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Abstract: In order to obtain structural features of 3-arylpyrimidin-2,4-diones emerged  

as promising inhibitors of insect γ-aminobutyric acid (GABA) receptor, a set of 

ligand-/receptor-based 3D-QSAR models for 60 derivatives are generated using 

Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity 

Index Analysis (CoMSIA). The statistically optimal CoMSIA model is produced with 

highest q2 of 0.62, r2
ncv of 0.97, and r2

pred of 0.95. A minor/bulky electronegative 

hydrophilic polar substituent at the 1-/6-postion of the uracil ring, and bulky substituents at 

the 3'-, 4'- and 5'-positions of the benzene ring are beneficial for the enhanced potency of 

the inhibitors as revealed by the obtained 3D-contour maps. Furthermore, homology 

modeling, molecular dynamics (MD) simulation and molecular docking are also carried 

out to gain a better understanding of the probable binding modes of these inhibitors, and 

the results show that residues Ala-183(C), Thr-187(B), Thr-187(D) and Thr-187(E) in the 

second transmembrane domains of GABA receptor are responsible for the H-bonding 
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interactions with the inhibitor. The good correlation between docking observations and 

3D-QSAR analyses further proves the model reasonability in probing the structural 

features and the binding mode of 3-arylpyrimidin-2,4-dione derivatives within the housefly 

GABA receptor. 

Keywords: 3-arylpyrimidin-2,4-diones; GABA receptor; 3D-QSAR; homology modeling; 

molecular dynamics simulation; molecular docking 

 

1. Introduction 

As ligand-gated chloride channels that belong to the Cys-loop receptor family, ionotropic 

γ-aminobutyric acid (GABA) receptors are widely distributed throughout the vertebrate and 

invertebrate central nervous system where they predominantly mediate the effects of inhibitory 

neurotransmitter GABA [1–3]. The ionotropic GABA receptor exists as pentameric membrane  

protein [4], with each subunit consisting of an N-terminal extracellular domain, four α-helical 

transmembrane (TM) domains, where the TM2 domain lines the integral chloride channel, and a large 

intracellular loop between TM3 and TM4 [5]. In insect, researchers have cloned three kinds of subunits 

of ionotropic GABA receptors: Rdl (resistant-to-dieldrin), LCCH3 (ligand-gated chloride channel 3) 

and GDR (the GABAA and glycine receptor-like subtype of Drosophila), wherein the Rdl is the unique 

subunit known to form functional GABA-gated channel, suggesting its tendency to be a major subunit 

of the insect GABA receptor [5,6]. 

Insect GABA receptors are the molecular targets of non-competitive antagonist insecticides, such as 

fipronil and picrotoxinin, which have been widely applied in pest insect control by exerting their 

effects on insect GABA receptors by way of decreasing the Cl− influx into the neurons [7–11]. The 

polychlorocycloalkane lindane and dieldrin are classical chlorinated insecticides, which have been 

banned due to their persistence in the environment and their resistance to the insects [6]. Fortunately, 

phenylpyrazole fipronil, a major replacement insecticide acting at the GABA receptor, has been 

successfully developed showing excellent selectivity and activity for insect chloride channels, as well 

as low mammalian toxicity and low persistence in environment [12]. However, due to its extensive or 

inappropriate use nowadays, fipronil has exhibited undesirable threats on birds [13,14] and aquatic 

organisms [15]. Therefore, the development of new GABA chloride channel insecticides as an 

alternative is still urgent for the pest insect control recently.  

On GABA receptor, the binding assays of site-directed mutants indicate that amino acids Ala2', 

Thr6' and Leu9' at the TM2 region of GABA receptor might be involved in the interactions with those 

non-competitive antagonists (NCAs) [10,12,16]. However, some other evidences also suggested that 

the structurally diverse NCAs might have distinct binding modes in GABA receptor [2,17,18]. For 

instance, fipronil might bind to the TM3 while picrotoxinin and dieldrin bind to the TM2 region of 

GABA receptor [2]. However, it still remains ambiguous whether all NCAs with diverse structures 

interact at the same or an overlapping site, or multiple sites within the channel pore [16,19]. Recently, 

the replacement of the channel-lining A2' amino acid on the cytoplasmic side (Ala2' to Ser in the  

D. melanogaster Rdl) was also found to confer resistance to diverse insecticides, such as fipronil, 
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dieldrin, picrotoxinin and picrodendrin-O [1,6,20]. A radiolabeled-ligand-binding assay showed that 

Thr6' mutation could completely abolish the binding ability of ethynylbicycloorthobenzoate (EBOB) [16]. 

These mutations potentially perturb the gating kinetics and decrease the binding potency of NCAs. 

Besides the experiments probing the structural features of NCAs interacting with GABA receptor, 

in silico methods, such as the three-dimensional quantitative structure-activity relationship 

(3D-QSAR) analysis, have been introduced to analyze several kinds of NCAs, such as endosulfan [19], 

bicyclophosphates [19], and 1-phenyl-1H-1,2,3-triazoles [21]. The specific structural and electrostatic 

features defined by the comparative molecular field analysis (CoMFA) and comparative molecular 

similarity indices analysis (CoMSIA) are found to be essential for enhancing the binding of these 

NCAs in the GABA receptors [21]. In addition, hydrophobicity, a possible factor controlling the 

transport behavior of compounds, is also significant in governing variations in insecticidal activity [19]. 

