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Abstract: The indigenous small non-coding RNAs, known as microRNAs (miRNAs), are 

important regulators of gene expression and many of them are evolutionarily conserved. 

Whether stem-loop RT-PCR, as a sensitive method, could be utilized to clone conserved 

miRNAs from non-model insects lacks information. Here, three miRNAs, sli-miR-14,  

sli-miR-2a and sli-bantam, were cloned from Spodoptera litura by stem-loop RT-PCR. 

Two groups of primers were designed, and one of them performed especially well and 

proved stable. The sequences of two highly conserved miRNAs, sli-miR-14 and sli-miR-2a 

were identical to those in Drosophila melanogaster. To validate the reliability of this 

strategy, pre-miR-14 and pre-miR-2a in S. litura as representatives were given as well; this 

shared high homology with those in D. melanogaster and Bombyx mori, and both mature 

sequences of sli-miR-14 and sli-miR-2a in their precursors shared 100% identity to the 

results shown by stem-loop RT-PCR. Moreover, expression patterns of these miRNAs 

were investigated by real-time quantitative PCR. Sli-miR-14 and sli-miR-2a could be 

detected successfully and their expression patterns showed similar characteristics with 

those in model insects, further suggesting stem-loop RT-PCR technology can be used for 

identification of highly conserved miRNAs in non-model insects. These results provide a 

simplified and efficient strategy for studying the structure and function of highly conserved 

miRNAs, especially some critical miRNAs in non-model insects. 
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1. Introduction 

MicroRNAs (miRNAs) are small (~22 nucleotides) non-coding RNAs molecules bound to  

3′-untranslated regions (3′-UTR) of messenger RNA (mRNA) of the target genes by incomplete  

base-pairing and regulate gene expression at post-transcriptional level [1–3]. The genes encoding 

miRNAs are usually located in intergenic regions, some in the introns of known genes, and even within 

expressed sequence tags (ESTs). In the nucleus, a stem-loop (hairpin) primary miRNA (pri-miRNA) as a 

newly-transcribed RNA is processed into a 70~90 nt hairpin long precursor miRNA (pre-miRNA) by 

Drosha nuclease. Then, pre-miRNA is exported to the cytosol and cut into a short double-stranded RNA 

by the Dicer nuclease, which is loaded onto a protein complex called the RNA-induced silencing 

complex (RISC), where a protein in the Argonaute family binds to one mature strand to form an active 

miRNA-RISC complex, then the mature short miRNAs act on their targets and lead to the inhibition of 

translation [4,5]. 

MiRNAs have been shown to be ubiquitous in multicellular organisms and many of them are 

evolutionarily conserved [6–8]. It has been verified that miRNAs play pivotal roles in a wide variety of 

biological processes including developmental timing, cell proliferation, apoptosis and neural 

development [2,9,10]. MiRNAs were originally isolated by a direct cloning procedure in Drosophila 

melanogaster and many of them are sequence conserved with those of Caenorhabditis elegans [11–13]. 

In recent years, research on insects’ miRNAs has extended gradually from D. melanogaster to other 

model insects, such as Apis mellifera [14], Bombyx mori [15,16] and Tribolium castaneum [17]. 

Although rapid progresses have been achieved in discovering new miRNAs and exploring their 

biological roles in model insects, studies on miRNAs in non-model insects, especially in agricultural 

insects make slow progress. 

The identification and quantification of miRNAs has been limited by their short length and low 

abundance. Currently, there are three main strategies for the amplification of miRNAs. Firstly, 5′ and 

3′ adaptors are ligated to small RNAs, cDNA are generated by reverse transcription (RT) with primers 

derived from the two adaptors [18]. It can be used for massive separation and identification of 

miRNAs, as well as the discovery of novel miRNAs. However, complicated procedures, rigorous 

operation and massive work have hampered its availability and development. Secondly, only 3′ adaptor 

is ligated to small RNAs, miRNA-specific primer and 3′ adaptor primer are in conjunction with cDNA 

for miRNA amplification [19,20]. Although the phosphorylation and ligation have been omitted in this 

method, the whole procedure is complicated. The application of commercial kit increases the success 

rate, but increases the cost. Thirdly, a miRNA-specific stem-loop primer is used for RT procedure. 

