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Abstract: The effect of foliar application of salicylic acid (SA) at different concentrations 

(10
−3

 M and 10
−5

 M) was investigated on the production of secondary metabolites 

(flavonoids), chalcone synthase (CHS) activity, antioxidant activity and anticancer activity 

(against breast cancer cell lines MCF-7 and MDA-MB-231) in two varieties of Malaysian 

ginger, namely Halia Bentong and Halia Bara. The results of high performance liquid 

chromatography (HPLC) analysis showed that application of SA induced the synthesis of 

anthocyanin and fisetin in both varieties. Anthocyanin and fisetin were not detected in the 

control plants. Accordingly, the concentrations of some flavonoids (rutin and apigenin) 

decreased significantly in plants treated with different concentrations of SA. The present 

study showed that SA enhanced the chalcone synthase (CHS) enzyme activity (involving 

flavonoid synthesis) and recorded the highest activity value of 5.77 nkat /mg protein in 

Halia Bara with the 10
−5

 M SA treatment. As the SA concentration was decreased from 

10
−3

 M to 10
−5

 M, the free radical scavenging power (FRAP) increased about 23% in Halia 

Bentong and 10.6% in Halia Bara. At a concentration of 350 µg mL
−1

, the DPPH 

antioxidant activity recorded the highest value of 58.30%–72.90% with the 10
−5

 M SA 

treatment followed by the 10
−3

 M SA (52.14%–63.66%) treatment. The lowest value was 

recorded in the untreated control plants (42.5%–46.7%). These results indicate that SA can 

act not only as an inducer but also as an inhibitor of secondary metabolites. Meanwhile, the 

highest anticancer activity against MCF-7 and MDA-MB-231 cell lines was observed for 

H. Bara extracts treated with 10
−5

 M SA with values of 61.53 and 59.88%, respectively. 
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The results suggest that the high anticancer activity in these varieties may be related to the 

high concentration of potent anticancer components including fisetin and anthocyanin. The 

results thus indicate that the synthesis of flavonoids in ginger can be increased by foliar 

application of SA in a controlled environment and that the anticancer activity in young 

ginger extracts could be improved.  

Keywords: flavonoids; salicylic acid; chalcone synthase; HPLC; FRAP; DPPH; 
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1. Introduction 

Salicylic acid (SA) is a phenolic compound capable of enhancing plant growth and yield in some 

plants. SA acts as a potential non-enzymatic antioxidant, as well as a plant growth regulator, and plays 

an important role in regulating a number of plant physiological processes and bioactive compounds 

production [1]. Plants are potential sources of natural bioactive compounds which occur as secondary 

metabolites. They absorb sun light and produce high levels of oxygen and secondary metabolites 

during photosynthesis. Flavonoids are an important group of secondary metabolites and are a source of 

bioactive compounds in plants [2]. They are also a kind of natural product with antioxidant properties 

capable of scavenging free superoxide radicals, having anti-aging properties as well as reducing the 

risk of cancer. Sung-jin et al. [3] showed that some flavonoid components in green tea are effective in 

inhibiting cancer or induce mechanisms that may kill cancer cells and inhibit tumor invasion. It was 

found that flavonoids reduced blood-lipids and glucose, and enhanced human immunity [4]. Currently, 

flavonoids are extracted among other sources, from ginkgo leaves [5], kudzu roots [6], lotus leaves [7] 

and ginger rhizomes and leaves [8]. Chalcone synthase enzyme (CHS) is a key entry enzyme 

committed to the production of flavonoids in plants. Naringenin, the product of CHS activity is the 

initiator of a large variety of secondary metabolites including flavonoids, isoflavonoids, anthocyanins 

and phloroglucinols [9]. CHS condenses three malonyl-CoA molecules with cinnamoyl-CoA to 

produce chalcone. This condensation is the main pathway for the production of flavonoids (Figure 1), [10]. 

