Supplementary Information

Meng-Qi Zhang ¹, Xiao-Le Zhang ², Yan Li ^{1,*}, Wen-Jia Fan ¹, Yong-Hua Wang ^{3,4}, Ming Hao ¹, Shu-Wei Zhang ¹ and Chun-Zhi Ai ³

- ¹ Department of Materials Science and Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China; E-Mails: manna1989@mail.dlut.edu.cn (M.-Q.Z.); rosemarryfan@gmail.com (W.-J.F.); dluthm@yeah.net (M.H.); zswei@dlut.edu.cn (S.-W.Z.)
- ² Department of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning 116024, China; E-Mail: xlfree@foxmail.com
- ³ Lab of Pharmaceutical Resource Discovery, Dalian Institute of Chemical Physics, Graduate School of the Chinese Academy of Sciences, Dalian, Liaoning 116023, China; E-Mail: aicy@dicp.ac.cn
- ⁴ Center of Bioinformatics, Northwest A&F University, Yangling, Shaanxi 712100, China; E-Mail: yhwang@dlfu.edu.cn
- * Author to whom correspondence should be addressed; E-Mail: yanli@dlut.edu.cn; Tel. +86-411-84986062; Fax: +86-411-84986063.

Received: 2 August 2011; in revised form: 1 September 2011 / Accepted: 9 September 2011 / Published: 16 September 2011

Abstract: MGluR2 is G protein-coupled receptor that is targeted for diseases like anxiety, depression, Parkinson's disease and schizophrenia. Herein, we report the three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of a series of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives as mGluR2 antagonists. Two series of models using two different activities of the antagonists against rat mGluR2, which has been shown to be very similar to the human mGluR2, (activity I: inhibition of $[^{3}H]$ -LY354740; activity II: mGluR2 (1*S*,3*R*)-ACPD inhibition of forskolin stimulated cAMP.) were derived from datasets composed of 137 and 69 molecules respectively. For activity I study, the best predictive model obtained from CoMFA analysis yielded a Q^2 of 0.513, R^2_{ncv} of 0.868, $R^2_{pred} = 0.876$, while the CoMSIA model yielded a Q^2 of 0.450, $R^2_{ncv} =$ 0.899, $R^2_{\text{pred}} = 0.735$. For activity II study, CoMFA model yielded statistics of $Q^2 = 0.5$, R^2_{nev} = 0.715, R^2_{pred} = 0.723. These results prove the high predictability of the models. Furthermore, a combined analysis between the CoMFA, CoMSIA contour maps shows that: (1) Bulky substituents in R_7 , R_3 and position A benefit activity I of the antagonists, but decrease it when projected in R₈ and position B; (2) Hydrophilic groups at position A and B increase both antagonistic activity I and II; (3) Electrostatic field plays an essential rule in the variance of activity II. In search for more potent mGluR2 antagonists, two pharmacophore models were developed separately for the two activities. The first model reveals six pharmacophoric features, namely an aromatic center, two hydrophobic centers, an H-donor atom, an

H-acceptor atom and an H-donor site. The second model shares all features of the first one

and has an additional acceptor site, a positive N and an aromatic center. These models can be used as guidance for the development of new mGluR2 antagonists of high activity and selectivity. This work is the first report on 3D-QSAR modeling of these mGluR2 antagonists. All the conclusions may lead to a better understanding of the mechanism of antagonism and be helpful in the design of new potent mGluR2 antagonists.

Keywords: 3D-QSAR; mGluR2 antagonist; CoMFA; CoMSIA; pharmacophore modeling

Activity I Activity II NO R_3 R_8 R_7 (pIC_{50}) (pIC_{50}) **1**[#] Η Me Η 5.1938 **2**§ CN Ph-C≡C-Η 7.4685 7.7696 MeO 14a Me Η 5.1818 14b Cl Me Η 5.5498 14c[#] CF₃ Me Η 5.8153 14d CN Η Me 5.5376 14e[#] Η Η Ph-C≡C-7.5850 14f MeO Η Ph-C≡C-6.0168 Cl 14g Ph-C≡C-Η 7.0969 14h CF₃ Η Ph-C≡C-6.5719 14i Ι Ph-C≡C-Η 6.8125 CONH₂ 14j Ph-C≡C-Η 6.4461 14k Ph-C≡C-Η 6.4437 **14**l Η 5.9830 Ph-C≡C-14m CN Ph-C≡C-Η 7.4685 14n[#] CN $2-Cl-C_6H_4-C\equiv C-$ Η 7.1192 CN Η 140 4-Me-C₆H₄-C≡C-7.1938 14p[#] CN 4-MeO-C₆H₄-C≡C-Η 7.1675 CN 4-F-C₆H₄-C≡C-Η 14q 7.4685 14r CN 2-F-C₆H₄-C≡C-Η 7.5229

