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Abstract: To design ARC-111 analogues with improved efficiency, we constructed the 

QSAR of 22 ARC-111 analogues with RPMI8402 tumor cells. First, the optimized support 

vector regression (SVR) model based on the literature descriptors and the worst descriptor 

elimination multi-roundly (WDEM) method had similar generalization as the artificial 

neural network (ANN) model for the test set. Secondly, seven and 11 more effective 

descriptors out of 2,923 features were selected by the high-dimensional descriptor selection 

nonlinearly (HDSN) and WDEM method, and the SVR models (SVR3 and SVR4) with 

these selected descriptors resulted in better evaluation measures and a more precise 

predictive power for the test set. The interpretability system of better SVR models was 

further established. Our analysis offers some useful parameters for designing ARC-111 

analogues with enhanced antitumor activity. 
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1. Introduction 

Topoisomerase I (TOP I) is a clinical target for the treatment of cancer [1]. Camptothecin (CPT) 

and several CPT derivatives (e.g., CPT-11, topotecan) have been developed for clinical use due to  

CPT-induced TOP I inhibition, referred to as a cleavage complex. Despite their potential, CPTs are 

chemically unstable, and are substrates for the ATP-binding cassette (ABC) transporter breast cancer 

resistance protein (BCRP) known to be expressed in many human tumors, which bind to human serum 

albumin (HAS) in their carboxylate forms, leading to reduced potency in humans compared to  

mice [2]. So it is necessary and important to develop alternative TOP I targeting agents.  

8,9-Dimethoxy-5-(2-N,N-dimethylaminoethyl)-2,3-methylenedioxy-5H-dibenzo[c,h][1,6] naphthyridin-6-

one (ARC-111) is a promising new TOP I-targeting antitumor drug with a different drug resistance 

profile [2]. Cytotoxicity of ARC-111 in RPMI 8402 tumor cells has been proved to be correlated with 

TOP I-targeting activity, so ARC-111 is thought to be one of the assessment indicators for antitumor 

activities [3]. 

The quantitative structure-activity relationship (QSAR) is a powerful approach used for studying 

the relationship between drug activities and molecular structures, and it is helpful to explain how 

structural features determine drug activities. Especially, an acceptable QSAR has the advantages of 

higher-speed and lower-costs than experimental testing for drug activity evaluation. Yu et al. have 

compared QSAR modeling of antitumor activity of ARC-111 analogues using stepwise multiple linear 

regression (stepwise MLR), partial least squares (PLS) and artificial neural network (ANN), and the 

results showed the ANN model was the most powerful for the test [4]. However, the ANN model still 

had an obvious defect in the reliability of structural information because its independent variables had 

to be selected by linear techniques from only 15 molecular descriptors, so the QSAR of an increasing 

number of ARC-111 analogues possessing antitumor activities are still not well understood. Therefore, 

selecting more effective molecular features from the high-dimensional ones of ARC-111 analogues 

using new methods will possibly provide more useful information for the design of new antitumor 

drugs. Parameter Client provides an interface for different programs that calculate several groups of 

descriptors with a total number of >3000 [5]. For each ARC-111 analogue, its high-dimensional 

descriptors could be calculated freely and quickly. Because many of these descriptors are redundant 

and sometimes irrelevant, models for nonlinear selection of the most useful subset of descriptors are 

needed for theoretical analysis and for practical applications.  

The support vector machine (SVM) is a class of learning-based nonlinear modeling technique with 

proven performance in a wide range of practical applications [6]. Originally, SVMs were developed 

for classification or qualitative modeling problems. With the introduction of a ε-insensitive loss 

function, SVM has been extended to solve nonlinear regression (or quantitative modeling) problems. 

To select reasonable features, we employed two in-house developed methods based on SVM 
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regression (SVR): the worst descriptor elimination multi-roundly (WDEM) [7] and the high-

dimensional descriptors selection nonlinearly (HDSN) [8], and then constructed QSAR models of 

ARC-111 analogues based on the SVR technique in this study. 

The objectives of this work were: (1) to test the effectiveness of the SVR model on ARC-111 

analogues by comparing them with other chemometric tools including stepwise MLR, PLS, and ANN; 

(2) to construct and evaluate QSAR models using SVR with selection of descriptors from  

high-dimensional features of ARC-111 analogues; (3) to analyze the explanatory power of the SVR 

models; and (4) to predict the activities of several theoretical drugs based on our model and thus 

provide specific parameters for future drug development. 

