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Abstract: Vascular inflammation is an important factor which can promote diabetic 

complications. In this study, the inhibitory effects of aqueous extract from  

Prunella vulgaris (APV) on high glucose (HG)-induced expression of cell adhesion 

molecules in human umbilical vein endothelial cells (HUVEC) are reported. APV decreased 

HG-induced expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell 

adhesion molecule-1 (VCAM-1), and E-selectin. APV also dose-dependently inhibited 

HG-induced adhesion of HL-60 monocytic cells. APV suppressed p65 NF-κB activation in 

HG-treated cells. APV significantly inhibited the formation of intracellular reactive oxygen 

species (ROS). HG-stimulated HUVEC secreted gelatinases, however, APV inhibited it. 

APV induced Akt phosphorylation as well as activation of heme oxygenase-1 (HO-1), 

eNOS, and nuclear factor E2-related factor 2 (Nrf2), which may protect vascular 

inflammation caused by HG. In conclusion, APV exerts anti-inflammatory effect via 

inhibition of ROS/NF-κB pathway by inducing HO-1 and eNOS expression mediated by 
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Nrf2, thereby suggesting that Prunella vulgaris may be a possible therapeutic approach to 

the inhibition of diabetic vascular diseases. 
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1. Introduction 

The fact that diabetic patients have an increased risk of atherosclerotic vascular disease has been 

well documented. Endothelial dysfunction, a recently proposed risk factor for atherosclerosis, plays  

a key role in the pathogenesis of diabetic atherosclerosis [1]. The adhesion of monocytes
 
to the 

endothelium followed by transmigration into the subendothelial space is a key event in the 

pathogenesis of
 
atherosclerosis. This can be mediated by the interaction

 
of specific adhesion molecules 

on vascular endothelial cells
 
with their integrin counter receptors on monocytes. In particular, 

endothelial cells in human atherosclerotic lesions have been shown to over express adhesion molecules 

such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), 

and E-selectin [2]. Studies based on cultured endothelial cells have clearly shown that incubation of 

endothelial cells with high concentration of glucose leads to an overexpression of adhesion molecules, 

suggesting a possible pathogenic link between hyperglycemia and atherosclerosis in diabetes [3]. 

Crucial enzymes involved in this process are matrix metalloproteinase (MMP)-2 and -9, which are 

called gelatinases, and whose transcription is regulated by nuclear factor-kappa B (NF-κB) [4]. A 

number of antioxidants and free radical quenchers have also been shown to block the NF-κB activation. 

Thus, the centrality of the ROS/NF-κB pathway is recognized as a key mediator involved in the 

regulation of inflammatory responses for vascular diseases. 

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that 

normally resides in the cytoplasm bound to Kelch-like ECH-associated protein (Keap)-1 [5]. Upon 

activation by oxidative stress, binds to the antioxidant response element (ARE) and activates transcription 

of ARE-regulated genes. ARE-regulated genes may contribute to the maintenance of redox homeostasis 

by serving as endogenous antioxidant systems through the action of proteins such as heme oxygenase-1 

(HO-1), ferritin, glutathione peroxidase (GPx), NAD(P)H: quinone oxidoreductase, etc. [6,7]. Nitric 

oxide (NO) produced by endothelial NO synthase (eNOS) plays a protective physiological role in  

the vasculature. Thus, Nrf2 and eNOS signaling could be an interesting target for the prevention or 

therapy of cardiovascular disease [8]. 