Table **S1**. Structure-activity relationship data related the series of to 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives described in this study (group 14).

R₈

Table 1S. Cont.

14s	CN	$2,4-\text{di-F-C}_{6}\text{H}_{4}-\text{C}\equiv C-$	Н	6.3188
14t	CN	2-Thiophenyl-C≡C -	Н	7.4949
14u	CN	2-Thiazolyl-C≡C-	Н	6.5229
14v	CN	2-Pyridyl-C≡C-	Н	6.0605
14w	CN	HO(Me) ₂ C-C≡C-	Н	4.5850
14x	CN	$H_2C=C(Me)-C=C-$	Н	6.3979
14y	CN	Ph-C≡C-	-NMe ₂	7.2218
14z	CN	Ph-C≡C-	N O	6.4225
14aa [#]	CN	Ph-C≡C-	NMe	6.5560
14ab	CN	Ph-C≡C-	N S	7.3979
14ac [#]	CN	Ph-C≡C-	N SO	6.3507
14ad [#]	CN	Ph-C≡C-	N SO ₂	6.7959
14ae	CN	Ph-C≡C-	CHOMe	7.0862
14af	CN	Ph-C≡C-	-OMe	7.0362
$14ag^{\#}$	CN	Ph-C≡C-	-OCH ₂ CH ₂ OMe	7.5528
14ah	CN	Ph-C≡C-	-OCH ₂ CO ₂ H	6.2218
14ai	CN	Ph-C≡C-	-OCH ₂ CONH ₂	5.6198
14aj	CN	Ph-C≡C-	-OCH ₂ CONHBu ^t	7.5850
14ak	CN	Ph-C≡C-	-OCH ₂ CN	7.7447

	$R_7 \sim N \sim R_3$										
NO	R ₃	R ₈	R ₇	Activity I (pIC ₅₀₎	Activity II (pIC ₅₀)						
15a [#]	N	Ph-C≡C-	Н	7.8861	8.0000						
15b	N	4-F-C ₆ H ₄ -C≡C-	Н	8.0458	8.0458						
15c	N	2-F-C ₆ H ₄ -C≡C-	Н	7.6990	7.7959						
15d	N Me	4-F-C ₆ H ₄ -C≡C-	Н	7.0088							
15e	Me N N	Ph-C≡C-	Н	6.7696							
15f	Me	Ph-C≡C-	Н	6.1367							
15g	NNN	4-F-C ₆ H ₄ -C≡C-	Н	7.0088							
15h	NNN	4-F-C ₆ H ₄ -C≡C-	Н	8.2218	7.9208						
15i	N N N	4-F-C ₆ H ₄ -C≡C-	Н	7.1427							
15j	N	Ph-C≡C-	-OCH ₂ CH ₂ OMe	7.6383	7.8239						
15k	N	Ph-C≡C-	-OCH ₂ CH ₂ OH	7.1938							
151	N	4-F-C ₆ H ₄ -C≡C-	-OCH ₂ CH ₂ OH	7.3372							
15m	N	Ph-C≡C-	-OCH ₂ CN	7.7447	7.8861						
15n	N	4-F-C ₆ H ₄ -C≡C-	-N(Me)CH ₂ CH ₂ OH	6.8539							
150	N	4-F-C ₆ H ₄ -C≡C-	-OH	7.5850	7.9586						
15p	NNN	Ph-C≡C-	-NMe ₂	7.4437							
15q	NNN	4-F-C ₆ H ₄ -C≡C-	-OH	7.6990	7.7696						
15r [#]	N N OH	4-F-C ₆ H ₄ -C≡C-	ОН	6.4225							

Table S2Structure–activity relationship data related to the series1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives described in this study (group 15).