More recently, to quest new GABA chloride channel insecticides, a series of  

3-arylpyrimidin-2,4-diones (APDs) have been developed exhibiting equivalent efficacies to fipronil by 

in vitro GABA assay [9]. The in vivo experiments also showed that APDs not only excellent control 

against the southern corn rootworm in the greenhouse but also are insecticidal against the plant hopper, 

rice leafhopper, twenty-eight-spotted lady beetle and two-spotted spider mite with no method of 

analysis disclosed [9]. As mainly concerns are taken into account with the potency of APDs, several 

questions about APDs still remain to be clarified: (1) what are the structural features of APDs 

indispensable for improvement of the potency? (2) how do APDs interact with the insect’s GABA 

receptor at a molecular level? (3) what is the similarity/difference of the binding sites between these 

compounds and other reported NCAs? 

Therefore, to answer the above questions and to explore these key structural features impacting the 

potency of APDs, 3D-QSAR analyses using the CoMFA and CoMSIA methodologies are applied in 

this work on a group of APDs analogues as GABA receptor ligands. In addition, homology modeling, 

molecular docking and molecular dynamics simulation are also performed to elucidate the probable 

binding modes of these inhibitors within the GABA receptors. The good consistency between 3D 

contour maps and the topographical features of the binding sites of APDs leads to our identification of 

the developed models, which might provide useful information for further guiding the structural 

modification and design of new potential APDs insecticides. 

2. Results and Discussion 

2.1. Statistical Analysis 

Ligand- and receptor-based alignment methods were applied to produce the models for CoMFA and 

CoMSIA analysis. In terms of statistical parameters, the q2 (0.60 and 0.62), r2
ncv (0.94 and 0.97) and 

r2
pred (0.82 and 0.95) values obtained from ligand-based models (Table 1) suggest that these models 

had good statistical correlation and predictive capacity. Additionally, the good consistency of the 

ligand-based models between the 3D-QSAR maps and docking results also indicates the robustness 

and reasonability of the models. However, compared with the ligand-based models, the receptor-based 

ones generate the low q2 (0.34 and 0.55) and r2
ncv (0.81 and 0.85) values (Table 1), which indicate the 

bad predictive capacity of the receptor-based models. Moreover, the receptor-based alignment was 
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more scattered than the ligand-based one (as shown in Figure 1). Thus, the models derived from 

ligand-based alignment are better than those derived from receptor-based one. 

Table 1. Statistical results of CoMFA and CoMSIA models. 

Parameters 
Ligand-Based Receptor-Based 

CoMFA CoMSIA CoMFA CoMSIA 

q2 a 0.60 0.62 0.34 0.55 
r2

ncv 
b 0.94 0.97 0.81 0.85 

SEE c 0.48 0.32 0.78 0.70 
F d 90.71 126.18 56.61 45.23 

r2
pred 

e 0.82 0.95 0.85 0.90 
SEP f 1.17 1.22 1.44 1.21 

Nc 
g 6 10 3 5 

Field contribution 

S 0.573 0.139 0.533 0.222 
E 0.427 0.338 0.467 - 

H - 0.383 - 0.515 
D - 0.059 - 0.091 

A - 0.081 - 0.173 
a Cross-validated correlation coefficient using the LOO methods; b Non-cross-validated correlation 

coefficient; c Standard error of estimate; d Ratio of r2
ncv explained to unexplained = r2

ncv/(1 − r2
ncv);  

e Predicted correlation coefficient for the test set compounds; f Standard error of prediction;  
g Optimal number of principal components. 

The CoMFA model describing APDs inhibition using both S and E fields produces a q2 = 0.60 and 

an r2
ncv = 0.94 using six optimum components with an F-statistic value (F = 90.71) and a standard 

error of estimate (SEE = 0.48), which signify a good statistical correlation and predictive capacity of 

the model (q2 > 0.5) [22]. The corresponding contributions of S and E fields are respectively 57.3%, 

and 42.7%, indicating that the S field has a greater influence than the E field in inhibition potency.  

The external test set of 15 molecules was employed with the purpose of testing the stability and 

predictive ability of the constructed CoMFA model. Compounds 14 and compound 21 regarded as 

outliers were omitted from the final analysis, since their differences between the experimental and 

predicted pKi values were more than one logarithmic unit. A bulky higher hydrophobic substituent of 

compound 14 and hydrogen substituent of compound 21 at 1-position of the uracil ring might account 

for their outlier status. The predicted correlation coefficients (r2
pred) for the CoMFA model is 0.82, 

proving its proper capability for prediction of the test inhibitors. The correlation between the predicted 

and experimental pKi values of all compounds in the CoMFA model is shown in Figure 1A. 