2. Results and Discussion 

2.1. Comparative QSAR Modeling with the Low-Dimensional Literature Descriptors Using Stepwise 

MLR, PLS, ANN and SVR Techniques 

To verify the generalization ability of QSAR constructed using SVR technique, a low-dimensional 

literature dataset with 9 descriptors was adopted. The 9 descriptors were the combined set of features 

from stepwise MLR and PLS in [4].To further eliminate the redundant descriptors from this literature 

dataset, every available descriptor were gradually removed one by one from the model using our 

WDEM method (10-fold cross-validation) until the model with the lowest MSE was obtained. Six key 
descriptors [MW, Dipole, MolPol, JGT, E(H-bond) and ∆ 0

fH ] were reserved by 3 rounds of nonlinear 

selection. Then the two low-dimensional datasets with 9 and 6 descriptors, respectively, were trained 

by leave-one-out (LOO) cross-validation and modeled in five Kernel functions (t = 0;  

t = 1, d = 2; t = 1, d = 3; t = 2; t = 3). The results of the independent test showed (1) the SVR1 model  

(t = 1, d = 3) with all literature features had higher predictive ability than stepwise MLR and PLS; and 
(2) the SVR2 model (t = 2) with MSE of 0.061, R2 of 0.950 and 2

predR  of 0.918 for the test set had 

comparable predictive ability with the ANN (the number of units in hidden layers was four and the 

number in the training set was ten [4]) model even though SVR2 used less descriptors (Table 1). It 

indicated the SVR model was also a powerful technique for a given set of low-dimensional descriptors. 

Table 1. Comparative quantitative structure-activity relationship (QSAR) modeling of the 

independent test, based on the literature dataset. 

 Stepwise MLR PLS ANN SVR1 SVR2 

Number of descriptors  5 7 9 9 6 
MSE 0.201 0.167 0.050 0.141 0.061 
R2 0.910 0.890 0.962 0.937 0.950 
R2 0.730 0.775 0.933 0.811 0.918 

The SVR model with 6 descriptors (SVR2) produced better results than the SVR model with all 9 

descriptors (SVR1). We noted that the 6 descriptors were obtained with the WDEM from the 9 

descriptors. This showed that the WDEM method might be effective to choose relevant descriptors for 

more accurate prediction of the activities of ARC-111 analogues. This property will be helpful for the 

modeling with high-dimensional features. Considering nonlinear function, predictive ability and 
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computing time, the Radial Basis Function (t = 2) and 10-fold cross-validation will be adopted in 

future feature selecting, and the Radial Basis Function (t = 2) and LOO cross-validation will be 

adopted in independent tests. 

2.2. QSAR Modeling with the High-Dimensional Descriptors Using SVR Technique 

To improve drug design of ARC-111 analogues, the analysis of high-dimensional descriptors may 

result in better prediction. Using the software, PCLIENT, 2,923 molecular descriptors were calculated. 

Then the high-dimensional dataset containing the independent variables (all 2,923 descriptors) and the 

dependent variables [pIC50 (expt.) values] was used for modeling. Because the high-dimensional 

descriptors had more redundant information, we focused on how to select nonlinearly less but more 

critical descriptors using SVR. We have developed two novel methods that could select important 

descriptors from thousands of them. By initial coarse screening using the HDSN method to filter out 

irrelevant features, the data set would switch from high-dimensional into low-dimensional. Then 

further careful screening using the WDEM method would turn the data set with low-dimensional 

features into one with only important descriptors. Throughout the process, the descriptors in modeling 

with higher MSE values were removed gradually and nonlinearly until the model with the lowest MSE 

value was obtained. Finally, the SVR models for the test set based on the obtained descriptors were 

developed and evaluated. 

In feature screening, the Radial Basis Function (t = 2) and 10-fold cross-validation were adopted. 

Based on our HDSN method, descriptors of 18 ARC-111 analogues in SVR3 (and SVR4) model were 

reduced from 2,923 to 9 (and 13) by 9 (and 8) rounds of nonlinear screening. Furthermore, based on 

our WDEM method, descriptors were further reduced to 7 (and 11) by 2 rounds of nonlinear screening 

(Table 2). In the independent test, five Kernel functions and LOO cross-validation were adopted. 

Finally, the effective SVR3 and SVR4 models were obtained only by the Radial Basis Function (t = 2). 