Ginger is one of the traditional folk medicines and it is widely used in cooking in Malaysia. It is 

extensively used overall especially in Asia and contains several interesting bioactive constituents 

which possess health promoting properties. Ginger is regarded as an important resource with a wide 

range of high flavonoid components, is low priced [11,12], and therefore serves as a cheap and 

important food material. Food composition and food additives play a major role in providing the 

required antioxidants for the body, although traditionally, spices such as ginger are commonly used in 

food preparations to improve flavor and taste. Previous studies by the current authors demonstrated 

potent antioxidant and anticancer activities of Malaysian ginger (Halia Bara and Halia Bentong) [13–15]. 

However, the impact of foliar application of SA on the production of biopharmaceuticals in Malaysian 

herbs has not been widely investigated. This needs to be understood, especially when the objective is 

production optimization with regard to herbal chemistry. Furthermore, information on SA effects on 

the chemistry of Malaysian ginger varieties is not available. Such data would be useful to provide 

information on the availability of high levels of beneficial components. 
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This study was therefore designed to examine the effects of foliar application of SA on the 

production of secondary metabolites in two varieties of Malaysian ginger (Zingiber officinale), namely 

H. Bentong and H. Bara and to evaluate CHS enzyme activity. In addition in vitro antioxidant and 

anticancer properties of the extracts against breast cancer cell lines were also investigated. 

Figure 1. Flavonoid biosynthetic pathway. ANS, anthocyanidin synthase; AS, aureusidin 

synthase; C4H, cinnamate-4-hydroxylase; CHR, chalcone reductase; DFR, dihydroflavonol 

4-reductase; DMID, 7,2'-dihydroxy,4'-methoxyisoflavanol dehydratase; F3H, flavanone  

3-hydroxylase; F3'H, flavonoid 3' hydroxylase; F3'5'H, flavonoid 3'5' hydroxylase; 

FS1/FS2, flavone synthase; I2'H, isoflavone 2'-hydroxylase; IFR, isoflavone reductase; 

IFS, isoflavone synthase; IOMT, isoflavone O-methyltransferase; LCR, leucoanthocyanidin 

reductase; LDOX, leucoanthocyanidin dioxygenase OMTO-methyltransferase; PAL, 

phenylalanine ammonia-lyase; RT, rhamnosyl transferase; UFGT, UDP flavonoid glucosyl 

transferase; VR, vestitone reductase; STS, stilbene synthase; FLS, flavanol synthase [16]. 
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2. Results and Discussion 

2.1. HPLC Analysis of Flavonoid Compounds  

Results of high performance liquid chromatography (HPLC) analysis of flavonoids and phenolic 

acids are present in Table 1. Leaf extracts of Malaysian ginger, especially the variety H. Bara 

contained considerably (p ≤ 0.05) high amounts of rutin (0.893 mg g
−1

 DW) and apigenin  

(0.384 mg g
−1

 DW). SA application reduced rutin production in H. Bara (6.8%) and H. Bentong 

(21.8%). According to the data obtained, the concentration of some flavonoids (e.g., rutin, apigenin) 

decreased significantly in plants treated with different concentrations of SA (Table 1). High 

concentrations of these flavonoids were found in the control plants. Conversely, concentration of 

naringenin, fisetin and morin increased significantly in both varieties when treated with different 

concentrations of SA. The interesting finding was that application of SA in both varieties induced 

synthesis of fisetin and anthocyanin which were not detected in the control plants. Highest levels of 

anthocyanin (0.442 mg g
−1

 DW) and fisetin (0.359 mg g
−1

 DW) were observed in leaf extracts of  

H. Bara treated with 10
−5

 M of SA. Obinat et al. [17] also reported that production of anthocyanin was 

induced in cultured grape cells following foliar application of SA. Myricetin has antioxidant properties 

and in vitro research suggests that various concentrations of myricetin can modify LDL cholesterol and 

enable increased uptake by white blood cells [18]. In the present study production of myricetin was 

enhanced in ginger varieties treated with SA compared to control plants. High levels of this potent 

antioxidant compound were observed in H. Bara (0.112 mg g
−1

 DW) treated with 10
−5

 M SA. Morien 

is a rare yet well known flavonoid component of plants and acts as a chemo-preventive agent in vitro 

and in vivo against oral carcinogenesis [19,20]. The importance of morin and related compounds as 

anti-tumour drugs has also been widely recognized [21]. A high content of morin (0.193 mg g
−1

 DW) 

was obtained in extracts of H. Bara treated with 10
−5

 M SA. According to HPLC analysis, it could be 

concluded that the application of SA induced synthesis of some flavonoids, while conversely inhibiting 

production of some other flavonoids in ginger. Our results suggest the ability of SA application to 

modify or alter both the profile and the concentration of flavonoids in ginger.  