R ₈ N N											
R ₇ N R ₃											
NO	R ₃	R_8	R ₇	Activity I (pIC ₅₀₎	Activity II (pIC ₅₀)						
7a [§]	N	Ph	Н	7.4089	7.3279						
7b	N	4-F-C ₆ H ₄ -	Н	7.7696	7.6198						
7 c	N	2-F-C ₆ H ₄ -	Н	7.9208	7.5686						
7d	N	3-F-C ₆ H ₄ -	Н	7.6021							
7e		2,5-Di-F-C ₆ H ₃	Н	8.1549	7.7696						
7f	N	2-F-C ₆ H ₄ -	HO-	7.6576							
7g	N	Cyclo-propyl	Н	6.6778							
7h	N	Br	Н	7.1427							
7i [#]	N	F ₃ C-	Н	7.3665							
7j [#]		F ₃ C-	-NMe ₂	8.0458	7.2840						
7k	N	F ₃ C-	<i>Iso</i> -but ylNH	7.7212	7.1367						
71	N	F ₃ C-	Cl	7.7696	7.8239						
7m	N	F ₃ C-	Me	7.9208	7.7212						
7n	N	F ₃ C-	Et	8.3979	8.0000						
70	N	4-F-C ₆ H ₄ -	Н	7.5086	7.4437						
7 p [#]	N	2-F-C ₆ H ₄ -	Н	7.7959	7.4318						
$7q^{\#}$	N	2,5-Di-F-C ₆ H ₃	Н	7.7696	7.7447						

Table S3 Structure-activity relationship data related to the series of1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives described in this study (group 7).

5

Table S3. Cont.									
7 r	N	Iso-propyl	Н	6.3316					
7s	N N	Br	Н	6.8861					
7t [#]		Cl	Н	7.2218					
$7u^{\#}$	N N	F ₃ C-	Н	7.0362					
$7v^{\#}$	N N	F ₂ CH-	Н	6.2161					
7 w	N	F ₃ CCH ₂ O-	Н	7.1549					
$\mathbf{7x}^{\$}$	N N N	F ₃ C-	Me ₂ N	7.4202	6.7352				
7y	N	F ₃ C-	<i>Iso</i> -but ylNH	7.3768	6.5719				
7z	N	F ₃ C-	<i>Iso</i> -but ylN(Me)	7.9586	7.8539				
7aa	NNN	F ₃ C-	Cl	7.5686	6.9355				
7ab	NNN	F ₃ C-	Me	8.0458	7.4089				
7ac	N N	F ₃ C-	MeO	7.5376	7.1308				
$7ad^{\#}$	NNN	F ₃ C-	EtO	8.1549	7.4685				

			R ₃ R ₇ N R ₃		
NO	R ₃	R ₈	R ₇	Activity I (pIC ₅₀₎	Activity II (pIC ₅₀)
8 a	N	F ₃ C-	Me	7.9208	7.7212
8b	N N N	F ₃ C-	Me	8.0458	7.4089
8c		F ₃ C-	Me	8.3010	8.0458
8d	N N N N N N N N N N N N N N N N N N N	F ₃ C-	Me	8.0969	7.1249
8e	N N	F ₃ C-	Н	6.4559	
8f [#]	N N	F ₃ C-	Н	7.4089	7.7212
8g	N N OH	F ₃ C-	Me	6.9208	
8h [§]	N H	F ₃ C-	Me	8.3979	7.9586
8i [#]	Me	F ₃ C-	Me	8.3979	8.3979
8j	Et	F ₃ C-	Me	8.0969	8.3010
8k [#] §	CN	F ₃ C-	Me	7.9208	7.7447
81	CF3	F ₃ C-	Me	7.1805	
8m§		F ₃ C-	Me	8.0000	8.2218
8n		F ₃ C-	Me	8.3979	8.0000

Table S4Structure-activity relationship data related to the series of1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives described in this study (group 8).

Table S4. Cont.