The results of the independent test (Table 2) showed the SVR3 (and SVR4) models had similar or 
better predictive power with MSE of 0.032 (and 0.028), R2 of 0.964 (and 0.971) and 2

predR  of 0.957 

(and 0.962) for the test set than stepwise MLR, PLS and ANN techniques. By nonlinear screening 

using our HDSN and WDEM methods, the SVR model with the obtained features from  

high-dimensional features of ARC-111 analogues had stronger generalization ability than all reference 

models for antitumor activity prediction in RPMI 8402. Furthermore, based on the SVR4 model,  

pIC50 (pred.) values of 12 theoretical ARC-111 analogues were predicted for drug activity evaluation. 

The results showed no drug with higher antitumor activity appeared in these theoretical designs, and 

suggested utilizing other substituents or other positions to design more effective drugs. 

Table 2. Comparative QSAR modeling of the independent test based on the high-dimensional 

descriptors selection using support vector regression (SVR). 

 Stepwise MLR PLS ANN SVR3 SVR4 

Number of descriptors  5 7 9 7 11 

MSE  0.201 0.167 0.050 0.032 0.028 
2R  0.910 0.890 0.962 0.964 0.971 
2
predR  0.730 0.775 0.933 0.957 0.962 
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The SVR3 and SVR4 models predicted that the antitumor activity of ARC-111 analogues depends 

on 7 and 11 molecular factors, respectively. According to the interpretability analysis of the SVR 

model we have established [9], the significance of the regression model and the importance of single 

indicator was obtained based on SVR and F-test. The results showed the nonlinear regression of the 

SVR3 model (R2 = 0.947) was highly significant because its F value (21.017) was greater than F0.01(7, 10) 

value, and the nonlinear regression of the SVR4 model (R2 = 0.947) was significant because its  

F value (7.310) was greater than F0.05(11, 6) value. The five most important descriptors in SVR3 were 

c6A (highly significant), ATS1v (highly significant), nCIC (highly significant), MATS3e (highly 

significant) and nCrs (significant), and the only one most important descriptor in SVR4 was BELv2 

(significant) (Table 3).  

Table 3. The retained descriptors by the high-dimensional descriptor selection nonlinearly 

(HDSN) and worst descriptor elimination multi-roundly (WDEM) methods and their  

F-test values. 

Model Group name Descriptor name F-value 

SVR3 GSFRAG c6A: Number of fragments Cyc6[A] 26.555 **

 2D autocorrelations 

 

ATS1v: Broto-Moreau autocorrelation of a topological structure - lag 1 / weighted 

by atomic van der Waals volumes 25.175 **

 Constitutional descriptors nCIC: Number of rings 12.210 **

 

 

2D autocorrelations 

 

MATS3e: Moran autocorrelation - lag 3 / weighted by atomic Sanderson 

electronegativities 12.114 **

 Functional group counts nCrs: Number of ring secondary C(sp3) 5.898 * 

 Topological charge indices GGI5: Topological charge index of order 5 3.687 

 Geometrical descriptors QYYv: Qyy COMMA2 value / weighted by atomic van der Waals volumes 2.387 

SVR4 BCUT descriptors 

 

BELv2: Lowest eigenvalue n. 2 of Burden matrix / weighted by atomic van der 

Waals volumes 11.382 * 

 GSFRAG-L p3-2N: Number of fragments Path3 with label N on atom 2 3.771 

 Randic molecular profiles SP20: Shape profile no. 20 3.511 

 Eigenvalue-based indices SEigZ: Eigenvalue sum from Z weighted distance matrix (Barysz matrix) 2.456 

 Constitutional descriptors nN: Number of Nitrogen atoms 2.456 

 RDF descriptors 

 

RDF040v: Radial distribution function - 4.0 / weighted by atomic van der Waals 

volumes 2.435 

 Walk and path counts TWC: Total walk count 2.425 

 RDF descriptors RDF040p: Radial distribution function - 4.0 / weighted by atomic polarizabilities 2.398 

 Topological descriptors ZM1V: first Zagreb index by valence vertex degrees 2.084 

 RDF descriptors 

 

RDF040e: Radial distribution function - 4.0 / weighted by atomic Sanderson 

electronegativities 1.304 

 GETAWAY descriptors HATS0u: Leverage-weighted autocorrelation of lag 0 / unweighted 0.599 

* p < 0.05; ** p < 0.01; F0.05(1,10) = 4.96; F0.01(1,10) = 10.04; F0.05(1,6) = 5.99; F0.01(1,6) = 13.74;  

F0.05(7,10) = 3.14; F0.01(7,10) = 5.2; F0.05(11,6) = 4.03; F0.01(11,6) = 7.8. 

