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Abstract: Tortilla and beans are the basic components in the diet of people in the urban 

and rural areas of Mexico. Quality protein maize is suggested for tortilla preparation 

because it presents an increase in lysine and tryptophan levels. Beans contain important 

amounts of dietary fiber. The objective of this study was to prepare tortilla with bean and 

assesses the chemical composition, starch digestibility and antioxidant capacity using a 

quality protein maize variety. Tortilla with bean had higher protein, ash, dietary fiber and 

resistant starch content, and lower digestible starch than control tortilla. The hydrolysis rate 

(60 to 50%) and the predicted glycemic index (88 to 80) of tortilla decreased with the 

addition of bean in the blend. Extractable polyphenols and proanthocyanidins were higher 

in the tortilla with bean than control tortilla. This pattern produced higher antioxidant 

capacity of tortilla with bean (17.6 μmol Trolox eq/g) than control tortilla (7.8 μmol  

Trolox eq/g). The addition of bean to tortilla modified the starch digestibility and 

antioxidant characteristics of tortilla, obtaining a product with nutraceutical characteristics. 
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1. Introduction 

Maize (Zea mays L.) is used in the production of tortilla, which is the principal staple food in the 

Mexican diet [1,2]. In the rural areas of Mexico, tortilla per capita consumption is higher than  

120 kg/year, which is equivalent to 328 g/day [3]. It is known that maize is deficient in lysine and 

tryptophan, two essential amino acids. Quality protein maize (QPM) can be an alternative to improve 

the nutritional quality of tortilla, which was developed from opaque2 maize. QPM shows higher lysine 

(3.4–6.0 g/100 g of protein) and tryptophan (0.8–1.2 g/100 g of protein) content than regular maize [4]. 

The common bean (Phaseolus vulgaris L.) has an important place among the legumes of major 

production and consumption in Africa, India, Latin America, and Mexico [5–7]. In the rural areas of 

Mexico, consumption of beans represents 15% of a normal diet [8]. In consequence, common bean and 

maize represent the main food source for more than 25 million Mexican people who live in rural areas, 

as well as for 30 million people who live in marginal urban areas [9]. Beans are a rich and inexpensive 

source of proteins (20–25 g/100 g) and carbohydrates (50–60 g/100 g) [10] and they are beneficial for 

health, with a low glycemic index [11]. Recently, our group reported the antioxidant capacity of three 

legumes consumed in Mexico. It was found that black bean had the greatest concentration of 

proanthocyanidins (an outstanding antioxidant) [12]. 

Traditionally, people in the rural areas of Mexico and Central America consume a mixture of tortilla, 

beans, and chili, often named “taco” [13]. It is well-known that such a mixture improves some of the 

nutritional characteristics of the individual items, especially on the nutritionally relevant features of the 

polysaccharides present in this composite food [13]. Results from our group suggested that most of the 

beneficial “slow release carbohydrate” features of black beans are retained by the mixed  

bean-tortilla meal, an observation that may provide basis for new dietary uses of these traditional  

foods [14]. 

However, the blend “masa” and cooked bean flour, for thereafter-made tortilla has not been  

studied in its starch digestibility and antioxidant capacity. Mora-Avilés et al. [15] prepared tortilla  

with the blend QPM and bean, and evaluated the amino acids and mineral changes that occur  

during nixtamalization and the chemical and nutritional characteristics of regular, commercial and 

QPM-bean tortilla. 

Therefore, the objective of the present work was to assess the chemical composition, digestibility of 

starch and antioxidant capacity in tortilla prepared with the blend QPM-black bean compared to that of 

individual ingredients.  