Prunella vulgaris is a perennial herb that is widely distributed in Far East Asian countries 

throughout Korea, China and Japan. Prunella vulgaris has been used as a traditional medicine to 

reduce sore throat, alleviate fever and accelerate wound healing. In addition, dried flowered fruit-spike 

of prunella vulgaris has been used in Oriental medicine to treat hypertension and tuberculosis [9]. A 

range of compounds (phenolic acids-rosmarinic acid, caffeic acid, campherol, rutin, triterpenoids, 

tannins) has been identified in prunella vulgaris [10]. Thus, we examined the anti-inflammatory effects 

of an aqueous extract of prunella vulgaris (APV) on high glucose (HG)-induced vascular 

inflammation in primary cultured human umbilical vein endothelial cells (HUVEC).  
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2. Results and Discussion 

One of the earliest events in atherogenesis is the adhesion of monocytes to the endothelium, 

followed by their infiltration and differentiation into macrophages [2]. These cell adhesion molecules 

primarily mediate the adhesion of monocytes specifically found in atherosclerosis lesions to the 

vascular endothelium. To explore the effect of APV on endothelial cell-leukocyte interaction, we 

examined the adhesion of HL-60 cells to HG-activated HUVEC under static conditions. Figure 1A 

showed that control HUVEC showed minimal binding to HL-60 cells, but adhesion was markedly 

increased when they were treated with HG. Pretreatment with 10–50 μg/mL APV significantly 

decreased the number of HL-60 cells adhering to HG-induced HUVEC (P < 0.01). In the experiment to 

determine whether APV inhibits HG-induced increase of ICAM-1, VCAM-1, and E-selectin expression, 

various APV concentrations ranging from 10 to 50 μg/mL were added to HUVEC. As shown in Figure 

1B, pretreatment with APV decreased HG-induced ICAM-1, VCAM-1, and E-selectin expression with 

the inhibitory effect being observed over 5 μg/mL. The results using cell based-ELISA demonstrated 

that HG also increased ICAM-1, VCAM-1, and E-selectin levels. However, pretreatment with APV 

significantly decreased HG-induced ICAM-1, VCAM-1, and E-selectin levels (Figure 1C). In this 

study, APV (1–50 μg/mL) did not alter any cytotoxicity (data not shown).  

Figure 1. Aqueous extract from Prunella vulgaris (APV) inhibits high glucose  

(HG)-induced vascular inflammation. (A) Adhesion of fluorescence-labeled monocytic 

HL-60 cells were added to the monolayer human umbilical vein endothelial cells (HUVEC) 

and allowed to adhere for 1 h. a, Control; b, HG (25 mM); c, HG + APV (10 μg/mL); d, 

HG + APV (30 μg/mL); e, HG + APV (50 μg/mL), respectively. The amounts of adherent 

HL-60 cells were monitored by fluorescence microscopy; (B) Western blots of ICAM-1, 

VCAM-1, and E-selectin were detected as described in the Experimental Section. Each 

electrophoretogram is representative of the result from five individual experiments;  

(C) HUVEC surface expressions of intercellular adhesion molecule-1 (ICAM-1), vascular 

cell adhesion molecule-1 (VCAM-1), and E-selectin were analyzed by cell-based ELISA. 

Values are means ± S.E. of 6 independent experiments with triplicate dishes.  

** P < 0.01, vs. control; # P < 0.05; ## P < 0.01, vs. HG alone. 
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Figure 2. Effect of APV on HG-induced gelatinase activity. (A) The level of matrix 

metalloproteinases (MMPs) in conditioned supernatant was prepared, and gelatin 

zymography was performed; (B) The cell lysates were examined for the expression of 

MMPs by Western blotting. Each electrophoretogram is representative of the results from 

five individual experiments. 

Pro  MMP-2

Active MMP-2

MMP-9

β-actin

APV (μg/ml)    0       0      10      30     50

HG (25 mM)          

MMP-2

MMP-9

MMP-2

APV (μg/ml)      0        0       10       30       50

HG (25 mM)          

Pro  MMP-2

Active MMP-2

A

B

Figure 2

0

50

100

150

200

250

300 MMP-9 (pro)

MMP-2 (pro)

MMP-2 (active)

M
M

P
 a

c
ti

v
it

y

(%
  

o
f 

 C
o

n
tr

o
l)

 -APV (g/ml) 

HG (25 mM)  +           +            +           +

   10            30           50

 -
 -


















 

ROS has been implicated as a common second messenger in various pathways leading to NF-κB 

activation [11]. To confirm that inhibitory effect of APV on HG-induced oxidative stress, HUVEC 

were labeled with a cell-permeable fluorescent dye, CM-H2DCFDA and analyzed by flow cytometry. 