In comparison to CoMFA, CoMSIA methodology using the same standard has an advantage of 

exploring more field descriptors for the APDs inhibition. In the CoMSIA model, statistical parameters 

show that S, E, H, D and A features significantly influence the activity of the compounds. The q2 (0.62), 

r2
ncv (0.97), SEE (0.32) and F (126.18) values obtained from the model indicate a good predictive 

capacity and internal consistency. In addition, the percentages of the variance explained by S, E, H, D 

and A descriptors are respectively 0.139, 0.338, 0.383, 0.059 and 0.081, implying that the hydrophobic 

field which is not included in the CoMFA model is important for explaining the potency of the 
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molecules. Furthermore, the CoMSIA model possesses better prediction with high r2
pred (0.95) than 

CoMFA model under the same outliers. The correlation between the predicted activities and 

experimental pKi values is displayed in Figure 1B. Overall, CoMSIA model is more reliably applied 

than the CoMFA model in description of the APDs inhibition and the design of new inhibitors. 

Figure 1. Plot of the predicted pKi versus the experimental pKi values for the models based 

on the training (filled black squares) and test (filled blue rhombuses) sets. (A) CoMFA,  

(B) CoMSIA. The solid line is the regression line for the fitted and predicted bioactivities 

of training compounds. The outliers in test set are shown in orange triangles. 

   

2.2. 3D-QSAR Contour Maps 

To visualize the information content of the derived 3D-QSAR models, CoMFA and CoMSIA 

contour maps were generated by plotting the field energies at each lattice point as the percentage of the 

contribution to the CoMFA or CoMSIA equation, which were calculated as the scalar results of the 

coefficient and the standard deviation. The colored polyhedra in the map surrounds all those lattice 

points where the 3D-QSAR models strongly associate the changes in the compounds’ field values with 

those changes in the biological potency. To aid in visualization, the highest active compound 58  

(pKi = 9.3) is overlaid in the contours as a reference. 

The CoMFA contour maps of steric and electrostatic fields are shown in Figures 2A and 2B, 

respectively. In Figure 2A, two large regions of green contour close to the 3'-, 4'-, 5'-positions of the 

benzene ring indicate that bulky substituents are preferred in those positions. Compounds 7 

(3',4',5'-triCl) and 22 (3',4',5'-triCl) completely integrate with the green contours, apparently 

responsible for their higher potencies than the corresponding analogs (compounds 1–4, 12, 40, 42, 43, 

47, 49) without -Cl at all these positions. Additionally, a small green contour near the -CF3 substituent 

at 6-position of the A ring explains why the binding affinity of compound 35 (6-propyl) is higher than 

that of the corresponding compound 29 (6-CH3). Some regions of yellow contour are noted near the 

amino substitution at 1-position of ring A, suggesting that a bulky group appeared there would 

decrease the activity. This is in agreement with the fact that the substituent of compound 20 is too 

bulky to fit into yellow region and thus is responsible for its weak inhibitory activity. 
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Figure 2. Stdev*coeff (A) steric, (B) electrostatic contour maps of ligand-based optimal 

CoMFA model. The color code is as follows: (A) green and yellow contours indicate 

favorable and unfavorable bulky groups, respectively; (B) blue and red contours indicate 

favorable and unfavorable electropositive groups, respectively. The compound 58 in ball 

and stick is displayed as a reference. (Yellow atom: fluorine; red: oxygen; blue: nitrogen; 

green: chlorine; brown: bromine). 

 

Due to the strong electron-withdrawing ketone substituent, two large regions of blue contour above 

and below ring A, corroborate the favorability of partial positive charge in these regions. A small blue 

contour near 6-position of ring A suggests that an appropriate electropositive substituent at the position 

may lead to an increase in the binding affinity. This may explain why compound 29 shows decreased 

potency compared with compounds 24 (6-isopropyl) and 30 (6-butyl) by replacing the isopropyl or 

butyl group with an -CH3 group. Besides, a large red polyhedral near the amino substituent of ring A 

suggests that electronegative substituents are well tolerated there. The fact that the -CH2CF3 and 

-CH2CN substituents at 1-position of ring A of compounds 15 and 17 respectively are more beneficial 

to the activities than the -CH2COCH3 group of compound 16 is just the case. Other red contours 

surrounding the -CF3 substituent of ring A allow us to speculate that electronegative substituent would 

increase the binding affinities. The good inhibitory potencies of molecules 25(-CF2CF2CF3) and 

33(-CN) are due to the orientations of these substituents towards the above red contours. In addition, a 

small red area also appears above the meta-position of the benzene ring. The above information offered 

from the CoMFA contour maps is helpful for us to further explore the inhibitor-GABA  

receptor interactions. 

With respect to the steric and electrostatic contour maps, the information of contour maps obtained 

from the optimal CoMSIA model (Figures 3A and B) is mostly similar to that derived from above 

CoMFA one except for the different distribution ranges. The hydrophobic interaction in the CoMSIA 

model is represented in Figure 3C. Two large orange contours surrounding the meta-position of 

benzene ring demonstrate the importance of the -Cl group for the binding activity. Meanwhile, a super 

large white contour map sets around the 1-position of ring A, suggesting the favor of hydrophilic 

groups for potency. When comparing compound 23 (-NHCOCH3) with 16 (-CH2COCH3), as well as 

22 (-NH2) with 7 (-CH3), it can be easily found that their activity discrepancies also attribute to this 

white contour. The -CF3 group of ring A fills into several large white contours, indicating that 

hydrophilic groups are essential for the inhibitory activity. Replacing -CH3 group (29) by -CN group 

(33) at C-6 leads to increased activity. 
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Figure 3. stdev*coeff (A) steric, (B) electrostatic, (C) Hydrophobic, (D) H-bond donor and 

(E) H-bond acceptor contour maps of ligand-based optimal CoMSIA model. The color 

code is as follows: (A) green and yellow contours indicate favorable and unfavorable bulky 

groups, respectively; (B) blue and red contours indicate favorable and unfavorable 

electropositive groups, respectively; (C) orange and white contours indicate favorable and 

unfavorable hydrophobic groups, respectively; (D) cyan contours indicate favorable 

H-bond donor groups; (E) magenta contours indicate favorable H-bond acceptor groups. 