80	N N	F ₃ C-	Me	8.0000	8.1549
8q	CH ₂ Ph	F ₃ C-	Me	7.7959	8.3010
8r	СН2ОН	F ₃ C-	Me	7.8861	7.7447
8 s	CH ₂ OMe	F ₃ C-	Me	7.8861	8.2218
8t	CMe ₂ OH	F ₃ C-	Me	7.3979	7.8539
8u	CH ₂ NMe ₂	F ₃ C-	Me	6.5622	
8v	OMe	F ₃ C-	Me	7.8861	7.7959
8w		F ₃ C-	Me	7.2291	
8x	N	F ₃ C-	Me	7.5376	
8 y	N	F ₃ C-	Me	7.5850	7.5229
8z	H	F ₃ C-	Me	8.6990	7.5229
8 aa	Me	F ₃ C-	Me	7.8861	8.3010
8ab	, Et	F ₃ C-	Me	8.0458	7.7447
8ac§		F ₃ C-	Me	8.2218	7.6990
8ad	L.	F ₃ C-	Me	8.0000	8.0000
8ae [#]	OMe	F ₃ C-	Me	8.3010	8.0000
8af	NH ₂	F ₃ C-	Me	7.8539	6.7959
8ag	NMe ₂	F ₃ C-	Me	7.0655	
8ah [#] §	N	F ₃ C-	Me	7.7447	7.1427
8ai	N	F ₃ C-	Me	6.8928	
8aj	N	F ₃ C-	Me	8.2218	7.3010

Table S4. Cont.

8ak [#]	N N	F ₃ C-	Me	,	7.6383	7.3188
8al	N	F ₃ C-	Me	,	7.6990	7.7959
			R ₇ N R ₇ R ₇			
NO	R ₃		R ₈	R ₇	Activity I (pIC ₅₀₎	Activity II (pIC ₅₀)
8am	Me Ne		F ₃ C-	Me	8.6990	8.5229
8an	Me N N Et		F ₃ C-	Me	8.6990	8.3979
8ao ^{# §}	Me		F ₃ C-	Me	8.6990	8.3979
8ap [§]	Me CH ₂ OH		F ₃ C-	Me	7.8539	7.8239
8aq	Me CH ₂ OMe		F ₃ C-	Me	8.0969	8.3010
8ar			F ₃ C-	F ₃ C-	8.1549	8.1549
8as#	Н		F ₃ C-	Н	8.0000	7.5850
8at	М		F ₃ C-	OEt	8.3979	8.0000
8au	М		Cl	Н	8.0969	8.5229
8av	Ме		Cl	Cl	8.3979	8.6990
8aw [§]	Me		F ₃ C	Н	7.7447	7.4437
8ax	Me		F ₃ C	OEt	8.2218	8.0969

	Observed	CoN	/IFA	CoN	ASIA
NO	activity	Predicted	Residual	Predicted	Residual
1	5.19	5.799	-0.609	6.125	-0.935
2	7.47	7.441	0.029	7.621	-0.151
14a	5.18	5.233	-0.053	5.567	-0.387
14b	5 55	5 541	0.009	5 846	-0.296
14c	5.82	6 182	-0.362	6 391	-0.571
14d	5.62	5 404	0.136	5 802	-0.262
14a 14e	7 59	7 026	0.150	6 677	0.913
14C	6.02	6.440	0.704	6.450	0.715
141 14a	0.02	6.022	-0.420	6 710	-0.430
14g 14b	7.10	6.056	0.108	6 800	0.381
1411	0.37	0.930	-0.380	6.800	-0.230
141	0.81	/.11/	-0.307	0.714	0.090
14J 141-	0.45	0./84	-0.334	0.304	0.140
14K	6.44	6.987	-0.547	6.493	-0.053
141	5.98	6.036	-0.056	6.026	-0.046
l4m	7.47	7.063	0.407	7.073	0.397
14n	7.12	6.904	0.216	6.982	0.138
140	7.19	7.206	-0.016	7.417	-0.227
14p	7.17	6.869	0.301	7.144	0.026
14q	7.47	7.285	0.185	7.408	0.062
14r	7.52	7.295	0.225	7.433	0.087
14s	6.32	6.262	0.058	6.381	-0.061
14t	7.49	7.485	0.005	7.668	-0.178
14u	6.52	6.626	-0.106	6.753	-0.233
14v	6.06	6.127	-0.067	6.081	-0.021
14w	4.59	5.086	-0.496	4.204	0.386
14x	6.40	5.847	0.553	6.090	0.310
14y	7.22	6.883	0.337	7.207	0.013
14z	6.42	6.474	-0.054	6.814	-0.394
14aa	6.56	6.529	0.031	6.866	-0.306
14ab	7.40	7.088	0.312	7.626	-0.226
14ac	6.35	6.587	-0.237	7.064	-0.714
14ad	6.80	6.592	0.208	7.136	-0.336
14ae	7.09	6.640	0.450	7.119	-0.029
14af	7.04	7.035	0.005	7.229	-0.189
14ag	7.55	7.395	0.155	7.738	-0.188
14ah	6.22	6.233	-0.013	6.020	0.200
14ai	5.62	5.843	-0.223	5.660	-0.040
14aj	7.59	7.515	0.075	7.620	-0.030
14ak	7.74	8.063	-0.323	7.918	-0.178
15a	7.89	7.484	0.406	7.758	0.132
15b	8.05	7.959	0.091	7.858	0.192
15c	7.70	7.359	0.341	7.577	0.123
15d	7.01	7.032	-0.022	7.009	0.001
15e	6.77	7.105	-0.335	6.672	0.098
15f	6.14	6.158	-0.018	6.069	0.071