2. Results and Discussion 

2.1. Chemical Composition 

Chemical composition of raw materials and tortillas is shown in Table 1. When QPM is nixtmalized 

to produce “masa” and tortilla, the protein does not change appreciably. An increase of 37% in protein 
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content in QPM-black bean tortilla was found compared to that of QPM tortilla. Our results for the 

protein content of QPM-black bean tortilla were higher compared to those previously reported by  

Hernández-Salazar et al. [16], who indicated that a tortilla prepared with maize-bean showed  

10.5 g/100 g; however, they did not declare the maize-bean blend used. Black dry bean characterized 

by high protein content, shows between 18.9 and 24.2 g/100 g [17]. The presence of black bean in 

tortilla reported in this work was responsible for increments in protein. On the other hand, maize 

shows lower protein level than beans. Diverse hybrids and varieties of maize harvested in México had 

protein content between 8.3 and 11.3 g/100 g, with higher amount in dent and semident type grains 

than in crystalline and semicrystalline grains [18]. When maize is nixtamalized to produce “masa”  

(8.7 g/100 g) and tortilla (7.5 g/100 g), the protein does not change appreciably compare with raw 

maize [19]. Maize shows higher fat (6.6 g/100 g) content [19] than dry beans (1.3 and 2.8 g/100 g) [17] 

due to germ of the former (Table 1). Meanwhile, “masa” showed 3.1 g/100 g and tortilla of 2.5 g/100 g 

of fat content due to that during nixtamalization fat was eliminated in the “nejayote” [19]. Fat content 

in “masa” an tortilla reported previously was lower to those reported here [19]. The maize utilized here 

can play an important role in our results; hybrids and varieties of maize [18] had fat content between 4 

and 7 g/100 g, and commercial white tortilla had a fat content of 3 g/100 g [16]. Initially, the 

expression of the opaque2 gene increased the content of essential amino acids in maize but was also 

associated with lower per-acre yields, increased susceptibility to pests and diseases, and a soft 

endosperm, which made it unacceptable to many potential users. Currently, QPM which is  

high-yielding, disease- and parasite-resistant, and has a brittle endosperm but retains the superior 

amino acid balance of opaque2, was achieved through the introduction of gene modifiers. These 

characteristics can be bred into traditional, locally adapted varieties anywhere that maize is  

grown [20], so, as well as in common maize varieties, the differences in fat content of QPM varieties 

can be depending on the variety [18,20], and in tortillas, the differences in fat content may be also 

attributable to maize variety and conditions prevailing during nixtamalization process [21]. QPM-black 

bean tortilla reported here had similar fat content than tortilla, this pattern is due to that in the blend the 

amount of maize is higher and no dilution effect was found.  

Table 1. Chemical composition of black bean flour, quality protein maize (QPM) masa, 

QPM tortilla and QPM-black bean tortilla (g/100 g). 

Sample Protein * Fat Ash TDF 

Black bean flour 21.45 ± 0.36 a 1.24 ± 0.03 a 4.66 ± 0.02 a 36.24 ± 0.70 a 
QPM masa 7.89 ± 0.11 b 5.03 ± 0.22 b 1.61 ± 0.02 b 8.55 ± 0.41 b 

QPM tortilla 8.78 ± 0.06 b 4.37 ± 0.23 bc 1.67 ± 0.00 b 9.36 ± 0.27 b 
QPM-black bean tortilla 12.04 ± 0.43 c 3.89 ± 0.25 c 2.58 ± 0.01 c 14.72 ± 0.30 c 

Values are mean ± SEM, n = 3, dry matter. Means in the same column with different letter are 

significantly different (p < 0.05). TDF: Total dietary fiber. * N × 6.25. 

Ash content in black bean was higher than in “masa” and tortillas (Table 1). In general, legumes are 

characterized by high minerals levels, which depend on the species, cultivar, and agronomic 

characteristics (soil type). Black bean [22] had an ash content of 5.4 g/100 g and different varieties of 

black bean harvested in Mexico ranged between 3.6 to 5.2 g/100 g [17]. Maize has low ash content as 

was reported in diverse hybrids and cultivars (1.1–1.7 g/100 g) [18]. Tortilla prepared in our laboratory 
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shows an ash content of 1.6 g/100 g [19], meanwhile commercial white tortilla showed 1.9 g/100 g [16]. 

However, the QPM-black bean tortilla increased its ash contents (2.58 g/100 g) due to the contribution 

of the bean. Similar pattern was reported in tortilla prepared with white maize flour (1.88 g/100 g) and 

maize-bean flour (2.95 g/100 g) [16]. 