Table 1. High performance liquid chromatography analysis of ginger (Zingiber officinale) 

varieties treated with salicylic acid (SA). 

Compounds 
Halia Bentong Halia Bara 

Control SA 10−5 SA 10−3 Control SA 10−5 SA 10−3 

Rutin 0.893 ± 0.03 b,c 0.736 ± 0.09 c 0.79 ± 0.06 c 1.13 ± 0.12 a 0.883 ± 0.07 b,c 0.993 ± 0.07 a,b 

Apigenin 0.384 ± 0.049 c 0.276 ± 0.08 d 0.305 ± 0.09 d 0.553 ± 0.06 a 0.45 ± 0.06 b 0.55 ± 0.04 a 

Myricetin 0.04 ± 0.009 b 0.088 ± 0.009 a,b 0.059 ± 0.018 b 0.06 ± 0.001 b 0.112 ± 0.004 a 0.074 ± 0.006 a,b 

Naringenin 0.227 ± 0.049 a 0.29 ± 0.1 a 0.259 ± 0.045 a 0.259 ± 0.033 a 0.303 ± 0.097 a 0.304 ± 0.02 a 

Fisetin  ND 0.237 ± 0.017 c 0.228 ± 0.03 c ND 0.359 ± 0.046 a 0.304 ± 0.01 b 

Morien 0.117 ± 0.02 a,b 0.173 ± 0.055 a,b 0.158 ± 0.042 a,b 0.102 ± 0.042 b 0.193 ± 0.03 a 0.182 ± 0.017 a 

Anthocyanin ND 0.381 ± 0.05 b 0.369 ± 0.053 b ND 0.442 ± 0.041 a 0.426 ± 0.122 a 

All analyses are the mean of triplicate measurements ±standard deviation; Results expressed in mg g−1 DW; Means not 

sharing a common single letter were significantly different at p ≤ 0.05.; ND: not detected. 
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2.2. Chalcone Synthase Enzyme (CHS) Activity 

According to the results CHS activity was influenced by SA concentration (p ≤ 0.01; Figure 2). In 

both varieties treated with SA, CHS activity was found to be consistently higher in ginger treated with 

10
−5

 M SA with values ranging between 5.77 and 6.30 nkat mg protein
−1

 than in gingers treated with 

10
−3

 M SA, which recorded CHS activity of 5.40 to 6.14 nkat mg protein
−1

. Plants not treated with SA 

showed the lowest values for CHS activity which were registered between 4.37 and 4.80 nkat mg 

protein
−1

. The present study showed that with SA application the activity of CHS was enhanced. This 

is basically due to the fact that CHS is a precursor to flavonoids biosynthesis [22,23]. The increase in 

CHS activity is usually followed by an increase in C/N ratio due to the enhanced growth rate using SA. 

Results of recent studies suggest that increases in the C/N ratio in plants are an indication of increases 

in the synthesis of secondary plant metabolites, especially flavonoids [24,25].  

It is hypothesized that the increase in production of anthocyanin and flavonoids in the present work 

could be attributed to an increase in CHS activity in SA treated plants. Our results are consistent with 

Compos et al. [10] who reported SA induced CHS activity in beans. Ozeki et al. [26] pointed out that 

change in CHS activity rather than PAL activity (also involving enzymes for flavonoid synthesis) was 

correlated with changes in anthocyanin accumulation under various culture conditions. CHS is the first 

enzyme to switch from phenylpropanoid metabolism to flavonoid metabolism and is believed to be a 

key enzyme in this system [27]. These findings together with evidence for channeling between SA 

concentration and CHS activity in the general phenylpropanoid pathway [16], indicate that the 

organization of these systems are important in the understanding of how plant metabolism is regulated. 