PCR reverse primer is based on the stem-loop RT primer, while the forward primer is designed by the 

5′ end of mature miRNA [21,22]. Only total RNA should be extracted from organisms, tissues or cells 

by this method, which provides a simple operation and costs less. Compared with the first way, 

designs of PCR forward primer are limited by the sequence of known miRNA in the second and third 
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ways. Therefore the latter two are always used for quantitative determination of known miRNAs in 

model insects; however, until now there has been no report on the application of them for identifying 

miRNAs in non-model insects. 

Three known miRNAs, miR-14, miR-2a and bantam, play important roles in the developmental 

stages in D. melanogaster [23,24], such as regulating steroid hormone signaling [25] and  

apoptosis [12,26,27]. Here, these three miRNAs, which exist in model insects, were presented as a 

model to confirm the adaptability to identify the homologues of known miRNAs in non-model insects 

by stem-loop RT-PCR technology. The homologues of miR-14, miR-2a and bantam were cloned  

from Spodoptera litura, a prevalent agriculture pest in China, by stem-loop RT-PCR, and their 

expression patterns in different developmental stages were also investigated to confirm the results of 

sequence analysis. These observations provide a new strategy for the identification of miRNAs in 

various organisms. 

2. Results and Discussion 

2.1. Amplification and Identification of sli-miR-14, sli-miR-2a and sli-bantam from S. litura 

To identify the availability of stem-loop RT-PCR technology for cloning conserved miRNAs from 

non-model insects, the sequences of miR-14, miR-2a and bantam in model insects were searched from 

miRBase (Table S1). Two groups of primers for amplification were designed based on the sequences 

of mature miRNAs in D. melanogaster (shown in Experimental Section). 

The putative homologue of the three miRNAs in S. litura, namely sli-miR-14, sli-miR-2a and  

sli-bantam were cloned by a stem-loop RT-PCR technique. Ten positive clones of each sample were 

sequenced. When Group 1 was used for amplification of miR-14, miR-2a and bantam, PCR products 

were 86 bp, 89 bp, 89 bp, respectively (Figure 1a); when Group 2 was used, PCR products were 76 bp, 

79 bp and 79 bp in length, respectively (Figure 1b). Sequence analysis of the single bands showed that 

specific amplifications consisted of all bases of putative miRNA, PCR forward primer and reverse 

primer. Sequences of these cloned miRNAs in S. litura showed 100% match to those in D. melanogaster. 

To verify the present results, fragments appeared in blank control group were also purified from 2.5% 

agarose gels, ligated into the T-vector and then sequenced. These non-specific fragments amplified with 

Group 1 primers were diverse according to agarose gel electrophoresis analysis, sequence analysis 

showed that all fragments just consisted of PCR forward primer and reverse primer, rather than the 

target miRNAs (Figure 1a). By using primers of Group 2, the fragments in blank control group of  

each miRNA displayed a single band by agarose gel electrophoresis (Figure 1b). Similarly, sequence 

analysis showed these fragments in each experimental group just included the forward primer, reverse 

primer, and/or other non-specific bases. 

Performances of the two groups of primers were also different in the experimental group. Some 

non-specific amplifications appeared in experimental group with primers of Group 1, but the majority 

of sequenced colonies contained all bases of putative miRNA. By using primers of Group 2, agarose 

gel electrophoresis showed amplified fragment was a single band when cDNA was added into the 

reaction volume, sequence analysis also confirmed it. All indicated that primers bound to cDNA much 

more tightly than themselves in experimental group. Although two groups of primers could be used for 
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cloning conserved miRNAs from S. litura, Group 2 performed better and was more stable; same results 

were shown in electrophoretogram (Figure 1). Based on the electrophoresis and sequence analysis of 

RT-PCR, Group 2 primers were more suitable for a quantitative PCR (qPCR) assay. 

Figure 1. (a) Performance of Groups 1 primers by stem-loop RT-PCR. The bands size is 

amplified as shown by the arrow along with a 100 bp DNA marker (M). Left are PCR 

products of putative miR-2a (1), bantam (2), and miR-14 (3) of S. litura which were 89 bp, 

89 bp, 86 bp, respectively, and their corresponding minus-RT control are shown on the 

right; (b) Performance of Groups 2 primers by stem-loop RT-PCR. The bands size is 

amplified as shown by the arrow along with a 100 bp DNA marker (M). PCR products of 

putative miR-2a (1), bantam (3), and miR-14 (5) of S. litura were 79 bp, 79 bp, 76 bp, 

respectively, and minus-RT control by using primers of miR-2a (2), bantam (4), and  

miR-14 (6) were shown besides the putative miRNAs. 