The compound 58 in ball and stick is displayed as a reference. (Yellow atom: fluorine; red: 

oxygen; blue: nitrogen; green: chlorine; brown: bromine) 

 

The CoMSIA contour maps of the hydrogen-bond donor and acceptor fields are shown in Figures 

3D and 3E, respectively. In Figure 3D, a large cyan contour appears enclosing the amino substituent of 

ring A, which suggests that the amino group acts as an H-bond donor by forming H-bond with the 

residue of the binding site. The cyan contour implies that an optimum H-bond donor group is expected 

to increase the activity, which agrees well with the fact that compounds 50–60 with the amino group at 

the N-1 show significantly increased potency compared to the analogous compounds 7 and 13–21. In 

the H-bond acceptor contour map, two magenta contours near two ketone groups of ring A indicate the 

importance of H-bond acceptor group for the binding activity. In addition, the presence of another 

magenta contour near 6-position of ring A reveals the extreme importance of the -CF3 group in 
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6-position. 

The structural features obtained from above CoMSIA models are depicted in Figure 4. Changes in 

the binding affinity of the inhibitors could be rationalized by modifying the inhibitors based on these 

key structural features: (i) Electronegative hydrophilic polar substituents with minor/bulky size like 

-NH2/-CF3 groups are preferential at 1-/6-positions of ring A respectively, which can enhance the 

activity of the inhibitor by providing a hydrogen bonding interaction with the protein target; (ii) Bulky 

electronegative substituents at 3'- and 4'-positions with a simultaneous big group at 5'-position of the 

benzene ring are beneficial for the enhanced potency of the inhibitors. 

Figure 4. Structural features obtained from ligand-based optimal CoMSIA model. The 

common substructure of model compound 58 is shown in bold. 

 

2.3. Homology Modeling and Molecular Dynamics Simulation 

Although the subunit composition of native insect GABA receptor is unknown, it has been 

confirmed that Rdl subunit can be expressed to form functional homo-oligomeric receptor [6], which 

has been used by Ian McGonigle to determine the critical features of GABA receptor agonists [23].The 

modeling of Rdl subunit was carried out based on the template of glutamate-gated chloride channel 

receptor in this work. It is known that both the GABA receptor and glutamate receptor are members of 

the superfamily of Cys-loop ligand-gated ion channels, and their subunits both contain four TM 

regions. Since the Rdl subunit of housefly GABA receptor in the TM domains has a high level of 

sequence identity (47%) with the template, especially in the TM2 domain (62%). The multiple 

sequence alignment of TM domains between the Rdl subunit with the chains of glutamate receptor 

(shown in Figure 5) demonstrates that the TM domains between the GABA receptor and glutamate 

receptor are relatively conserved, suggesting that glutamate receptor structure is an appropriate 

template for the modeling of the TM domains of GABA receptor. During the modeling process, the 

relative stability of the model was evaluated by the discrete optimized potential energy (DOPE), which 

scores of the template and the optimal modeled Rdl subunit are shown in Figure 6. Compared with the 

DOPE scores of the template, every residue of the model shows similar energy, suggesting that the 

loop refinement is not necessary for the optimal model. The overview of the final modeled housefly 
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GABA receptor is shown in Figure 7. 

Figure 5. Alignments of the sequences of the TM domains between the Rdl subunit of 

housefly GABA receptor and the 3RHW chain A template. Different types of amino acids 

are depicted in different colors. The four transmembrane domains (TMDs) of Rdl subunit 

are indicated with bold lines and the positions of the 2', 6' and 9' residues in TM2 of  

Rdl subunit are also indicated. “*”, identical residues; “:”, conserved substitutions;  

“.”, semi-conserved substitutions. 

 

Figure 6. Discrete optimized potential energy (DOPE) score profiles of the template and 

modeled Rdl subunit. 

 

Figure 7. The final refined TM domains of the housefly GABA receptor shown in cartoon 

representation. Green: TM1, TM3, TM4; magenta: TM2. 
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To obtain the “real” bioactive conformation, 5 ns molecular dynamic simulation was employed to 

make the structure of the refined receptor more reasonable by considering both the impacts of the 

receptor flexibility and the effects of water solvation on the complex. The dynamical picture of the 

conformational changes is shown via the root-mean-square deviation (RMSD) in Figure 8.The RMSD 

of the trajectory with respect to the initial structure ranges from 1 to 5.5 Å, and reaches a plateau about 

5.3 Å after 3 ns, indicating that the structure conformation thereafter is stable and reliable for the 

subsequent docking study. 