Table S5. Observed and CoMFA/CoMSIA predicted mGluR2 inhibitory activity I (pIC₅₀ value).

Table S5. Cont.

15g	7.01	7.640	-0.630	7.370	-0.360
15h	8.22	8.130	0.090	7.524	0.696
15i	7.14	7.322	-0.182	7.046	0.094
15j	7.64	7.710	-0.070	7.728	-0.088
15k	7.19	6.941	0.249	7.336	-0.146
151	7.34	7.547	-0.207	7.294	0.046
15m	7.74	7.719	0.021	7.754	-0.014
15n	6.85	6.704	0.146	6.616	0.234
150	7.59	7.470	0.120	7.421	0.169
15p	7.44	7.591	-0.151	7.469	-0.029
15q	7.70	7.379	0.321	7.857	-0.157
15r	6.42	6.258	0.162	6.453	-0.033
7a	7.41	7.466	-0.056	7.665	-0.255
7b	7.77	7.651	0.119	7.737	0.033
7c	7.92	7.793	0.127	7.777	0.143
7d	7.60	7.582	0.018	7.660	-0.060
7e	8.15	7.850	0.300	7.745	0.405
7f	7.66	7.427	0.233	7.727	-0.067
7g	6.68	6.832	-0.152	6.998	-0.318
7h	7.14	7.270	-0.130	6.959	0.181
7i	7.37	7.462	-0.092	7.877	-0.507
7j	8.05	7.830	0.220	7.989	0.061
7k	7.72	7.226	0.494	7.632	0.088
71	7.77	7.829	-0.059	8.049	-0.279
7m	7.92	8.101	-0.181	8.118	-0.198
7n	8.40	8.148	0.252	8.181	0.219
70	7.51	7.241	0.269	7.293	0.217
7p	7.80	7.364	0.436	7.311	0.489
7q	7.77	7.410	0.360	7.280	0.490
7r	6.33	6.752	-0.422	6.804	-0.474
7s	6.89	6.373	0.517	6.288	0.602
7t	7.22	6.739	0.481	7.188	0.032
7u	7.04	6.978	0.062	7.397	-0.357
7v	6.22	6.283	-0.063	6.613	-0.393
7w	7.15	7.266	-0.116	7.319	-0.169
7x	7.42	7.560	-0.140	7.642	-0.222
7y	7.38	7.583	-0.203	7.502	-0.122
7z	7.96	8.008	-0.048	7.931	0.029
7aa	7.57	7.683	-0.113	7.707	-0.137
7ab	8.05	7 953	0.097	8 024	0.026
740 7ac	0.0 <i>5</i> 7 54	7 744	-0.204	7.650	-0.110
7ac 7ad	7.5 4 9.15	9.7 44 9.756	-0.204	2.096	-0.110
/ au	0.13	0.230	-0.100	0.000	0.004
8a	1.92	8.144	-0.224	1.982	-0.062
8b	8.05	1.953	0.097	8.024	0.026
8c	8.30	8.113	0.187	7.980	0.320
8d	8.10	7.414	0.686	7.720	0.380
8e	6.46	6.872	-0.412	6.729	-0.269
8f	7.41	7.346	0.064	7.463	-0.053

Table S5. Cont.