 

2.2. Cloning and Analysis of pre-miR-14 and pre-miR-2a from S. litura 

To verify the present results, homology of pre-miR-14 and pre-miR-2a were cloned from S. litura. 

According to the two ESTs of Spodoptera frugiperda which are highly homologous to putative  

sli-miR-14 and four ESTs of Heliothis virescens, a 322 bp fragment was amplified using degenerate 

primers Pre-14F and Pre-14R from genomic DNA of adult of S.litura. This fragment showed 97.5% 

identity to the ESTs of S. frugiperda and 82 bp putative pre-sli-miR-14 was contained in it (Figure 2a). 

Blast procedure had been performed to analyze the homology among the putative pre-miR-14 in 

S.litura and that in B. mori and D. melanogaster. Results showed the putative pre-sli-miR-14 shared 

83.8% and 73% homology to pre-bmo-miR-14 and pre-dme-miR-14 respectively (Figure 2b). 
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Figure 2. (a) The sequence alignment of partial sequences of pri-miR-14 between S. litura 

and S. frugiperda; (b) The sequence alignment of entire sequences of pre-miR-14 among  

S. litura, B. mori and D. melanogaster. Black shades represent completely conserved bases. 

Mature sequence of sli-miR-14 was underlined by red line. 

 

A cluster of miR-2a-1, miR-2a-2, miR-2b, miR-13a and miR-13b is localized on chromosome 1 of  

B. mori, indicating there are two precursors of miR-2a, and miR-2a-2 is in the interior of this cluster. 

Therefore, Primers Pre-2aF and Pre-2aR were designed according to the conserved miRNAs for 

amplifying pre-miR-2a-2, and rising nealing temperature to 65 °C to inhibit non-specific amplification. 

A 552bp fragment containing putative pre-sli-miR-2a-2 was amplified from genomic DNA of adult of 

S. litura. Sequence analysis showed that this fragment was 68.9% identity to the homologue in  

B. mori, there are three highly conserved regions besides two primers’ sites, where highly conserved 

miRNAs including miR-2a-2, miR-13a and miR-13b exist (Figure 3a). The putative pre-sli-miR-2a 

showed 81.1% and 70.4% similarities with pre-bmo-miR-2a and pre-dme-miR-2a respectively (Figure 3b). 
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Figure 3. (a) The sequence alignment of partial sequences of pri-miR-2a between S. litura 

and B. mori; (b) The sequence alignment of entire sequences of pre-miR-2a among  

S. litura, B. mori and D. melanogaster. Black shades represent completely conserved bases. 

Mature sequence of sli-miR-2a was underlined by red line, putative sli-miR-13a and  

sli-miR-13b were also underlined by green and blue line, respectively. 

 

Moreover, both mature sequences of miR-14 and miR-2a in their precursors shared 100% identity to 

the results shown by stem-loop RT-PCR. In order to verify the result, secondary structure of two 

putative pre-miRNAs were predicted by mfold program. Results showed that putative pre-miR-14 and 

pre-miR-2a of S. litura can form stable stem-loop structures (initial ΔG = −41.80 and ΔG = −41.20 

respectively) and are highly homologous to those of B. mori and D. melanogaster, indicating they are 

the precursors of sli-miR-14 and sli-miR-2a (Figure 4). Above all suggested stem-loop RT-PCR could 

be used in identification of highly conserved miRNAs in non-model insects. 
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Figure 4. The stem-loop structures of precursors and mature forms (highlighted in red) of 

miR-14 (a) and miR-2a (b) in S. litura, B. mori and D. melanogaster. 

 

2.3. Expression Patterns of sli-miR-14, sli-miR-2a and sli-bantam from S. litura 

The expression patterns of the putative miRNAs, sli-miR-14, sli-miR-2a and sli-bantam were also 

studied to make a further validation of this method. Group 2 primers were used for a qPCR assay. 

Although putative sli-bantam could be cloned by stem-loop RT-PCR, no stable results of qPCR could 

be obtained here (data not shown). However, the expression patterns of sli-miR-14 and sli-miR-2a, two 

highly conserved miRNAs in insect, could be obtained in this assay. PCR efficiency was determined 

on the miRNAs as well as 5S rRNA. The efficiency of miR-14, miR-2a and 5S rRNA was close to the 

ideal value of 2 (Table 1), therefore relative quantification (RQ) of miRNA expression was calculated 

with 2−ΔΔCt method [28,29]. 