Total dietary fiber (TDF) content was higher in QPM-black bean tortilla compared to that of QPM 

masa and QPM tortilla (Table 1). Black bean showed the highest TDF level. Beans are characterized 

by a high content of this component. In two different beans (Navy and Red) the TDF contents were 

36.2 and 36.8 g/100 g, respectively [23]. Reynoso-Camacho et al. [24] reported that the addition of 

common bean in the diets reduced colon cancer in Sprage-Dawley rats, and this pattern was influenced 

by the dietary fiber content. There were no differences between content of TDF of QPM “masa” and 

QPM tortilla; meanwhile, QPM-black bean tortilla showed higher value than QPM tortilla. The 

addition of bean in the blend increases this nutritional component in tortilla in 57%, an important issue 

due to that black bean tortilla could be considered as a functional food.  

2.2. Starch Digestibility 

Black bean showed the lowest, and “masa” and tortilla the highest total starch (TS) levels (Table 2). 

Black bean varieties harvested in Mexico shows TS between 33.6 and 36.7 g/100 g [17]; in another 

study, cooked black bean showed a TS content of 53.8 g/100 g [22], which was higher than those 

assessed here, the bean variety can be responsible of this difference. On the other hand, total starch 

level in masa and tortilla was similar. It has been reported that tortillas elaborated with commercial dry 

masa flour shows TS content between 76.2 and 79.0 g/100 g [25], and those elaborated with commercial 

masa between 74.8 and 79.7 g/100 g [21], values similar to those reported in this study. Black bean 

tortilla had lower TS content than tortilla, this effect is due to dilution produced by addition of black 

bean with lower TS content. Similar TS content (65.6 g/100 g) was determined in commercial  

maize-bean tortilla [16]. 

Table 2. Total starch, digestible starch and resistant starch in black bean flour, quality 

protein maize (QPM) masa, QPM tortilla and QPM-black bean tortilla (g/100 g). 

Sample Total starch Digestible starch* Resistant starch 

Black bean flour 44.36 ± 0.52 a 37.92 ± 0.55 a 6.44 ± 0.07 a 
QPM masa 77.68 ± 0.20 b 74.50 ± 0.20 b 3.17 ± 0.01 b 

QPM tortilla 76.69 ± 0.82 b 71.65 ± 0.80 c 5.04 ± 0.05 c 
QPM-black bean tortilla 66.75 ± 0.47 c 60.45 ± 0.48 d 6.30 ± 0.08 a 

Values are mean ± SEM, n = 3, dry matter. Means in the same column with different letter are 

significantly different (p < 0.05). * Values calculated as the difference between total starch and  

resistant starch. 

TS content is in tune with digestible starch (DS) amount recorded in the samples analyzed (Table 2). 

Low DS content, as was assessed in different cooked dry bean varieties harvested in Mexico, with 

values ranged between 21.7 and 32.2 g/100 g [26]. However, it has been reported a higher range of DS 

values in cooked beans (27.88–39.21 g/100 g) [27], suggesting that the cooking method, the storage 

and perhaps the dry bean variety play an important role in DS content, a value within this range was 
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determined here. QPM “masa” shows the highest DS content, decreasing in QPM tortilla (Table 2). 

This decrease could be due to the fact that the starch of masa was partially gelatinized and part of this 

was retrograded when the tortilla was cooling down. The formation of retrograded starch requires 

dehydration of the gelatinized sample [28,29], a phenomenon that is likely to take place when tortillas 

are baked at ≈ 250 °C and cooled. Rendon-Villalobos et al. [19] reported a similar pattern, with higher 

DS value in “masa” (79.6 g/100 g) than tortilla (72.9 g/100 g).  In addition, a similar value of DS for 

tortilla made with commercial “masas” was reported (70.1–76.0 g/100 g) [21], and those made with 

commercial dry masa flour (70.6–74.9 g/100 g) [25]. Tortilla prepared with commercial white maize 

flour (63.5 g/100 g) [16] and commercial tortilla (65.2 g/100 g) [13] had lower DS content. The 

addition of bean to tortilla decreased DS content in approximately 15.6%, this pattern due to the 

amount of bean added and the lower DS level in this legume. Mexican “taco” [13] (a mixture of tortilla 

and bean 60:40) was studied in its DS content, showing a DS content of 52.6 g/100 g; the ratio 

maiz:bean and the method utilized for the preparation of the samples could explain such differences. In 

commercial maize-bean tortilla DS content of 60.3 g/100 g was reported, but the ratio maize-bean is 

not declared [16]. 