The F-test values of the independent variables showed that GSFRAG, 2D autocorrelations and 

constitutional descriptors, played important roles in describing anticancer activities. According to the 

analysis of single indicator importance, c6A, ATS1v, nCIC, MATS3e and nCrs in the SVR3 model and 

BELv2 in the SVR4 model appeared to be the most significant descriptors of ARC-111 analogues. 
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ATS1v [10], nCIC [11], MATS3e [12–16], nCrs [17–23] and BELv2 [10,24–26] have been previously 

reported in different literature models, respectively. To our knowledge, c6A has never been reported as 

a critical descriptor, so it is unclear what new information is added as an important descriptor. Previous 

works have shown the physical and biological significance of several significant descriptors founded 

in our analysis. nCIC, as one of the highly significant descriptors, appears to have an influence on 

binding. It is likely that the active site of a possible target possesses more than one binding site, 

therefore the number of rings could be important for fitting into a hydrophobic pocket [11]. MATS3e, 

as one of the highly significant descriptors, are weighted by atomic Sanderson electronegativities, and 

might partly influence the drug aqueous solubility [15]. BELv2, weighted by atomic van der Waals 

volumes of Burden matrix, contribute to decrease the affinity of the ligands [25]. 

For all descriptors, the analysis of single-factor effects showed that the antitumor activity was 

positively correlated with nCrs values but negatively correlated with a further 6 descriptor values in 

the SVR3 model, and antitumor activity was positively correlated with HATS0u values but was 

negatively correlated with the values of a further 10 descriptors in the SVR4 model (Figure 1).  

Figure 1. Single-factor effects of features in the SVR3 (A) and SVR4 (B) models. 
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Perhaps, starting from a descriptor pool and then revealing the physico-chemical properties of a 

limited number of selected descriptors, as seen in some papers, can lead to a compromise between both 

approaches. In most of the models for prediction, theoretical molecular descriptors were used. 

Experimental chromatographic descriptors could be useful but are tedious to determine and therefore 

less popular [10]. Therefore, our results can be helpful to explain how descriptors could determine the 

antitumor activities of ARC-111 analogues, and improve drug design for new drug development. In 

addition to anticancer bioactivity [27], the structure activity relationship analysis can be applied to 

toxicology [28–30], etc. Therefore, a good QSAR model has broad application prospects. 

3. Materials and Methods 

3.1. Structures and Activities 

According to the types and roles of ARC-111 substituents reported in literature [3], 12 theoretical 

ARC-111 analogues were designed and evaluated. The structures of these 12 theoretical analogues and 

22 experimental ones from [4] were divided into four types (Figure 2) and listed in Table 4. IC50 (µM), 

the concentration of compounds causing 50% cell growth inhibition against tumor cell lines [3], are 

converted to negative logarithms of IC50 (pIC50) [4]. The collected 22 experimental pIC50 [pIC50 (expt.)] 

values against RPMI8402 tumor cells ranged from 6.071 to 9.523. To obtain statistically robust QSAR 

models and compare with the results of MLR, PLS, and ANN in [4], the experimental data sets in 

Table 4 were partitioned into the training set with 18 compounds and the test set with 4 compounds  

as in [4]. 

Figure 2. Four types of ARC-111 analogues structures. 

I II III IV 

Table 4. Substituents and activities of 34 ARC-111 analogues. 

Experimental drugs  Theoretical drugs 

Compound Type Substituent pIC50 (expt.) Compound Type Substituent pIC50 

(pred.)
b R1 R2 R3 R4 R1 R2 R3 R4 

1 I Me Me   8.699 1 I Me Et   8.651 

2  Me Bn   7.276 2  Me t-Bu   8.172 

3  Et Bn   7.114 3  Et t-Bu   7.876 

4  i-Pr Bn   6.523  4  t-Bu t-Bu   7.388 

5  t-Bu Bn   6.071 5  t-Bu i-Pr   6.908 

6  Bn Bn   6.420 6 III   Bn  6.668 

7  Et Et   8.222  7    Et  7.208 

8  i-Pr i-Pr   8.097a 8    t-Bu  6.904 

9  H Me   9.523 9    i-Pr  6.617 
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Table 4. Cont. 

Experimental drugs  Theoretical drugs 

Compound Type Substituent pIC50 (expt.) Compound Type Substituent pIC50 

(pred.)
b R1 R2 R3 R4 R1 R2 R3 R4 

10  H Et   8.699a 10 IV    Et 6.248 

11  H i-Pr   8.523  11     t-Bu 6.102 

12  H t-Bu   8.699  12     i-Pr 6.100 

13  H Bn   7.796         

14  H H   8.398         

15  Me i-Pr   8.097a         

16  Et i-Pr   8.301         

17 II     8.523         

18 III   H   8.155         

19    Me  7.523         

20 IV    Bn 6.398a        

21     H 7.046         

22     Me 6.523        
a Four experimental compounds in the test set; b predicted values of 12 theoretical compounds by the SVR4 model. 