8g	6.92	6.626	0.294	6.618	0.302
8h	8.40	8.517	-0.117	8.277	0.123
8i	8.40	8.374	0.026	8.190	0.210
8j	8.10	8.404	-0.304	8.167	-0.067
8k	7.92	7.670	0.250	7.106	0.814
81	7.18	7.583	-0.403	7.240	-0.060
8m	8.00	7.341	0.659	7.723	0.277
8n	8.40	7.994	0.406	7.983	0.417
80	8.00	7.629	0.371	7.578	0.422
8p	6.93	7.297	-0.367	7.222	-0.292
8q	7.80	7.881	-0.081	7.934	-0.134
8r	7.89	8.193	-0.303	7.881	0.009
8s	7.89	8.249	-0.359	7.675	0.215
8t	7.40	7.436	-0.036	7.137	0.263
8u	6.56	7.181	-0.621	7.223	-0.663
8v	7.89	7.929	-0.039	7.827	0.063
8w	7.23	7.121	0.109	7.320	-0.090
8x	7.54	7.404	0.136	7.443	0.097
8y	7.59	7.926	-0.336	7.600	-0.010
8z	8.70	8.065	0.635	8.099	0.601
8aa	7.89	7.728	0.162	7.896	-0.006
8ab	8.05	8.063	-0.013	8.068	-0.018
8ac	8.22	7.913	0.307	8.115	0.105
8ad	8.00	7.912	0.088	7.971	0.029
8ae	8.30	7.992	0.308	7.997	0.303
8af	7.85	7.972	-0.122	7.856	-0.006
8ag	7.07	7.606	-0.536	7.901	-0.831
8ah	7.74	7.843	-0.103	7.850	-0.110
8ai	6.89	7.389	-0.499	7.445	-0.555
8aj	8.22	7.808	0.412	7.836	0.384
8ak	7.64	7.618	0.022	7.788	-0.148
8al	7.70	7.592	0.108	7.363	0.337
8am	8.70	8.666	0.034	8.527	0.173
8an	8.70	8.706	-0.006	8.466	0.234
8ao	8.70	8.313	0.387	8.416	0.284
8ap	7.85	8.133	-0.283	7.957	-0.107
8aq	8.10	7.756	0.344	7.875	0.225
8ar	8.15	8.429	-0.279	8.595	-0.445
8as	8.00	7.901	0.099	7.929	0.071
8at	8.40	8.448	-0.048	8.496	-0.096
8au	8.10	7.686	0.414	7.808	0.292
8av	8.40	8.190	0.210	8.298	0.102
8aw	7.74	7.763	-0.270	8.007	-0.267
8ax	8.22	8.338	0.420	8.462	-0.242