Black bean showed the highest resistant starch (RS) content and was similar to that of QPM-black 

bean tortilla. RS contents between 3.5 and 5.1 g/100 g were reported in five Mexican varieties of black 

bean [26], other common bean varieties shows RS level of 5.4 g/100 g (Peruano) [30], 5.3 g/100 g 

(Cotaxtla) [13] and 0.64 g/100 g (Mayocoba) [31]. QPM masa showed the lowest RS content, and an 

increase was obtained in tortilla (Table 2). Rendon-Villalobos et al. [19] reported similar pattern, with 

lower RS value in masa (2.05 g/100 g) than tortilla (3.12 g/100 g). The RS content of the QPM tortilla 

is higher than those reported in tortilla made with commercial dry masa flour (1.20–2.46 g/100 g) [25], 

tortilla made with commercial masas (1.36–3.05 g/100 g) [21], commercial tortilla (2.14 g/100 g) [13] 

and tortilla made with commercial white maize flour (2.55 g/100 g) [16]. The QPM variety could be 

responsible of this high RS content in tortilla, because until today there are not reports dealing with  

RS content in this kind of tortilla. The addition of bean to maize produced a small increase in RS 

amount in tortilla because the value of QPM tortilla was high. Sáyago-Ayerdi et al. [13] reported  

in a Mexican “taco” (a mixture of tortilla and bean 60:40) a RS content of 3.93 g/100 g, and 

Hernández-Salazar et al. [16] in a commercial maize-bean tortilla a RS amount of 2.99 g/100 g.  

QPM-black bean tortilla has this characteristic that is important in health because recently has been 

considered the RS a functional ingredient to battle obesity [32]. 

2.3. In Vitro Kinetic of Starch Digestion  

Figure 1 shows in vitro starch hydrolysis of QPM-black bean and QPM tortillas. QPM tortilla 

exhibited the highest hydrolysis percentage during the assay; its amylolysis level increased quickly 

(inside the first 15 min), and thereafter the increase was slowest reaching approximately 55% after  

30 min and did not increase at longer reaction times. Tortillas made with diverse commercial dry 

“masa” flours had similar pattern, but their levels of hydrolysis by the end of the assay had between 

70–80% [25], and for tortillas made with diverse commercial “masas” the hydrolysis percentage were 

between 70–75% after 30 min of the assay and did not increase thereafter [21]. The lowest hydrolysis 

percentage in QPM tortilla can be due to that introduction of QPM character in maize modifies some 
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structural characteristics of starch. A similar pattern to that of tortilla in the hydrolysis assay was found 

for QPM-black bean tortilla, but the hydrolysis percentage were lower, reaching at approximately 45% 

of hydrolysis after 30 min. The addition of the bean to maize decrease the hydrolysis rate of starch 

present in the blend due to that bean had the lowest hydrolysis values, reaching to hydrolysis percentage 

at 90 min of approximately 11%. Vargas-Torres et al. [26] reported hydrolysis percentage (90 min) for 

diverse cooked black bean varieties harvested in Mexico between 17 and 28%. Tovar et al. [33] 

reported that several factors are involved in the reduced bioavailability of legume starches. The presence 

of intact tissue/cell structures enclosing starch granules hinders the swelling and solubilization of 

starch resulting in reduced in vitro digestion rate. 

Figure 1. Average in vitro starch hydrolysis curves of black bean flour (··), quality protein 

maize (QPM) tortilla (—) and QPM-black bean tortilla (– –). Bars represent SEM. 

 

Predicted glycemic indices (pGI) were calculated from the 90 min degree of hydrolysis values of 

the samples (Table 3) [34]. QPM tortilla had the highest pGI compared to the rest of samples analyzed; 

however, this value is lower than those determined different tortillas, where the values ranged between 

102 and 108 [35], and commercial tortilla was 97.5 [36]. QPM tortilla has been shown starch 

digestibility parameters lower than those determined in tortillas made with commercial dry masa flours, 

commercial masas and commercial tortillas, the use of QPM can be important to produce tortilla with 

low caloric response. Cooked black bean had the lowest pGI (47.9), but using other method 

(chewing/dialysis test) cooked black bean had lower pGI (27) [13], and using canned black bean with 

chewing/dialysis method the pGI value was 44 [14]. The addition of bean decreased the pGI value of 

tortilla (79.8) that was higher than those determined by the chewing/dialysis method in Mexican “taco” 

(a mixture of tortilla and bean 60:40), using different tortilla and bean, with value of 48 (tortilla and 

canned black bean) [14] and 51 (tortilla and cooked black bean) [13]. 
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Table 3. Predicted glycemic index (pGI) of black bean flour, quality protein maize (QPM) 

tortilla and QPM-bVlack bean tortilla. 