Figure 8. Plot of the root-mean-square deviation (RMSD) of refined GABA receptor 

structure versus the MD simulation time. 
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2.4. Docking Analysis and Comparisons with 3D-Contour Map 

Docking, which plays an important role in the rational design of drugs, is frequently used to predict 

the binding orientation of drug candidates to their protein targets (active sites) and also to predict the 

binding affinity of the molecules in turn [24]. In the present study, dockings of all compounds into the 

housefly GABA receptor were carried out to find the optimal orientations of the compounds. Based on 

previous studies [10,12,16,25], we chose the T6' (Figure 5) residue of Rdl subunit as the active site in 

the chloride ion channel to conduct the docking of the most potent compound 58. The analyze of the 

top 10 scored (4.49–2.23) docking poses (as shown in Figure 9) shows that the top 5 scored poses 

display similar orientations (shown as orientation I) while the seventh and tenth scored poses show the 

opposite orientations (orientation II). From these poses, the structural conformation of the highest 

scored pose is adopted since it has the highest binding free energy and also is well consistent with the 

QSAR contour maps as mentioned below in docking analysis. More importantly, the binding sites of 

the docking model are in accordance with site-directed mutation assays [5,12,16], which imply that 

amino acids A2', T6' and L9' (Figure 5) in TM2 region play key roles in the inhibitor recognition. 

However, the sixth and ninth scored conformations have a different orientation (orientation III) with 

other poses, which results in changing the steric environment of the compound to decrease the score 

and create the weak binding pattern. Combined, the obtained structural conformation with compound 

58 is considered to be the optimal docking model (as shown in Figure 10).  
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Figure 9. The structural conformations of the top 10 scored poses. Blue: orientation I;  

red: orientation II; yellow: orientation III. 

 

Figure 10. Docking of model compound into the GABA binding sites. Model compound 

and residues within 4.5 Å are shown as stick representation. Hydrogen bonding 

interactions are shown as red dashed lines. Yellow and magenta: carbon; red: oxygen; blue: 

nitrogen; cyan: fluorine; green: chlorine; brown: bromine. 

 

In Figure 10, the key residues that form the binding pocket of GABA receptor are Val-186(B), 

Thr-187(B), Leu-190(B), Ala-183(C), Thr-187(C), Val-182(D), Ala-183(D), Val-186(D), Thr-187(D), 

Ala-180(E), Leu-184(E) and Thr-187(E), which are located in the TM2 regions of four segments. The 

model compound is anchored in the binding pocket via several H-bonds. The amide of ring A is 

capable of making similar H-bonds with the backbone carbonyl of Ala-183(C) (-NH•••O, 3.89 Å, 
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108.3°) and the side chain hydroxyl group of Thr-187(D) (-NH•••O, 3.60 Å, 75.8°) as H-bond donors, 

which are consistent with the cyan contours at the H-bond contour maps (Figure 3D) near this position. 

These H-bonding interactions of the amide indicate that the potential H-bond-donating NH plays a 

critical role in the binding activity. Additionally, ketone groups at 2- and 4-positions as H-bond 

acceptors prefer to construct H-bonds with the side chain hydroxyl groups of Thr-187(D) (-OH•••O, 

3.54 Å, 97.4°) and Thr-187(E) (-OH•••O, 3.38 Å, 162.2°), respectively. It is remarkable to note that the 

-CF3 group of ring A forms a weak H-bond (5.60 Å) with the backbone NH of Thr-187(B). These 

observations as mentioned above are in full agreement with the H-bond accepter contour map  

(Figure 3E). As an outlier in the ligand-based model, compound 21 shows little different orientation in 

the docking pocket, and is also considered to be an outlier in the structure-based model. For this 

compound, the absence of H-bond-donating substituent at 1-position of the ring A only results in the 

H-bond formation between its ketone groups and the side chains of Thr-194(C) and Thr-194(D) in the 

binding pocket, indicating the weak binding pattern of this compound. This clearly demonstrates why 

compound 21 is so low in activity compared with compound 58 (pKi = 9.3). 

The docked model shows that the amide of ring A fits nicely into a relatively large pocket composed 

by Ala-183(C), Thr-187(C) and Thr-187(D), indicating that the steric interaction in this hydrophilic 

region is deleterious to the inhibitory activity. However, compared with compound 58, the large 

-CH2C(CH3)3 substituent of compound 14 leads to steric bump with Thr-194(A) and Thr-194(E) 

residues and disturb the optimal position of the compound in the pocket, which is one reason of the 

poor activity of compound 14 (pKi = 6.2, an outlier in the model). This result is well consistent with 

the steric contour map of the CoMSIA model, which owns a yellow contour (Figure 3A) at the same 

location. Residues Val-186(B), Thr-187(B) and Leu-190(B), not only form a sufficient hydrophilic 

room to accommodate a large hydrophobic -CF3 substituent, but also are suitable for electrostatic 

interactions with negatively charged -CF3 group, which indicates that a bulky and electronegative 

substituent at this position would be favorable to the activity. Figure 10 also shows a comparatively 

large empty space formed by hydrophobic residues Val-182(D), Ala-183(D), Ala-180(E) and 

Leu-184(E) around the benzene ring, suggesting that a suitable bulky electronegative substituent on the 

benzene ring is needed and would have a favorable interaction with the backbone NH of Val-182(D) 

and Ala-183(D). The blue contour above the A ring (Figure 3B) implying an electropositive favorable 

region, is consistent with the appearance of Val-186(D) and Thr-187(D) surrounding this area. These 

observations are also demonstrated by the presence of several green and red contours (Figures 3A, 3B 

and 3C) around these regions. Overall, the results indicate that the binding model obtained from the 

docking analysis is reasonable and suggest that the amide and ketone groups play major roles in the 

high binding potencies of these inhibitors of the GABA receptor. 