Table 1. Efficiency of amplification for miRNAs and 5S rRNA. 

RNA linear equation PCR efficiency R2 
Sli-miR-14 y = −3.3125x + 39.562 2.0039 0.9987 
Sli-miR-2a y = −3.2811x + 36.678 2.0173 0.9995 

5S  y = −3.3915x + 33.219 1.9718 0.9945 

Sli-miR-14 was expressed strongly in all developmental stages of S. litura, but there were some 

differences among developmental stages. The relative expression levels of sli-miR-14 were 1.47-,  

4.22-, 3.78-, 2.26-, 1.87-, 0.37- and 9.07-fold higher in the first instar, third instar, fourth instar, six 

instar, pre-pupa, pupa and adult than in eggs, respectively (Figure 5a), which indicated that sli-miR-14 

expressed in pupal stage lower than in other stages, and especially strongly in adult stage. 
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Figure 5. The relative expression levels of sli-miR-14 (a) and sli-miR-2a (b) in different 

developmental stages. Data are presented as means ± SE for three experimental replicates. 

Letters above each bar indicate expression significance in the different stages by Duncan’s 

Multiple Ranges Test. 

 

 

Development-specific expression patterns for sli-miR-2a were also detected by qPCR. There were 

significant differences among various developmental stages, the relative expression levels of sli-miR-2a 

were 2.89-, 15.65-, 24.55-, 4.88-, 2.23-, 38.68- and 1.81-fold higher in the first instar, third instar, 

fourth instar, six instar, prepupa, pupa and adult than in egg, respectively (Figure 5b). Sli-miR-2a 

expressed at low level in egg, prepupa and adult stages, instead expressed most strongly in pupa stage, 

which accord with that in model insects, D. melanogaster [30] and B. mori [24]. 

2.4. Discussion 

As we know, stem-loop RT-PCR is a very sensitive method for quantitative determination of known 

miRNAs, even one base difference between two miRNAs in the same family could be detected and 

distinguished by this method [31]. Whether stem-loop RT-PCR could be used for identifying conserved 

miRNAs in non-model insects was studied in this paper. Two groups of primers were designed to access 
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the availability of this method. Six nucleotides of 3′ end of stem-loop RT primer were complementary 

with 3′ end of mature miRNAs, other nucleotides of RT primer were partially complementary with 

themselves to form a stem, and the remaining nucleotides form a loop. The PCR reverse primer was 

universal, while the forward primer was designed by mature miRNAs (Figure 6a). In order to make a 

distinction between specific and non-specific amplifications, only partial bases of miRNA were 

contained in forward primer. Two bases, three bases and four bases were not included in primers of 

miR-14, miR-2a and bantam, respectively (Figure 6b). The designing of stem-loop RT primers often 

presents learners with difficulties in some way; the primers designed in this assay also provide 

references for later research on other miRNAs. 

Figure 6. The principle of stem-loop RT-PCR in present paper: (a) Stem-loop primer was 

designed to increase the length of mature miRNAs. PCR forward primer was designed by 

putative miRNAs, the universal reverse primer was designed by stem-loop primer. The box 

formed by dotted line represents the bases not included in primers; (b) Six nucleotides of 3′ 

end of stem-loop RT primer are complementary with 3′ end of mature miRNAs of  

D. melanogaster. Two bases, three bases and four bases were not included in RT-PCR 

primers of miR-14, miR-2a and bantam, respectively (colored red), thus miRNAs or  

non-specific amplification could be distinguished by sequence analysis. 
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MiR-14 and miR-2a are more conserved members of miRNAs family than bantam in model insects 

including D. melanogaster and B. mori (Table S1). Sequence analysis indicated that homologue of the 

three miRNAs could be cloned from S. litura by stem-loop RT-PCR. In order to confirm whether the 

PCR products are endogenous miRNAs, putative precursors of miR-14 and miR-2a as representatives 

were also cloned from S. litura, results showed that both their sequences and secondary structures were 

highly conserved with model insects. The mature sli-miR-14 and sli-miR-2a in their precursors shared 

100% identity to the results shown by stem-loop RT-PCR. Then, sli-miR-14 and sli-miR-2a were 

successfully detected by a qPCR assay and their expression patterns showed similar characteristics 

with those in model insects. Instead, abnormal amplification appeared in qPCR of sli-bantam, there is 

no significant difference in Ct values in the presence or absence of cDNA added to the RT reactions 

(data not shown). As mentioned above, only six bases of 3′ end of putative miRNA were 

complementary with stem-loop RT primer, but PCR forward primer was restricted by the 5′ end of 

miRNAs, suggesting this strategy can be used for identification of highly conserved miRNAs and 

distinguished variation appeared in 3′ region of miRNAs. However, this method is difficult to 

differentiate variation appeared in 5′ region of miRNAs. Some miRNAs with evolutional variation in 

their 5′ region, such as bantam, cannot show accurate sequences in non-model insects and toned to be 

identified together by other methods. 