3.2. Calculation of Molecular Descriptors 

First, to understand the QSAR reliability of modeling ARC-111 analogue activities using SVR 
technique, 4 electronic [Dipole, E(H-bond), ∆ 0

fH and ET], 2 spatial (MW, Rg) and 1 physicochemical 

(MolPol) descriptors as well as different topological parameters (JGT, Wiener) from the literature were 

adopted to construct QSAR models. The 9 descriptors were obtained by molecule energy optimization 

using MM2 ChemOffice 2005, and then were calculated by MODEL and ChemOffice 2005 [4]. 

Second, to develop a better QSAR model based on high-dimensional data sample using SVR 

technique, molecular structures were represented by about 3,000 molecular descriptors that encoded 

much more structural information. These descriptors were generated by the software PCLIENT 

(http://www.vcclab.org/lab/pclient/) and classified under 24 groups (Table 5) [5]. The calculation 

process of the descriptors involved the following steps: the structures of the compounds were drawn 

using JME Editor of Peter Ertl and saved as SMILES files, and then the SMILES files as a task were 

added to the software PCLIENT for calculating all of the descriptors in the default state. 

Table 5. Group and count of descriptors from the software PCLIENT. 

Group No. Group of descriptors Count Group No. Group of descriptors Count

1 Constitutional descriptors 48 13 RDF descriptors 150 
2 Topological descriptors 119 14 3D-MoRSE descriptors 160 
3 Walk and path counts 47 15 WHIM descriptors 99 
4 Connectivity indices 33 16 GETAWAY descriptors 197 
5 Information indices 47 17 Functional group counts 121 
6 2D autocorrelations 96 18 Atom-centered 

fragments 
120 

7 Edge adjacency indices 107 19 Charge descriptors 14 
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Table 5. Cont. 

Group No. Group of descriptors Count Group No. Group of descriptors Count

8 BCUT descriptors 64 20 Molecular properties 28 
9 Topological charge indices 21 21 ET-state Indices >300

10 Eigenvalue-based indices 44 22 ET-state Properties * 3 
11 Randic molecular profiles 41 23 GSFRAG Descriptor 307 
12 Geometrical descriptors 74 24 GSFRAG-L Descriptor 886 

    Total: >3000

* This group of descriptors did not exist in the default state. 

3.3. Model Development 

To reduce dimensionality and improve model robustness in QSAR analysis, high-dimensional 

features would be screened coarsely and nonlinearly into low-dimensional features with lower mean 

squared error (MSE) by our HDSN method [8], and then low-dimensional features would be further 

screened nonlinearly by our WDEM method [31]. 

3.4. Model Evaluation 

The selection of descriptors and the optimization of Kernel functions parameters were examined by 

10-fold or LOO validation with the minimum MSE; the predictive capacity of the models was assessed 

based on MSE, the squared multiple correlation coefficient (R2) and the squared predictive correlation 
coefficient ( 2

predR ) values calculated by the following equations: 

2
ˆ( )i iy y

MSE
n
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2 2
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2 2
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 (3) 

Here iy , ˆiy , y , ŷ  and n , respectively, represented the experimental values, the predicted values, 

the mean values of the experimental values, the mean values of the predicted values and the number of 
compounds of the test set, and trainingy  was the mean activity value of the training set. Generally, an 

acceptable QSAR model was considered to have a higher predictive power only having the lower  
MSE [31], the higher R2 [8] and the higher 2

predR  (at least >0.6) [32] for the test set. 

4. Conclusions 

In our QSAR analysis, the structural information of 34 ARC-111 analogues was described using 

2923 molecular descriptors obtained. Two groups of more important descriptors were obtained using 

two nonlinear descriptor selection methods, and then used to model the activities of these ARC-111 

analogues based on SVR. The two SVR models demonstrated consistently better performance than 
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reference models in terms of prediction accuracy for the test data. Our results offer new theoretical 

tools for drug design and development. 
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