Sample Hydrolysis at 90 min (%) pGI * 

Black bean flour 10.77 ± 0.35 a 47.92 ± 0.27 a 
QPM tortilla 60.72 ± 0.27 b 87.97 ± 0.22 b 

QPM-black bean tortilla 50.50 ± 0.23 c 79.76 ± 0.18 c 

Values are mean ± SEM, n = 3, dry matter. Means in the same column with different letter are 

significantly different (p < 0.05). * Predicted glycemic index (pGI) = 39.21 + 0.803(H90) [34]. 

2.4. Polyphenols Content 

Polyphenols content of raw materials and tortillas is shown in Table 4. Black bean presented the 

highest extractable polyphenols (EP) level. Two black bean varieties showed a phenolic content of 

3.37 and 6.99 mg/g, differences that can be attributed to the bean variety [37], a value within this range 

was determined here. EP value in tortilla was similar to those reported for yellow maize [38] with a 

free phenol content of 1.04 mg/g and cereals with a EP content of 1.07 mg/g [39]. The addition of bean 

to the blend increased the EP content in the tortilla in 107%. 

Table 4. Polyphenols content of black bean flour, quality protein maize (QPM) tortilla and 

QPM-black bean tortilla. 

Sample 
Polyphenols content (mg/g) 

EP PA HP 
Black bean flour 5.55 ± 0.08a 22.94 ± 2.12a 12.13 ± 0.23a 

QPM tortilla 0.96 ± 0.05b N.d. 5.70 ± 0.13b 
QPM-black bean tortilla 1.99 ± 0.08c 8.68 ± 1.28b 6.17 ± 0.18b 

Values are mean ± SEM, n = 3, dry matter. Means in the same column with different letter are 

significantly different (p < 0.05). EP: Extractable polyphenols; PA: Proanthocyanidins; HP: Hydrolysable 

polyphenols; N.d.: Not detected. 

Non extractable polyphenols (proanthocyanidins and hydrolysable polyphenols) in all samples 

showed higher value than extractable polyphenols, which is consistent with the results reported by 

Saura-Calixto et al. [39] for legumes and cereals.  

It has been reported a wide range of proanthocyanidins (PA) content values in different bean 

varieties (16.8–38.1 mg/g [40]; 6.9–32.4 mg/g [41], the differences of PA content in beans depend on 

the variety and the locality [40], a value within these ranges was determined here. The PA in tortilla was 

not detected, as was reported by Pérez-Jiménez and Saura-Calixto [42] and Saura-Calixto et al. [39] 

for cereals. The PA was detected in tortilla added with bean; this behaviour indicates that the legume 

portion in tortilla plays an important role in the content of this kind of nutraceutical compounds.  

Hydrolysable polyphenols (HP) comprise hydrolysable tannins, phenolic acids, and hydroxycinnamic 

acids that are released from the food matrix by strong acid hydrolysis, no proanthocyanidins or flavonoids 

are detected in the hydrolysates of hydrolysable polyphenols analysis [39]. Saura-Calixto et al. [39] 

reported a HP content of 5.93 mg/g for legumes (35% chickpeas, 31% beans and 34% lentils), a value 

lower than that assessed here for black bean, this difference can be due to that different cultivar was 
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studied. HP content of QPM tortilla was higher that those reported in yellow maize (4.47 mg/g) [38], 

the maize variety can be responsible of this difference, the value determined here is also higher that 

those reported in cereals (rice and wheat products) (4.72 mg/g) [39]. No difference in HP content was 

found between tortilla and black bean tortilla. Double cooking of bean could be responsible for this 

pattern, it has been reported that HP can be degraded by thermal action at high temperatures [43]. 