Although the identification of miRNAs in non-model insects with stem-loop RT-PCR is limited by 

5′ region of putative miRNA, large amounts of miRNAs that are highly conserved, such as miR-14  

and miR-2a, can be simply cloned by this method. It has been clearly stated that cell autonomous  

anti-apoptotic activity mediated by miR-14 and miR-2a [12,27], miR-14 also plays critical role in 

molting process [25], indicating miRNAs are involved in strict developmental regulation in insects. 

Studies on miRNAs in various insects, especially agricultural pests, may provide new ideas for pest 

control. However, so many difficulties stand in our way for identifying miRNAs in non-model insects, 

a simple and efficient method is urgently necessary. 

Applying stem-loop RT-PCR in identification of highly conserved miRNAs from S. litura provides 

a new strategy for studying miRNAs in a more extensive field. As mentioned above, direct cloning is 

more appropriate for the cloning of massive miRNAs and the discovery of novel miRNAs, this 

powerful but blind task produces a huge workload. With the help of computer programs, researchers 

can make an easy prediction on miRNAs in the genomic database of model insects, and then make a 

direct cloning according to the predicted results. Unfortunately, this has no advantages for  

non-model insects. Currently, most of the studies on miRNAs of non-model insects have focused on 

the direct cloning of miRNAs, however, the cloned miRNAs mostly are conserved; many even have 

identical sequences with those in model insects. Compared with direct cloning, stem-loop RT-PCR has 

a clearly defined aim for cloning selected conserved miRNAs, which simplifies operation and saves 

cost. Meanwhile, the discovery of massive miRNAs in model insects gives us lots of resources for 

further study in more extensive field. When one or a few important and highly conserved miRNAs 

were expected to research in non-model insects, this strategy greatly improves efficiency. 
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3. Experimental Section 

3.1. Sample Preparation 

A laboratory strain of S. litura was purchased from the Entomology Institute of SUN YAT-SEN 

University, Guangzhou, China. Insects were routinely reared at 25 ± 1 °C and 70 ± 10% relative 

humidity under a 16:8 h (light:dark). 

S. litura ovary cell lines SL-1 were routinely maintained at 27 °C at the laboratory. SL-1 cells were 

cultured in insects’ Grace medium, supplemented with 7% fetal bovine serum (FBS) (Gibco, USA), 

0.3% yeast extract (Oxoid, UK) and 0.3% lactalbumin hydrolysate (Oxoid, UK). Culture medium was 

changed every 3 days, and subcultured SL-1 cells every 6 days. 

Eight samples including eggs, larvae (selected first, third, forth, sixth instar as representatives),  

pre-pupae, pupae and adults were collected and stored at −80 °C for total RNA extraction. The  

third-instar larvae and SL-1 cells were prepared for stem-loop RT-PCR, and samples of eight stages 

were prepared for real-time qPCR. 

3.2. Stem-Loop RT-PCR Primers Designing 

Two groups of primers including stem-loop primer and corresponding PCR primers were designed 

based on the mature sequences of the three miRNAs in D. melanogaster (Table S1). The Group 1 

primers were designed by previous reports [15], Group 2 primers haven’t reported before. The partial 

bases of stem-loop RT primer of three miRNAs were universal, Group 1 was: 5′-GTCGTATCCAGT 

GCAGGGTCCGAGGTATTCGCACTGGATACGAC-3′ (Table 2), Group 2 was: 5′-GCACTTCAG 

TGTCGTGGTCAGTGACGGCAATTTGAAGTGC-3′ (Table 3). Six bases of 3′ end of stem-loop RT 

primer were complementary with 3′ end of mature miRNA, and the PCR forward primer was paired 

with 5′ end of mature miRNA (principle in Figure 3). 