2.5. Binding Mode for APDs in the Housefly GABA Receptor 

To identify the binding sites of NCAs in GABA-gated chloride channels, some mutagenesis studies 

show that the amino acids include Ala2 (A2'), Leu3 (L3'), Thr6 (T6') and Leu9 (L9') (index numbers 

for the TM2 region) in the channel lumen are responsible for the interactions of NCAs [10,12,16,25]. 

Correspondingly, as illustrated in our docking model of the complex (Figure 10), the model compound 

fits into the putative binding pocket lined by five TM2 segments in the channel. The analyses of 
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H-bond interactions in the docking complex indicate that A2' (Ala-183) and T6' (Thr-187) (Figures 5 

and 10) play key roles in the inhibiting interaction of APDs with housefly GABA receptor, which is 

consistent with earlier mutagenesis study in the β3 homopentamer that A2' and T6' mutations reduce or 

destroy the NCA radioligand binding [16]. In addition, A-1' (Ala-180), 1'V (Val-182), A2' (Ala-183), 

L3' (Leu-184), V5' (Val-186), T6' (Thr-187) and L9' (Leu-190) residues without H-bonding contacts 

with the compound, are likely to contribute to the APDs’ binding by maintaining the structural 

integrity of the binding site, or mediating the local conformational movements near the binding site. 

However, the binding sites for APDs focusing on the A2' and T6' in TM2 region are shared as two 

identical key sites with other antagonists, such as fipronil, picrotoxinin and EBOB [5,12,16]. Although 

the amino acids V5' and L9' of Rdl subunit are indirectly involved in the binding of APDs, the amino 

acids at 5' and 9' positions in TM2 region are also two potential sites responsible for the binding of 

NCAs, while the fipronil-related NCAs [10,12] are in hydrophobic contact with I5' and L9' of β3 

subunit. Whereas, compared with fipronil [2], S17' residues within the channel does not exist in the 

interaction of APDs. In summary, structurally different classes of NCAs bind to two identical sites and 

two potential sites in different or overlapping orientations within the channel pore of the GABA 

receptor, except for a few NCAs with multiple sites.  

3. Materials and Methods 

3.1. Dataset 

Presently, sixty 3-arylpyrimidin-2,4-diones derivatives acting on housefly GABA-gated chloride 

channel collected from reference [9] were used as dataset with a wide activity ranging from 3.8 to 9.3 

(pKi values), which was then divided into a training set and a test set in a ratio of 3:1 based on 

adequate coverage in terms of both the inhibitory activity and the structural diversity. The training set 

was used to construct 3D-QSAR models and the test set (asterisked molecules in Table 1) was used for 

the model validation. Table 2 shows the structures and biological data (pKi) of all compounds. 

Table 2. Structures and inhibitory activities of all 3-arylpyrimidin-2, 4-diones (APDs) in the dataset. 

N

N R2

O

O

R1

X
2

4

3

6

5  

No X R1 R2 pKi 
a No X R1 R2 pKi 

a 

1 4-Cl CH3 CF3 5.4 31 3-Cl,4-Cl,5-Cl CH3 CH2SCH3 4.6 

2 3-Cl CH3 CF3 5.8 32 3-Cl,4-Cl,5-Cl CH3 COOH 4.0 

3 3-Cl,5-Cl CH3 CF3 6.8 33 3-Cl,4-Cl,5-Cl CH3 CN 6.2 

4 # 3-Cl,4-Cl CH3 CF3 6.6 34 3-Cl,4-Cl,5-Cl CH3 CH2CH2CF3 6.4 

5 # 2-Cl,3-Cl CH3 CF3 6.6 35 3-Cl,4-Cl,5-Cl CH3 CH2CH2CH3 6.2 

6 # 2-Cl,6-Cl CH3 CF3 5.6 36 3-Cl,4-Cl,5-Cl CH3 CF2CF2CF2CF3 5.0 

7 # 3-Cl,4-Cl,5-Cl CH3 CF3 8.0 37 3-Cl,4-Cl,5-Cl CH3 2-F-phenyl 4.0 

8 2-Cl,3-Cl,5-Cl CH3 CF3 7.4 38 # 3-Cl,4-Cl,5-Cl CH3 4-F-phenyl 5.0 
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Table 2. Cont. 