In general, total phenolic content (extractable and non-extractable polyphenols) in black bean 

tortilla was higher than the phenolic content of foods considered rich in polyphenols such as pepper 

(13.45 mg/g), broccoli (12.04 mg/g) and spinach (12.75 mg/g) [44]. 

2.5. Antioxidant Capacity 

The antioxidant capacity (AC) of raw materials and tortillas is shown in Table 5. Extractable 

polyphenols of bean presented the highest AC level. Two black bean varieties showed an AC of 48.91 

and 92.73 µmol Trolox eq/g, the bean variety is responsible of this difference [37]. The AC of EP of 

tortilla was similar to those reported for vegetables (6.7 µmol Trolox eq/g) [45]. An increase of 80.5% 

in antioxidant capacity of EP in black bean tortilla was found compared with tortilla. The AC of EP  

of black bean tortilla was similar to those reported for products with high AC such as red wine  

(12.14 µmol Trolox eq/ mL) [46]. 

Table 5. Antioxidant capacity of black bean flour, quality protein maize (QPM) tortilla and 

QPM-black bean tortilla. 

Sample 

Antioxidant capacity (ABTS method) 
(μmol Trolox eq/g) 

EP PA HP 
Black bean flour 57.58 ± 0.18 a 11.27 ± 0.65 a 14.54 ± 0.24 a 

QPM tortilla 6.95 ± 0.49 b N.d. 0.87 ± 0.46 b 
QPM-black bean tortilla 12.55 ± 0.42 c 3.62 ± 0.23 b 1.44 ± 0.35 b 

Values are mean ± SEM, n = 3, dry matter. Means in the same column with different letter are 

significantly different (p < 0.05). EP: Extractable polyphenols; PA: Proanthocyanidins; HP: Hydrolysable 

polyphenols; N.d.: Not detected. 

The PA content in black bean was higher than EP content; however, the PA showed a lower 

antioxidant capacity, which could be due to differences in the chemical structures. The PA  

can be esterified with glucoside units in position C3 [47]. It has been observed that glycosylated 

flavonoids have minor antioxidant capacity [48]. Cooked black bean showed an antioxidant capacity of 

proanthocyanidins of 13.2 µmol Trolox eq/g [12], a value higher than that assessed here, the variety of 

the bean and the method of determination can be responsible of this difference. The AC of PA was not 

detected in tortilla. A similar result was reported by Pérez-Jiménez and Saura-Calixto [42] for cereals. 

In black bean tortilla, the AC of PA was detected, this is due to a dilution effect when the bean was 

mixed with maize, the value was similar that those reported for asparagus (3.92 µmol Trolox eq/g) and 

swiss chard stalk (3.53 µmol Trolox eq/g), the consumption of vegetables has been inversely 

associated with mortality from degenerative diseases [46]. 
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No difference in AC of HP was found in tortilla and black bean tortilla. This pattern could be 

because HP in bean was degraded by thermal action in the second cooking [43]. 

In general, AC of total phenolic content (extractable and non-extractable polyphenols) in black bean 

tortilla was 17.61 µmol Trolox eq/g; if tortilla consumption is 328 g/day [3], the AC provided by black 

bean tortilla is equivalent to 3.56 mmol Trolox eq/day. Green tea is considered an important source of 

AC, and the AC of green tea is 6.01 mmol Trolox eq/L [46]. To reduce the risk to develop hypertension 

consumption of 120 mL/day of green tea (equivalent to 0.72 mmol Trolox eq/day) is suggested [49]. 

Consumption of 10 cups/day (150 mL/cup, 9.02 mmol Trolox eq/day) is linked with a decreased 

relative risk of death from cardiovascular disease [50]. It has been reported that polyphenols have 

anticancer [51] and antiproliferative [52] and antimutagenic activity [53]. 