DCF fluorescence level showed a significant increase after incubation with 25 mM glucose. However, 

pretreatment with APV (10–50 μg/mL) significantly inhibited HG-induced DCF-sensitive ROS levels 

(Suppl. 1A). Hydrogen peroxide assay showed APV statistically inhibited HG-induced hydrogen 

peroxide level (P < 0.01, Supplementary. 1B). Curcumin or NAC, well known anti-oxidants, blocked  

HG-induced hydrogen peroxide level, respectively (P < 0.01, P < 0.05). Thus, this result suggested 

that the anti-oxidant property of APV leads to inhibition of vascular inflammation in high glucose 

condition. In Western blotting analysis, NF-κB p65 nuclear protein level was significantly increased by 

HG. However, pretreatment of APV inhibited NF-κB expression into the nucleus in a dose-dependent 

manner. In addition, HG-activated HUVEC exhibited marked decrease in IκB-α level and increase in 

phospho-IκB-α level. Furthermore, APV blocked HG-induced IκB-α phosphorylation to activate  

NF-κB (Supplementary 2A). To confirm consistency with the Western blotting results, 

immunocytochemistry was performed using a p65 NF-κB and FITC-conjugated antibody. HG 

increased green signal of p65 NF-κB expression in nucleus, APV decreased the HG-induced p65  

NF-κB expression in nucleus (Supplementary 2B).  

We hypothesized that APV activate endogenous protective pathways, if a defense system against 

HG-induced vascular inflammation exists. Since reduced NO-cGMP signaling contributes to vascular 

inflammation, firstly, endothelial-derived NO production has attracted increasing attention in this  

study [12]. In experiments to determine whether APV mediated NO signaling involved in vascular 

protection against the HG-induced vascular inflammation, HUVECs were treated with L-NAME, 



Int. J. Mol. Sci. 2012, 13 1262 

 

N(G)-nitro-L-arginine methyl ester, prior to the APV treatment. After exposure to HG, cell adhesion 

molecules expression was measured by Western blotting. Figure 3 showed that L-NAME attenuated 

the protective effect of APV in HG-induced ICAM-1, VCAM-1, and E-selectin expressions, 

suggesting a vascular protective role of eNOS-NO signaling in HG-induced vascular inflammation. 

Previously, it was also reported that Buddleja officinalis exerts anti-vascular inflammatory property via 

NO signaling activation [13]. Secondly, the Nrf2/anti-oxidant response element (ARE) pathway plays 

an important role in regulating cellular anti-oxidants, including HO-1, cytoprotective enzyme. 

Essential Role of Nrf2-mediated HO-1 upregulation was reported in adaptive survival response to 

oxidative stress [14]. To determine that APV activates Akt/Nrf2-mediating NO signaling to contribute 

to the anti-inflammatory process, we investigated the effects of APV on Akt phosphorylation. 

Confluent HUVEC were treated with APV in absence or presence of HG. APV significantly induced 

Akt phosphorylation over 30 μg/mL concentration without HG stimulation. HG significantly decreased 

Akt phosphorylation, however, pretreatment with APV recovered Akt phosphorylation (Figure 4). In 

addition, HG decreased Nrf2 expression in nuclear fraction, pretreatment with APV significantly 

attenuated in a dose-dependent manner (P < 0.01). The concentration of keap1 in the cytosol was 

decreased concomitantly by APV concentration (P < 0.01, Figure 5A). Figure 5B showed that HG 

decreased both Ser-1177 eNOS phosphorylation and HO-1 induction. Pretreatment with APV 

significantly attenuated HG-induced decrease of eNOS phosphorylation and HO-1 induction in a dose-

dependent manner.  

