berlin, Germany, 1993; pp. 333-348.

6. Posch, A.; Weiss, W.; Wheeler, C.; Dunn, M.J.; Gorg, A. Sequence analysis of wheat
grain allergens separated by two-dimensional electrophoresis with immobilized gradients.
Electrophoresis 1995, 18, 1115-1119.

7. Jiménez, T.; Martinez-Anaya, M.A. Amylases and hemicellulases in breadmaking. Degradation
by-products and potential relationship with functionality. Food Sci. Technol. Int. 2001, 7, 5—14.

8. Toyosaki, T. Effect of hydroperoxide in lipid peroxidation on dough fermentation. Food Chem.
2007, 104, 680—685.

9. Uthayakumaran, S.; Newberry, M.; Phan-Tien, N.; Tanner, R. Small and large strain rheology of
wheat gluten. Rheol. Acta 2002, 41, 162—172.

10. MacRitchie, F. Physico-chemical properties of wheat proteins in relation to functionality.
Adv. Food Nutr. Res. 1992, 36, 1-87.

11. Abdel-Aal, E.-S.M.; Salama, D.A.; Hucl, P.; Sosulski, F.W.; Cao, W. Electrophoretic
characterization of spring spelt wheat gliadins. J. Agric. Food Chem. 1996, 44,2117-2123.

12. Kirkman, M.A.; Shewry, P.R.; Miflin, B.J.; The effect of nitrogen nutrition on the lysine content
and protein composition of barley seeds. J. Sci. Food Agric. 1982, 33, 115-127.

13. Shewry, P.R. Improving the protein content and composition of cereal grain. J. Cereal Sci. 2007,
46, 239-250.

14. Kasarda, D.D.; Autran, J.C.; Lew, E.J.L.; Nimmo, C.C.; Shewry, P.R. N-terminal amino acid
sequences of m-gliadins and ®-secalins: Implications for the evolution of prolamin genes.
Biochim. Biophys. Acta 1983, 747, 138—150.



Int. J. Mol. Sci. 2011, 12 5892

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Skerritt, J.H.; Devery, J.M.; Hill, A.S. Gluten intolerance: Chemistry, celiac-toxicity, and
detection of prolamins in foods. Cereal Foods World 1990, 35, 638—644.

Vader, W.; Kooy, Y.; Van Veelen, P.; De Ru, A.; Harris, D.; Benckhuijsen, W.; Pefia, S.;
Mearin, L.; Drijthout, J.W.; Koning, F. The gluten response in children with celiac disease is
directed toward multiple gliadin and glutenin peptides. Gastroenterology 2002, 122, 1729-1737.
Bietz, J.A.; Simpson, D.G. Electrophoresis and chromatography of wheat proteins: Available
methods, and procedures for statistical evaluation of the data. J. Chromatogr. 1992, 624, 53-80.
Wrigley, C.W. Giant proteins with flour power. Nature 1996, 381, 738—739.

Kasarda, D.D. Glutenin polymers: The in vitro to in vivo transition. Cereal Foods World 1999, 44,
566-571.

Miiller, S.; Vensel, W.H.; Kasarda, D.D.; Koéler, P.; Wieser, H. Disulphide bonds of adjacent
cysteine residues in low molecular weight subunits of wheat glutenin. J. Cereal Sci. 1998, 27,
109-116.

Payne, P.I. Endosperm Proteins. In Plant Gene Research: A Genetic Approach to Plant
Biochemistry; Blenstein, A.D., King, P.J., Eds.; Springer: New York, NY, USA, 1986; pp. 207-301.
Lookhart, G.; Bean, S. Separation and characterization of wheat protein fractions by
high-performance capillary electrophoresis. Cereal Chem. 1995, 72, 527-532.

Vereijken, J.M.; Klostermann, V.L.C.; Beckers, F.H.R.; Spekking, W.T.J.; Graveland, A.
Intercultivar variation in the proportions of wheat protein fractions and relation to mixing
behaviour. J. Cereal Sci. 2000, 32, 159-167.

Fling, S.P.; Gregerson, D.S. Peptide and protein molecular weight determination by
electrophoresis using a high-molarity tris-buffer system without urea. Anal. Biochem. 1986, 155,
83-88.

American Association of Cereal Chemists (AACC). Approved Methods of the American Association
of Cereal Chemists, 10th ed.; AACC methods 38-12.02; AACC: St. Paul, MN, USA, 2000.

Nurit, E.; Tiessen, A.; Pixley, K.V.; Palacios-Rojas, N. Reliable and inexpensive colorimetric
method for determining protein-bound tryptophan in maize kernels. J. Agric. Food Chem. 2009,
57,7233-7238.

Vogel, K.P.; Johnson, V.A.; Mattern, P.J. Protein and lysine contents of endosperm and bran of
the parents and progenies of crosses of common wheat. Crop Sci. 1978, 18, 751-754.

Weegels, P.L.; Van de Pijpekamp, A.M.; Graveland, A.; Hamer, R.J.; Schofield, J.D.
Depolymerisation and re-polymerisation of wheat glutenin during dough processing.
Relationships between glutenin macropolymer content and quality parameters. J. Cereal Sci.
1996, 23, 103—111.