No X R1 R2 pKi 
a No X R1 R2 pKi 

a 

9 2-Cl,4-Cl,6-Cl CH3 CF3 5.2 39 # 3-Cl,4-Cl,5-Cl CH3 Cl 5.6 

10 2-Cl,3-Cl,6-Cl CH3 CF3 7.6 40 # 4-Cl NH2 CF3 6.7 

11 2-Cl,4-Cl,5-Cl CH3 CF3 7.1 41 # 2-Cl,4-Cl NH2 CF3 7.5 

12 -H CH3 CF3 4.0 42 3-Cl,5-Cl NH2 CF3 7.7 

13 3-Cl,4-Cl,5-Cl CH(CH3)2 CF3 6.5 43 # 3-Cl,4-Cl NH2 CF3 7.7 

14 # 3-Cl,4-Cl,5-Cl CH2C(CH3)3 CF3 6.2 44 2-Cl,4-Cl,5-Cl NH2 CF3 7.5 

15 3-Cl,4-Cl,5-Cl CH2CF3 CF3 7.2 45 # 2-Cl,4-Cl,6-Cl NH2 CF3 7.5 

16 3-Cl,4-Cl,5-Cl CH2COCH3 CF3 3.8 46 2-Cl,6-Cl NH2 CF3 7.1 

17 3-Cl,4-Cl,5-Cl CH2CN CF3 7.4 47 3-Cl NH2 CF3 6.5 

18 3-Cl,4-Cl,5-Cl CH2Ph CF3 3.9 48 2-Cl,3-Cl,4-Cl NH2 CF3 8.5 

19 3-Cl,4-Cl,5-Cl CH2CH2OCH3 CF3 6.6 49 -H NH2 CF3 5 

20 3-Cl,4-Cl,5-Cl CH2CH2CH2CH3 CF3 4.0 50 3-Cl,4-I,5-Cl NH2 CF3 9.3 

21 # 3-Cl,4-Cl,5-Cl H CF3 5.5 51 3-Cl,4-SOCH3,5-Cl NH2 CF3 7.5 

22 3-Cl,4-Cl,5-Cl NH2 CF3 8.8 52 3-Cl,4-SCH3,5-Cl NH2 CF3 8.7 

23 3-Cl,4-Cl,5-Cl NHCOCH3 CF3 5.3 53 # 3-Cl,4-Ph,5-Cl NH2 CF3 8.9 

24 3-Cl,4-Cl,5-Cl CH3 CH(CH3)2 6.3 54 3-Cl,4-OCH3,5-Cl NH2 CF3 8.5 

25 3-Cl,4-Cl,5-Cl CH3 CF2CF2 CF3 7.3 55 3-Cl,4-(2-thienyl),5-Cl NH2 CF3 9.1 

26 3-Cl,4-Cl,5-Cl CH3 CH2O CH3 5.1 56 # 3-Cl,4-N(CH3)2,5-Cl NH2 CF3 8.8 

27 3-Cl,4-Cl,5-Cl CH3 Ph 4.0 57 3-Cl,4-OCH(CH3)2,5-Cl NH2 CF3 9.0 

28 3-Cl,4-Cl,5-Cl CH3 CH2SO2 CH3 42 58 3-Cl,4-Br,5-Cl NH2 CF3 9.3 

29 3-Cl,4-Cl,5-Cl CH3 CH3 4.6 59 3-Cl,4-CF2CF3,5-Cl NH2 CF3 8.8 

30 3-Cl,4-Cl,5-Cl CH3 C(CH3)3 7.5 60 # 3-F,4-CF3,5-F NH2 CF3 8.7 
# Test set compound; a obtained from 3[H] EBOB binding assay using housefly head tissue. 

3.2. Molecular Modeling and Alignment 

Molecular modeling and alignment were carried out by using the SYBYL package (Tripos 

Associates, St. Louis, MO, USA). The energy optimization of each compound with Gasteiger-Huckel 

charges was performed using the Tripos force field [26] with a distance-dependent dielectric and 

Powell gradient algorithm with a convergence criterion of 0.05 kcal/mol. To obtain the optimal 

3D-QSAR statistical model, two different alignment rules, i.e., the ligand- and receptor-based 

alignments were adopted to identify the most efficient alignment approach for this data set. In the first 

approach, all compounds were aligned to the most potent compound 58 by the Align-Database 

function using the common substructure (Figure 11). For the second method, the bioactive 

conformations of all compounds were firstly derived from docking and then processed using the first 

method. The resulting ligand-/receptor-based alignment models are shown in Figure 11. 
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Figure 11. The alignment models of all compounds: (A) ligand-based alignment;  

(B) receptor-based alignment; (C) The common substructure of compound 58 for 

alignment is shown in bold. 

 

3.3. Homology Modeling and Molecular Dynamics Simulation  

Protein sequence of Rdl subunit in Musca domestica (house fly) GABA receptor (ID AAC23602) 

was retrieved from the NCBI web site [27]. Before homology modeling, the sequence was edited to 

remove the extracellular region and residues in the loop between transmembrane (TM) domains 3 and 

4 due to unavailable original template and their no contribution to the binding of NCAs. The TM 

domains were modeled using MODELLER software [28] with the template of X-ray crystal structure 

of glutamate-gated chloride channel receptor (PDB code 3RHW, 3.26 Å) based on the sequence and 

structure comparison of the TM domains of GABA-gated chloride channel receptor. The multiple 

sequence alignment of TM domains between the Rdl subunit with the chains of glutamate receptor was 

carried out using the ClustalW program [29]. To evaluate the fold of the optimal model, the discrete 

optimized potential energy score of each residue was calculated by using MODELLER [30]. The 

pentameric GABA receptor was created by superimposing the optimal monomer onto the 

corresponding monomers of the template, followed by energy optimization using MD simulation to 

remove the steric clashes at the subunits interfaces. 