	Observed	CoMEA		CoMSIA		
NO	activity	Predicted	Residual	Predicted	Residual	
2	7 77	7 935	-0.165	6 970	-0.400	
2 15a	8.00	7.030	-0.105	7 581	-0.400	
15a 15b	8.00	7.939	0.001	7.301	-0.801	
150	8.05	7.900	0.150	7.712	-0.912	
150	/.80	8.037	-0.237	7.248	-0.308	
15h	7.92	8.000	-0.080	7.118	0.002	
15j	7.82	8.006	-0.186	7.080	0.050	
15m	7.89	7.905	-0.015	7.338	-0.198	
150	7.96	7.945	0.015	7.496	-0.216	
15q	7.77	7.564	0.206	7.660	-0.360	
7a	7.33	7.606	-0.276	7.564	-0.244	
7b	7.62	7.669	-0.049	7.129	0.341	
7c	7.57	7.640	-0.070	8.018	-0.498	
7e	7.77	7.695	0.075	7.777	-0.207	
7i	7 28	7 410	-0 130	7 707	-0 117	
7k	7.14	7 004	0.136	7 797	-0.177	
71	7.82	7 543	0.277	7.644	0.076	
7m	7.02	7.543	0.158	7.656	0.070	
7111 7n	8.00	7.502	0.138	7.050	0.004	
711	8.00 7.44	7.070	0.324	7.404	0.330	
70	7.44	7.004	-0.104	7.970	-0.230	
/p	7.43	7.552	-0.122	7.919	-0.179	
/q	7.74	7.630	0.110	7.806	-0.036	
/x	6.74	7.312	-0.572	7.398	0.372	
7y	6.57	6.446	0.124	8.175	-0.375	
/z	7.85	7.822	0.028	7.599	0.201	
7aa	6.94	7.157	-0.217	7.230	0.180	
7ab	7.41	7.423	-0.013	7.225	0.185	
/ac	7.13	7.221	-0.091	7.376	0.054	
7ad	7.47	7.369	0.101	7.392	0.048	
8a	7.72	7.576	0.144	8.001	-0.201	
8aa	8.30	7.746	0.554	7.716	0.104	
8ab	7.74	7.866	-0.126	7.971	-0.151	
8ac	7.70	7.842	-0.142	8.007	-0.157	
8ad	8.00	7.976	0.024	7.417	0.433	
8ae	8.00	7.893	0.107	7.792	0.098	
8af	6.80	7.507	-0.707	7.768	0.152	
8ah	7.14	7.430	-0.290	8.026	-0.066	
8aj	7.30	7.535	-0.235	8.334	-0.334	
8ak	7.32	7.366	-0.046	7.752	0.248	
8al	7.80	7.453	0.347	7.890	0.110	
8am	8.52	8.353	0.167	7.989	0.011	
8an	8.40	8.067	0.333	7.909	0.091	
8a0	8.40	8.442	-0.042	8.007	-0.007	
8ap	7.82	8.056	-0.236	8.089	-0.039	
8aq	8.30	8.121	0.179	/.8/9	0.171	
8ar	8.15	/.9/8	0.1/2	8.051	0.099	
8as	7.59	7.582	0.008	8.440	-0.290	

Table S6. Observed and CoMFA/CoMSIA predicted mGluR2 inhibitory activity II (pIC₅₀ value).

Table S6. Cont.

8at	8.00	7.962	0.038	8.057	0.163
8au	8.52	8.184	0.336	8.174	0.126
8av	8.70	8.549	0.151	8.227	0.073
8aw	7.44	7.679	-0.239	7.853	0.447
8ax	8.10	8.107	-0.007	8.431	-0.131
8b	7.41	7.418	-0.008	8.121	0.279
8c	8.05	8.207	-0.157	8.082	0.318
8d	7.12	7.210	-0.090	7.906	0.614
8f	6.72	7.446	-0.726	8.034	0.486
8h	7.96	7.969	-0.009	8.262	0.258
8i	8.40	8.123	0.277	8.215	0.485
8j	8.30	8.269	0.031	7.089	-0.349
8k	7.74	7.962	-0.222	7.578	-0.438
8m	8.22	8.240	-0.020	7.734	-0.404
8n	8.00	8.371	-0.371	7.807	-0.367
80	8.15	8.504	-0.354	7.945	-0.245
8q	8.30	8.547	-0.247	7.920	-0.180
8r	7.74	7.902	-0.162	7.891	-0.121
8s	8.22	8.021	0.199	8.117	-0.297
8t	7.85	7.938	-0.088	8.009	-0.049
8v	7.80	8.143	-0.343	8.023	0.077
8y	7.52	7.886	-0.366	8.271	-0.051
8z	8.52	7.974	0.546	8.364	0.036

Figure S1. CoMSIA StDev*Coeff contour maps for activityII.(A) Electrostatic contour map (red/blue) in combination with compound **8av**. Red contours indicate regions where negative charges increase activity; blue contours indicate regions where positive charges increase activity; (b) Hydrophobic contour map (yellow/white) in combination with compound **8av**. Yellow contours indicate regions where hydrophobic substituents enhance activity; white contours indicate regions where hydrophilic substituents enhance activity II.

Figure S2. The ligand-based correlation plots of the CoMSIA predicted versus the actual pIC_{50} values using the training (filled black square) and the test (filled blue circle) sets for activity II.

Figure S3. Homology modeling result sheet for mGluR2.

 \bigcirc 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).