Figure 3. Effect of an APV on HG-induced cell adhesion molecules expression in the 

presence or absence of L-NAME. HUVECs were preincubated with L-NAME  

(1~100 μM) for 30 min prior to the treatment of APV, followed by HG for 24 h. The lower 

panel depicts quantitative data, expressed as ICAM-1 (■), VCAM-1 (▨), and  

E-selectin (□) normalized to β-actin, and the results are expressed as the % of the control. 

Each electrophoretogram is representative of the results from five individual experiments.  

** P < 0.01 vs. control, # P < 0.05, ## P < 0.01 vs. HG alone, ψ P < 0.05 vs. APV + HG. 
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Figure 4. Effect of APV on Akt phosphorylation. HUVEC were treated with APV or HG 

alone for 1 h (left), and pretreated with APV for 30 min and then stimulated with HG for 1 

h (right). Each electrophoretogram is representative of the results from five individual 

experiments. ** P < 0.01, vs. control; ## P < 0.01, vs. HG alone. 
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Figure 5. Effect of APV on Nrf2, eNOS, and HO-1 activation. (A) HUVEC were 

pretreated with APV for 30 min and then stimulated with HG for 1 h. The nuclear and total 

cellular protein extracts were blotted with Nrf2, lamin B1, Keap1, GAPDH, respectively. 

Nuclear Nrf2 levels were normalized to lamin B1 levels; (B) The total protein (40 μg) 

extracts were blotted with the antibodies specific for eNOS Ser-1177, HO-1, and β-actin. 

Each electrophoretogram is representative of the results from five individual experiments. 

** P < 0.01, vs. control; ## P < 0.01, vs. HG alone. 
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Under HG condition, APV increased Akt phosphorylation and HO-1 expression in a dose-dependent 

manner. Activation of Nrf2 leads to a reduction of ROS, to elevated levels of NO, and to a transient 

reduction of eNOS protein levels in primary human endothelial cells [15]. In the present study,  

APV showed anti-oxidant property and Nrf2 activation, whereas, HG-induced decrease of eNOS 

phosphorylation was recovered by pretreatment with APV. It suspected that this discrepancy may be 

due to the distinction between time and concentration, even though eNOS plays a protective 

physiological role in the vasculature. Recently, nitrosative stress caused by reactive nitrogen species 

such as nitric oxide and peroxynitrite overproduced during inflammation leads to cell death and has 

been implicated in the pathogenesis of many human aliments. However, relatively mild nitrosative 

stress may improve cellular defense capacities, rendering cells tolerant or adaptive to ongoing and 

subsequent cytotoxic challenges [16]. The regulating mechanism of NO in vascular inflammation 

remains unclear. In vivo upregulation of eNOS gene expression while maintaining eNOS activity 

seems to be a reasonable and realistic strategy for preventing cardiovascular disease [17]. In addition, 

the fact that activated PI-3-kinase/Akt-Nrf2 signaling also plays a critical role in the regulation of the 

vasoprotective eNOS supported our results. It is clear that HO-1 has been shown to be an important 

biological target of NO. In addition, NO can induce HO-1 expression and interleukin-8 production, 

particularly, in vascular endothelial cells [18]. Thus, though we cannot rule out biphasic effect of 

bioactive NO, APV activated Nrf2-mediated eNOS/HO-1 pathways contribute to defense against  

HG-induced vascular inflammation. Further study is needed to investigate a possible mechanism of 

eNOS/HO-1-mediated cell adhesion molecules deactivation by APV in HUVEC. 

3. Experimental Section 

3.1. Preparation of an Aqueous Extract of Prunella vulgaris var. Lilacina 

The Prunella vulgaris var. lilacina were purchased from an Herbal Medicine Co-operative 

association in Jeonbuk Province, South Korea in January, 2010. A voucher specimen (No. HBN161) 

has been deposited in the Herbarium of the Professional Graduate School of Oriental Medicine, 

Wonkang University (Korea). The dried Prunella vulgaris var. lilacina (100 g) was soaked for 2 h in 

water (1 L) and then boiled in distilled water at 100 °C for 2 h. The yield of aqueous extract of 

Prunella vulgaris var. lilacina (APV) was approximately 16.27% of the plant powder. The extract was 

subsequently concentrated using rotary evaporator and then used in the present study. 