3. Experimental Section 

3.1. Sample Preparation 

Black common bean seeds, cv. Negro 8025, were harvested in 2008 at the Bajio Experimental 

Station of the National Research Institute for Forestry, Agriculture and Livestock (INIFAP), located in 

Celaya, Guanajuato, Mexico. Seeds of cv. Ancho QPM maize were harvested in 2009 at the INIFAP, 

located in Iguala, Guerrero, Mexico. After dry bean Negro 8025 were cooked in water with NaCl  

(10 g/Kg bean) for 85 min at 97 °C, the grains and the cooking broth were lyophilized and then ground 

using a commercial grinder (Mapisa Internacional S.A. de C.V., Mexico, D.F.) to pass a US No. 50 

sieve to produce the black bean flour. QPM maize grains were cooked in water (1:3, w/v) for 30 min at 

97 °C at alkaline pH using lime (10 g/Kg grain), followed by cooling and soaking for 12 h. After 

soaking, QPM grains were washed three times with water, and grounded to make “masa” (QPM 

“masa”). Tortillas without cooked dry bean (QPM Tortilla) were produced with QPM “masa”. QPM 

“masa” was blended with black bean flour to produce a 70:30 ratio (w/w, dry matter) followed by 

addition of water to form “masa” with the consistency to made tortillas (QPM-black bean tortilla). The 

relationship masa:black bean was obtained of previous studies [13–15]. “Masa” was molded by 

pressure and extruded in commercial tortilladora MOT-G model (Tortilladoras González, Naucalpan, 

México) into thin circles to obtain 2 mm thick tortillas. Tortillas were cooked on a hot griddle for  

1 min per side at an approximate temperature of 250 ± 5 °C. QPM “masa”, QPM tortilla and  

QPM-black bean tortilla were lyophilized and ground using a commercial grinder Universal model 

(Mapisa Internacional S.A. de C.V., Mexico, D.F.) to pass a US No. 50 sieve. The samples were stored 

at 10 °C until analysis. 

3.2. Chemical Analysis 

Ash, protein (N × 6.25) and fat were assessed according to AACC methods 08–01, 46–13 and  

30–25, respectively [54,55]. Total dietary fiber was determined following the AOAC method  

985.29 [55]. All analyses were performed in triplicate. 



Int. J. Mol. Sci. 2012, 13             

 

 

295

3.3. Total Starch  

Total starch (TS) was determined by the method of Goñi et al. [34] with minor modifications; in 

brief, 50 mg of sample were dispersed in 2M KOH (60 min) to disperse all starch fractions, then samples 

were incubated with amyloglucosidase (No. 10 102857 001, Roche Diagnostics GmbH, Mannheim, 

Germany) at 60 °C and pH 4.75 for 90 min; glucose was determined using the glucose oxidase assay 

GOD-POD. TS were calculated as released glucose (mg) × 0.9. 

3.4. Resistant Starch  

Resistant starch (RS), including RS1 and RS2 fractions, was measured by Goñi et al. [56] in brief, 

protein and digestible starch were removal with pepsin (P-7000, Sigma Chemical Co., St. Louis, MO, 

USA) incubation (40 °C, pH 1.5, 1 h) and α-amylase (A-3176, Sigma Chemical Co.) incubation (37 °C, 

pH 6.9, 16 h). The residue was treated with 2 M KOH (30 min) and then incubated with 

amyloglucosidase (No. 10 102857 001, Roche Diagnostics GmbH) at 60 °C and pH 4.75 for 45 min. 

Glucose was determined using glucose oxidase/peroxidase assay (GPSL-0507, Elitech Clinical 

Systems). RS was calculated as glucose (mg) × 0.9. Digestible starch was calculated by difference 

between TS and RS. 

3.5. In Vitro Kinetic of Starch Digestion  

The in vitro rate of hydrolysis was measured using hog pancreatic α-amylase according to  

Holm et al. [57] with minor modifications. A 50 mL of phosphate buffer (pH 6.9) were added to a 

portion of each sample containing 500 mg of available starch. Samples were incubated a 37 °C in a 

shaking water bath. In the first 5 min before the addition of enzyme aliquots of 0.2 mL of each sample 

were taken to mark as time zero. After an interval of 1 min, 1 mL of a solution containing 40 mg of 

porcine pancreatic α-amylase (A-3176, Sigma Chemical Co.) in 1 mL of phosphate buffer was added 

to each sample. Samples (0.2 mL) were withdrawn after 15 min and every 15 min for 90 min. These 

samples were added to tubes than containing 0.8 mL distilled water and 1 mL of 3,5 dinitrosalicylic 

acid (DNS). Samples were incubated at 100 °C in water bath for 10 min. Then 15 mL of distilled water 

was added to each tube and mixed well. The reducing sugars released were measured at 530 nm in 

parallel with a standard curve of maltose. The rate of hydrolysis was expressed as the percentage of 

starch hydrolyzed with respect to dry matter at different times. 