Table 2. Sequences of stem-loop RT primers, forward primers and reverse primers of 

Group One. 

miRNAs Primer Sequence (5′-3′) 

Sli-miR-14 
RT 

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC
GACTAGGAG 

Forward CGGGGCTCAGTCTTTTTCT 
Reverse GTGCAGGGTCCGAGGT 

Sli-miR-2a 
RT 

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC
GACGCTCAT 

Forward GCCAGTATCACAGCCAGCT 
Reverse GTGCAGGGTCCGAGGT 

Sli-bantam 
RT 

GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATAC
GACAATCAG 

Forward GCCCCGTGAGATCATTTTG 
Reverse GTGCAGGGTCCGAGGT 
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Table 3. Sequences of stem-loop RT primers, forward primers and reverse primers of 

Group Two. 

miRNAs Primer Sequence (5′-3′) 

Sli-miR-14 
RT 

GCACTTCAGTGTCGTGGTCAGTGACGGCAATTTGAAGTGCT
AGGAG 

Forward CGCACGACGCATCAGTCAGTCTTTTTCT 
Reverse GCACTTCAGTGTCGTGGTCAGTGACGGCAATT 

Sli-miR-2a 
RT 

GCACTTCAGTGTCGTGGTCAGTGACGGCAATTTGAAGTGCG
CTCAT 

Forward CGACACACACCATCAGTATCACAGCCAGCT 
Reverse GCACTTCAGTGTCGTGGTCAGTGACGGCAATT 

Sli-bantam 
RT 

GCACTTCAGTGTCGTGGTCAGTGACGGCAATTTGAAGTGCA
ATCAG 

Forward CGCATCGTAGCATCGCTGAGATCATTTTG 
Reverse GCACTTCAGTGTCGTGGTCAGTGACGGCAATT 

3.3. RNA Extraction and Reverse Transcription 

The extractions of total RNA from all stages of S. litura and SL-1 cells were performed by using 

TRIzol kit (Invitrogen) according to the manufacturer’s instructions. cDNA was synthesized from  

total RNA with miRNA-specific stem-loop RT primer. Reverse transcriptase reactions contained 2 µg 

of RNA samples, 125 nM stem-loop RT primer, 1× RT buffer, 2.5 mM each of dNTPs (TaKaRa),  

200 U·µL−1 PrimerScript Reverse Transcriptase (TaKaRa) and 40 U·µL−1 RNase Inhibitor (TaKaRa). 

The 11 µL reactions consisting of total RNA, stem-loop RT primer and ddH2O was first incubated  

for 10 min at 70 °C, 2 min for ice-bath, and other reagents were mixed together after a transient 

centrifugation. These 25 µL reactions were incubated in a MyCycler Thermal Cycler (Bio-Rad, 

Hercules, CA) for 60 min at 42 °C, 15 min at 72 °C, and then held at 4 °C. 

3.4. PCR of sli-miR-14, sli-miR-2a and sli-bantam 

PCR was performed in a 50 µL reaction volume containing 1 µL cDNA, 10 µM of each primer,  

10× PCR buffer, 2.5 mM each of dNTPs (TaKaRa) and 5 U·µL−1 Taq DNA polymerase (TaKaRa). 

The condition for the PCR was 94 °C for 3 min, followed by 35 cycles of 94 °C for 30 s, 55~60 °C for 

30 s, 72 °C for 30 s, and additional polymerization step at 72 °C for 10 min. Target fragments were 

purified from 2.5% agarose gels and ligated into the T-vector (TaKaRa) and then sequenced. 

3.5. Pre-miRNA Primers Designing 

Two gene fragments of S. frugiperda (FP355748.1 and FP352735.1) were found in EST Database 

(NCBI) by homologous searching according to the sequence of pupative sli-miR-14. Partial sequence 

of the two ESTs showed high similarities with pre-bmo-miR-14 and pre-dme-miR-14. Then four gene 

fragments of Heliothis virescens (GT205268.1, GT212851.1, GT204572.1 and GT204571.1) was 

found according to the two ESTs of S. frugiperda. Based on these homologous sequences, degenerate 
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primers Pre-14F and Pre-14R were designed for cloning pre-miR-14 from S. litura. Pre-14F: TTTGTC 

ATGTGACTCGCGCC; Pre-14R: CGCAGCCGAATCAAATAACA. 