3.2. Cell Culture 

Primary cultured HUVEC and endothelial cell growth medium (EGM-2) containing 2.5% fetal 

bovine serum (FBS) and growth supplements were purchased from Cambrex (East Rutherford, NJ, 

USA). HUVEC which were used between passages 3 and 8 were maintained in EGM-2 in a 

humidified chamber containing 5% CO2 at 37 °C.  

3.3. Cell Enzyme Linked Immunosorbent Assay (ELISA) 

ELISA was used to determine the level of ICAM-1, VCAM-1, and E-selectin expression on the cell 

surface, as previously described with minor modifications. Briefly, HUVEC were fixed by 1% 
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paraformaldehyde and exposed to mouse anti-human ICAM-1, VCAM-1, or E-selectin antibodies at 

1:1000 dilution in the phosphate-buffered saline (PBS) containing 1% bovine serum albumin (BSA) 

for 2 h at room temperature. The cells were washed and incubated with a horseradish peroxidase 

(HRP)-conjugated secondary antibody. The expression of VCAM-1, ICAM-1, or E-selectin was 

quantified by adding a peroxidase substrate solution (40 mg o-phenylenediamine and 10 μL 30% H2O2 

in 100 mL 0.05 M citrate-phosphate buffer). After incubation for 30 min at 37 °C, the reaction was 

stopped by addition of 5 N H2SO4, and the absorbance of each well was measured at 490 nm by a 

Multiskan microplate reader (Thermo LabSystems Inc., Franklin, MA, USA). 

3.4. Monocyte-Endothelial Cell Adhesion Assay 

The cell adhesion assay was modified as described. Briefly, regularly passaged HL-60 cells  

were labeled with 10 μg/mL 2′,7′-bis-(carboxyethyl)-5,6-carboxyfluorescein acetoxymethyl ester 

(BCECF/AM, Sigma Chemical Co., St. Louis, MO, USA) at 10 μM final concentration in RPMI-1640 

medium containing 10% FBS at 37 °C for 30 min. The labeled cells were harvested by centrifugation 

and washed three times with PBS before suspension in the medium, and added to HUVEC in six-well 

culture plates at 4 × 10
5
 cells/mL. The co-incubation was done at 37 °C for 1 h and nonadhering  

HL-60 cells (American Type Culture Collection, Manassas, VA, USA) were removed by stringent 

washing two times with PBS. HL-60 cells bound to HUVEC were measured by fluorescence 

microscopy (Leica DMIRB, Leica, Germany) and were lysed with 50 mM Tris-HCl, pH 8.0, 

containing 0.1% sodium dodecyl sulfate (SDS). The fluorescent intensity was measured using a 

spectrofluorometer (F-2500, Hitachi, Tokyo, Japan) at an excitation and emission wavelength of  

485 nm and 535 nm, respectively. The adhesion data are represented in terms of the percentage change 

compared with the control values.  

3.5. Preparation of Cytoplasmic and Nucleus Extracts  

The cells were rapidly harvested by sedimentation and nuclear and cytoplasmic extracts were 

prepared on ice as previously described by the method of Mackman et al. [19]. Cells were harvested 

and washed with 1 mL buffer A (10 mM HEPES, pH 7.9, 1.5 mM MgCl2, 19 mM KCl) for 5 min at 

600 g. The cells were then resuspended in buffer A and 0.1% NP 40, left for 10 min on ice to lyse the 

cells and then centrifuged at 600 g for 3 min. The supernatant was saved as cytosolic extract. The 

nuclear pellet was then washed in 1 mL buffer A at 4200 g for 3 min, resuspended in 30 μL buffer C 

(20 mM HEPES, pH 7.9, 25% glycerol, 0.42 M NaCl, 1.5 mM MgCl2, 0.2 mM EDTA), rotated for  

30 min at 4 °C, then centrifuged at 14,300 g for 20 min. The supernatant was used as nucleus extract. 