Emanuelson, J.; Wollenweber, B.; Jorgensen, J.R.; Andersen, S.B.F.; Jensen, C.R. Wheat Grain
Composition and Implications for Bread Quality; DIAS report Plant Production no. 92; Danish
Institute of Agricultural Sciences: Tjele, Denmark, 2003.

Stehno, Z.; Dvotacek, V.; Dotlacil, L. Wheat Protein Fractions in Relation to Grain Quality
Characters of the Cultivars Registered in the Czech Republic 2004-2006. In Proceedings of 11th
International Wheat Genetics Symposium; Apples, R., Eastwood, R., Lagudah, E., Langridge, P.,
Mackay, M., Mclntyre, L., Sharp, P., Eds.; Sydney University Press: Brisbane, Australia, 2008;
pp. 556-559.



Int

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

. J. Mol. Sci. 2011, 12 5893

Abdelrahman, E.; Elagib, A.; Bureng, P.L.; Mohamed, B.E. Proteins and baking quality of three
Sudanese wheat cultivars 1. the relationship between protein soluble fractions and breadmaking
properties. Univ. Khartoum J. Agric. Sci. 2004, 12,391-404.

Kovacs, M.I.P.; Howes, N.K.; Leisle, D.; Zawistowski, J. Effect of two different Low Molecular
Weight glutenin subunits on durum wheat pasta quality parameters. Cereal Chem. 1995, 72,
85-87.

Cornish, G.B.; Bekes, F.; Eagles, H.A.; Payne, P.I. Prediction of Dough Properties for Bread
Wheat. In Gliadin and Glutenin—the Unique Balance of Wheat Quality; Wrigley, C., Bekes, F.,
Bushuk, W., Eds.; American Association of Cereal Chemistry: St. Paul, MN, USA, 2006;
pp. 152-160.

Kohler, P.; Keck, B.; Muller, S.; Wieser, H. Disulphide Bonds in Wheat Gluten. In Proceedings
of the International Meeting on Wheat Kernel Proteins Molecular and Functional Aspects;
University of Tuscia: Viterbo, Italy, 1994; pp. 45-54.

Janssen, A.M.; Van Vliet, T.; Vereijken, J.M. Rheological behaviour of wheat glutens at small
and large deformations. Effect of gluten composition. J. Cereal Sci. 1996, 23, 33-42.
Uthayakumaran, S.; Gras, P.W.; Stoddard, F.L.; Békés, F. Effect of varying protein content and
glutenin-to-gliadin ratio on the functional properties of wheat dough. Cereal Chem. 1999, 76,
389-394.

Peruffo, A.D.B.; Pogna, N.E.; Curioni, C. Evidence for the Presence of Disulfide Bonds between
Beta-Amylase and Low Molecular Weight Glutenin Subunits. In Proceedings of 6th International
Gluten Workshop “Gluten 96", Sydney, Australia, 2—4 September 1996; O’Brien, L., Blakeney,
A.B., Ross, A.S., Wrigley, C.W., Eds.; Royal Australian Chemical Institute: Melbourne,
Australia, 1996; pp. 45-54.

Wieser, H. Chemistry of gluten proteins. Food Microbiol. 2007, 24, 115-119.

Federmann, G.R.; Goecke, E.U.; Steiner, A.M. Detection of adulteration of flour of spelt
(Triticum spelta L.) with flour of wheat (7riticum aestivum L. emend. Fiori et Paol) by
electrophoresis. Plant Var. Seeds 1992, 5, 123—125.

Chakraborty, K.; Khan, K. Biochemical and breadmaking properties of wheat protein
components. Compositional differences revealed through quantitation and polyacrylamide gel
electrophoresis of protein fractions from various isolation procedures. Cereal Chem. 1988, 65,
333-340.

Grosch, W.; Wieser, H. Redox reactions in wheat dough as affected by ascorbic acid.
J. Cereal Sci. 1999, 29, 1-16.

Sapirstein, H.D.; David, P.; Preston, K.R.; Dexter, J.E. Durum wheat breadmaking quality:
Effects of gluten strength, protein composition, semolina particle size and fermentation time.
J. Cereal Sci. 2007, 45, 150-161.

Schaechter, J.D.; Wurtman, R.J. Serotonin release varies with brain tryptophan levels. Brain Res.
1990, 532, 203-210.

Gafurova, D.A.; Tursunkhodzhaev, P.M.; Kasymova, T.D.; Yuldashev, P.K. Fractional and
amino-acid composition of wheat grain cultivated in Uzbekistan. Chem. Nat. Compd. 2002, 38,
462-465.



Int. J. Mol. Sci. 2011, 12 5894

45. Comai, S.; Bertazzo, A.; Bailoni, L.; Zancato, M.; Costa, V.L.C.; Allegri, G. The content of

proteic and nonproteic (free and protein-bound) tryptophan in quinoa and cereal flours.
Food Chem. 2007, 100, 1350—1355.

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).