The predicted glycemic index (pGI) was calculated from percentage of starch hydrolyzed at 90 min 

(H90) values using the formula proposed by Goñi et al. [34]: pGI = 39.21 + 0.803 (H90) (r = 0.909,  
p ≤ 0.05). 

3.6. Determination of Polyphenols Content  

3.6.1. Extractable Polyphenols  

Samples (0.5 g) were extracted by constant shaking at room temperature with methanol:water 

acidified with HCl (50:50 v/v, pH 2, 50 mL/g sample, 60 min) and acetone:water (70:30 v/v, 50 mL/g 

sample, 60 min). After each extraction step, samples were centrifuged (15 min, 25 °C, 3000 g) and 
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supernatants were combined and used to determine extractable polyphenols content by the  

Folin-Ciocalteau procedure [58]. The results were expressed as gallic acid equivalents. 

3.6.2. Non Extractable Polyphenols 

3.6.2.1. Proanthocyanidins 

Residues from the methanol/acetone/water extraction were treated with 5 mL/L HCl in butanol for  

3 h at 100 °C for proanthocyanidins determination [59]. Proanthocyanidins were calculated from the 

absorbance at 550 nm of the anthocyanidin solutions. Proanthocyanidins from Mediterranean carob 

pod (Ceratonia siliqua L.) supplied by Nestlé S.A. were treated under the same conditions to obtain 

standard curves. 

3.6.2.2. Hydrolysable Polyphenols 

Hydrolysable polyphenols were determined by a methanol/H2SO4 90:10 (v/v) hydrolysis at 85 °C 

for 20 h on the residues of the methanol/acetone/water extraction [60]. After centrifugation (15 min,  

25 °C, 3000 g) supernatants were used to determine hydrolysable polyphenols by the Folin-Ciocalteau 

procedure [58]. The results were expressed as gallic acid equivalents. 

3.7. Free Radical-Scavenging Assay (ABTS) 

The antioxidant capacity of extractable polyphenols, proanthocyanidins, and hydrolysable 

polyphenols extracted from samples were estimated in terms of radical-scavenging activity  

following the procedure described elsewhere [61] with some modification [62]. Briefly, ABTS  

[2,2’-azinobis-(3-ethyl-benzothiazoline-6-sulfonic acid)] radical cation (ABTS+) was produced by 

reacting 7 mM ABTS stock solution with 2.45 mM potassium persulphate in the dark at room 

temperature for 12–16 h before use. The ABTS+ solution was diluted with methanol to an absorbance 

of 0.70 ± 0.02 at 730 nm. After addition of 0.1 mL of extract to 3.9 mL of diluted ABTS+ solution, 

absorbance readings were taken every 20 s using a UV-1800 UV-vis spectrophotometer (Shimadzu 

Europe GmbH, Duisburg, Germany). The reaction was monitored for 6 min. Inhibition of absorbance 

versus time was plotted, and the area below the curve (0–6 min) was calculated. Results were 

expressed as µmol of Trolox equivalents per g of dry matter. 

3.8. Statistical Analysis 

Results are presented as mean ± SEM (standard error of mean) of three separate determinations.  

A commercial software program (SigmaPlot for Windows version 11.0, San Jose, CA, USA) was used 

to evaluate, by one-way analysis of variance, significant differences in the means of measured 

parameters. Statistically significant differences (p < 0.05) amongst means were evaluated using the 

Tukey multiple comparison procedure. 
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4. Conclusions 

The addition of bean to tortilla made with quality protein maize improved the protein, ash and 

dietary fiber content. The starch digestibility rate of tortilla with bean decreased and, in consequence, 

produced lower predicted glycemic index. QPM Tortilla with black dry bean showed higher 

antioxidant capacity than QPM tortilla. The tortilla with bean can be an alternative for people with 

particular nutritional or metabolic requirements. 
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