The nucleus and cytosolic extracts were then analyzed for protein content using Bradford assay. There 

were no contamination between nuclear and cytoplasmic fractions by Glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) in cytoplasmic fraction, and lamin B1 for nuclear fraction loading control. 

3.6. Western Blot Analysis 

Cell homogenates (40 μg of protein) were separated on 10% SDS-polyacrylamide gel electrophoresis 

and transferred to nitrocellulose paper. Blots were then washed with H2O, blocked with 5% skimmed 
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milk powder in Tris-Buffered Saline Tween-20 (TBST) (10 mM Tris-HCl, pH 7.6, 150 mM NaCl, 

0.05% Tween-20) for 1 h, and incubated with the appropriate primary antibody at dilutions 

recommended by the supplier. Then the membrane was washed and primary antibodies were detected 

with goat anti-rabbit-IgG or rabbit anti-mouse-IgG conjugated to horseradish peroxidase, and the 

bands were visualized with enhanced chemiluminescence (Amersham Bioscience, Buckinghamshire, 

UK). Protein expression levels were determined by analyzing the signals captured on the nitrocellulose 

membranes using the ChemiDoc image analyzer (Bio-Rad Laboratories, Hercules, CA, USA). 

3.7. Gelatin Zymography 

MMP-2 and MMP-9 enzymatic activities were assayed by gelatin zymography. Samples were 

electrophoresed on a 1 mg/mL gelatin containing 10% SDS-polyacrylamide gel. After electrophoresis, 

the gel was washed twice with washing buffer (50 mM Tris–HCl, pH 7.5, 100 mM NaCl, 2.5% Triton 

X-100), followed by a brief rinsing in washing buffer without Triton X-100. The gel was incubated 

with incubation buffer (50 mM Tris–HCl, pH 7.5, 150 mM NaCl, 10 mM CaCl2, 0.02% NaN3, 1 μM 

ZnCl2) at 37 °C. After incubation, the gel was stained with Commassie brilliant blue R-250 and 

destained. A clear zone of gelatin digestion was represented with the MMP activity. 

3.8. Statistical Analysis 

Data are expressed as a mean ± S.E., and the data were analyzed using one-way ANOVA followed 

by a Dunnett’s test or Student’s t test to determine any significant differences. A P value < 0.05 was 

considered significant. 

4. Conclusion 

Vascular inflammation induced by HG occurs early in the development of atherosclerosis, and 

determines future diabetic complications. The present study suggested that APV significantly 

suppressed the following events in cultured vascular endothelial cells: HG-induced intracellular ROS 

formation and redox-sensitive NF-B activation via suppression of IB degradation and 

phosphorylation; cell adhesion molecules expression; adhesion to monocytes; and MMP-2/-9 

proteolytic activities. Simultaneously, APV activates vascular protective signal pathways against  

HG-induced vascular inflammation in the following manner: Firstly, APV-induced PI3K/Akt-mediated 

Nrf2 activation, via the suppression Keap1 degradation, could induce activation of HO-1 and eNOS 

(Figure 6). Thus, APV inhibits in vitro vascular inflammation and may prevent diabetic atherosclerosis 

via inhibition of ROS/NF-κB pathway by inducing Nrf2-mediated HO-1 and eNOS activation. This 

data casts a new light on the actions of Prunella vulgaris and its potential benefits to diabetic patients 

for preventing diabetic vascular complications. 
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Figure 6. A scheme for the inhibitory effect of APV on HG-induced vascular 

inflammation. This simplified scheme depicts HG induced MMPs and cellular adhesion 

molecules. ROS/NF-κB signaling is a cellular event involved in development of vascular 

inflammation. On the other hand, APV induces Akt phosphorylation, it activates Nrf2 or 

eNOS/NO, and finally activates HO-1. Nrf2 also activates eNOS/NO signaling pathway. 
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