The MD simulation was carried out using theGromacs4.0 package [31]. GROMOS96 43a1 force 

field [32] was used to describe the protein parameters. A rectangular box with a side length of  

95.49 Å × 96.65 Å × 101.01 Å was applied for the system, which was neutralized by adding 5 Na+ 

counterions and then solvated in a truncated octahedral box of SPC waters with [33] a margin distance 

of 10 Å. All bonds involving hydrogen were constrained using the LINCS algorithm [34]. The 

long-range electrostatic interaction was calculated by using the particle-mesh-Ewald (PME)  

method [35] with a cutoff of 10.0 Å. All simulations were performed at constant temperature (300 K) 

and pressure (1 atm) using the Berendsen coupling algorithm [36] under periodic boundary conditions. 

Prior to MD simulation, the whole system was subjected to 10,000 steps of energy minimization to 

relieve the geometric strain and close intermolecular contacts. The minimized system was gradually 

heated up to and maintained at 300 K with a coupling coefficient of 1.0/ps in a pressure-constant 

period of 50 ps. Subsequently, a 500 ps Langevin dynamics calculation was performed with a 2 fs time 

step at constant temperature (300 K) and pressure (1 atm). Finally, the production phase was run for 5 ns 

with a 2 fs time step. Coordinate trajectories were recorded every 2 ps during the entire simulation process. 
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3.4. Docking 

To predict the appropriate interaction of APDs with housefly GABA receptor, molecular  

docking was performed to dock all compounds into the active site of the GABA receptor using the 

Surflex module of SYBYL. During Surflex-docking, two parameters, i.e., protomol-bloat and 

protomol-threshold were used to define the protomol, which is a computational representation of the 

intended binding site where putative ligands are aligned [37]. The putative poses of docked compounds 

were scored using the Hammerhead scoring function, which also served as an objective function for 

local optimization of poses [38]. According to each scoring function, the highest-ranking poses for all 

compounds were aligned together for CoMFA and CoMSIA modeling.  

3.5. 3D-QSAR Analysis 

In CoMFA, the steric and electrostatic interactions of the probe atoms with each atom in the 

molecule were computed by using the Tripos force field [26] with radius 1 Å and charge +1 in a 

regularly spaced (2 Å) grid. The steric and electrostatic energy values were truncated at a default value 

(30 kcal/mol). Five similarity index descriptors of CoMSIA–steric (S), electrostatic (E), hydrophobic 

(H), hydrogen bond donor (D) and hydrogen bond acceptor (A), were calculated using the same lattice 

box used in the CoMFA calculations with the standard settings: charge +1, radius 1 Å, hydrophobicity 

+1, hydrogen bond donating +1, hydrogen bond accepting +1 [37]. CoMSIA similarity indices (AF) for 

a molecule j with atoms i at the grid point q are calculated by Equation (1) as follows:  

 
2

, ,
iqarq

F K probe k ikA j e 


   (1) 

where k represents the steric, electrostatic, hydrophobic, hydrogen-bond donor and acceptor properties; 

i is the summation index over all atoms of the molecule j under investigation; ωik is the actual value of 

the physicochemical property k of atom i; riq is the mutual distance between probe atom at grid point q 

and atom i of the test molecule; ωprobe,k is the value of the probe atom. The attenuation factor α was set 

to the default value of 0.3.  

Partial least-squares (PLS) method was used to linearly correlate the CoMFA/CoMSIA descriptors 

to the binding affinity values. The optimal number of PLS components was determined by 

leave-one-out (LOO) cross-validation method with a cross-validation coefficient (q2). Using the 

optimum number of components, non-cross-validated correlation coefficient (r2
ncv) was calculated 

subsequently. The predictive correlation coefficient r2
pred, based on the test set molecules, was 

calculated by Equation (2) as follows: 

r2
pred = 1 − (PRESS/SD) (2) 

where SD is the sum of squared deviations between the biological activities of the test set molecules 

and the mean activities of the training set molecules, and PRESS is the sum of squared deviation 

between the actual and predicted activities of the test set molecules. Finally, CoMFA/CoMSIA 

coefficient maps were generated by interpolation of the pairwise products between the PLS coefficients 

and the standard deviations of the corresponding CoMFA and CoMSIA descriptor values. 
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4. Conclusion 

In this work, the ligand- and receptor-based 3D-QSAR studies on 60 APDs of insect GABA 

receptor inhibitors are performed using CoMFA and CoMSIA tools. From the resultant models, the 

reasonable statistical properties prove that the 3D-QSAR models developed in this work are stable and 

statistically reliable. The resulting contour maps generated from the best CoMFA and CoMSIA models 

correlate well with the structural and functional features of APDs in the binding site. On the other hand, 

the three-dimensional model of housefly GABA receptor is generated by homology modeling with the 

X-ray crystal structure of the glutamate-gated chloride channel receptor as a template. Molecular 

docking was employed to elucidate the potential binding mode of APDs inhibitors in the housefly 

GABA receptor, which reveals that some residues, such as A2' and T6' in TM2 region of Rdl subunit, 

play important roles in the inhibitor binding. In conclusion, the good consistency between the 

3D-QSAR and docking results proves again the robustness of the 3D-QSAR models and the 

reasonability of the docking model, which can be utilized in future rational design of novel  

potential insecticides. 
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