By searching bmo-miR-2a in Silkworm Genome Database, it is noticed that there are two precursors 

of pre-bmo-miR-2a which localized on chromosome 1 and organized as a cluster with pre-miR-2b,  

pre-miR-13a and pre-miR-13b (Figure 5). Based on the conserved character of miRNA, Pre-2aF and 

Pre-2aR for cloning pre-miR-2a-2 were designed according to the mature sequences of miR-2b and 

miR-2a-1 which located at both ends of the cluster. Pre-2aF: ACTCAACAAAGCTGGCTGTGA;  

Pre-2aR: CACAGCCAGCTTTGATGAGC. 

3.6. Genomic DNA Isolation and the Amplification of pre-miR-14 and pre-miR-2a from S. litura 

Total genomic DNA was isolated from the adult of S. litura according to the instruction of E.Z.N.A. 

Insect DNA Kit (OMEGA, USA). The PCR reaction was performed with the following protocol: 94 °C 

for 3 min; followed by 35 cycles of 94 °C for 30 s, 55~65 °C for 30 s, 72 °C for 45 s, and additional 

polymerization step at 72 °C for 10 min. Amplified DNA was purified by 2% agarose gels, and ligated 

into T-vector (TaKaRa), then positive clones were sequenced. 

3.7. Real-Time Quantitative PCR 

The cDNAs were diluted 10 times to perform PCR for expression confirmation or qPCR for 

expression patterns analysis. The 25 µL reaction volume consisting of 2 µL cDNA, 12.5 µL SYBR 

Green (TaKaRa), 9.5 µL ddH2O, 0.5 µL of forward primer (10 µM) and 0.5 µL of reverse primer  

(10 µM) for each miRNAs. The reactions were performed on BIO-RAD CFX96 Real-Time PCR 

Detection System (Bio-Rad, Hercules, CA) following the manufacturer’s recommendations. The 

optimized real-time PCR program was 94 °C for 20 s, followed by 40 cycles of 95 °C for 10 s, 60 °C for 

20 s, 72 °C for 10 s. After the cycling protocol, melting curves were obtained by increasing the 

temperature from 70 °C to 95 °C (0.4 °C/s) to denature the double-stranded DNA. PCR products were 

detected by electrophoresis with 3% agarose gel containing ethidium and photographed under UV light. 

There has not been a standard control for expression normalization for miRNAs, thus 5S rRNA as an 

internal control was used in this assay [19]. The forward primer was: CCAACGTCCATACCAT 

GTTGA, the reverse primer was: GCGGTCACCCATCCAAGTA. 

Relative quantification (RQ) of miRNA expression was calculated with 2−ΔΔCt method [29]. To 

experimentally determine PCR efficiency, diluted cDNAs (100, 10−1, 10−2 and 10−3) were amplified by 

real-time PCR. Plots were made of the log of template concentration versus the CT and the PCR 
efficiency was calculated from the slope of the line using the equation: E = 10−1/slope. 

3.8. Sequence and Data Analysis 

Sequence analysis was performed by DNASTAR 7.0. Sequence similarity for conserved domains of 

miRNAs was analyzed by MIRBASE, Silkworm Genome Database and BLAST programs on the 

National Center for Biotechnology Information (NCBI) Multiple sequence alignments of partial  

pri-miRNA and entire pre-miRNA among related species were performed by ClustalW2. The  

pre-miRNA sequence was subjected to an RNA secondary structure check using mfold program. 
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4. Conclusion 

Three homologues of known miRNAs, miR-14, miR-2a and bantam in model insects, were cloned 

from S. litura by stem-loop RT-PCR, and named sli-miR-14, sli-miR-2a and sli-bantam. Pre-miR-14 

and pre-miR-2a as representatives were also cloned from S. litura; both their sequences and secondary 

structures shared a high degree of homology with those in model insects, and the mature sequences  

of miR-14 and miR-2a in their precursors shared 100% identity to the results shown by stem-loop  

RT-PCR. Moreover, expression patterns analysis indicated that the highly conserved miRNAs, both 

miR-14 and miR-2a, could be detected successfully by real-time quantitative PCR, which confirms that 

stem-loop RT-PCR can be used not only for quantification of miRNAs, but also for identifying highly 

conserved miRNAs in non-model insects. All these results showed stem-loop RT-PCR is a simplified 

and efficient strategy for cloning highly conserved miRNAs in non-model insects, providing a new 

idea for further study on those highly conserved and critical miRNAs in various organisms, such as the 

interaction between miRNAs and their target mRNAs. 
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