Figure 2. Chalcone synthase enzyme (CHS) activity in two ginger varieties treated with 

different concentration of salicylic acid (SA). Error bar represents standard error of means. 

 

2.3. Antioxidant Activity 

2.3.1. Ferric Reducing Antioxidant Potential (FRAP) Assay 

Several methods have been used to measure the total antioxidant capacity of herbs, including FRAP 

assay, which has been adopted in this study. The FRAP assay depends on the reduction of ferric 
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tripyridyltriazine (Fe (III)-TPTZ) complex to the ferrous tripyridyltriazine (Fe (II)-TPTZ) by a 

reductant at low pH. The reducing power of the leaf extract of young ginger was in the range of 

476.22–793.26 µm of Fe (II)/g dry weight (Table 2). Increasing SA concentration had a significant 

effect on FRAP activity of young ginger. The FRAP values for the leaf extracts of both varieties 

treated with SA were significantly lower than α-tocopherol (953 µmol Fe (II)/g), but higher than that 

of BHT (611.82 µmol Fe (II)/g). It was reported that the effect of antioxidant scavenging is due to 

hydrogen donating ability [28,29]. The FRAP assay has been used widely to estimate the antioxidant 

component/power of dietary polyphenols [30]. It is evident that foliar application of SA significantly 

enhanced the content of some flavonoids in both ginger varieties, and the high flavonoid content was 

associated with high antioxidant activity. In a previous study, a strong positive relationship between 

total flavonoid content and antioxidant activity was reported, which appears to be the trend in many 

plant species [31]. 

Table 2. Antioxidant activity (FRAP) in two varieties of Zingiber officinale treated with 

different concentration of salicylic acid (SA). 

Variety SA (M) FRAP (µmol Fe (II)/g) 

H. Bentong 0 476.22 + 10.19 
e
 

10
−5

 644.7 + 32.7 
c
 

10
−3

 521.3 + 27.1 
d
 

0 509.4 + 14.26 
d
 

H. Bara 10
−5

 793.26 + 33.2 
a
 

10
−3

 716.62 + 32.5 
b
 

Positive controls BHT 611.82 + 15.2 

  α-tocopherol  887.34 + 29.5 

All analyses are the mean of triplicate measurements ± standard deviation. Means not sharing a common 

letter were significantly different at p ≤ 0.05. 

This study has shown that ginger has good free radical scavenging ability and therefore can be used 

as a radical inhibitor or scavenger, possibly acting as a primary antioxidant. Additionally, foliar 

application of SA can enhance the antioxidant activity of the ginger leaf extracts. 

2.3.2. DPPH Antioxidant Activity 

DPPH antioxidant activity was highest in the leaves of both varieties treated with SA compared to 

non treated plants (Figure 3). The effects on DPPH were contributed by SA treatments (p ≤ 0.05). At a 

concentration of 350 µg mL
−1

, the DPPH antioxidant activity recorded the highest value of  

58.30%–72.90% with the 10
−5

 M SA treatment, followed by the 10
−3

 M SA (52.14%–63.66%) 

treatment, while the lowest value was obtained in the nontreated plants (42.50%–46.73%). However, 

DPPH radical scavenging ability of the plant extracts was lower than those of butylated hydroxyl 

toluene (BHT; 77.17%) and α-tocopherol (89.6%) registered at 350 µg mL
−1

. The highest value of 

DPPH activity was observed in H. Bara extracts (72.90%) when plants were treated with 10
−5

 M SA. 

This study showed that H. Bara extract had a good free radical scavenging activity, and hence can be 

used as a radical scavenger, acting possibly as a primary antioxidant. These results also imply that the 

10
−5

 M SA treatment could significantly reduce the DPPH radical scavenging activity of the Malaysian 
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ginger varieties. The principle involved is that in the presence of a molecule consisting of a stable  

free radical (DPPH), an antioxidant with the ability to donate a hydrogen atom will quench the  

stable free radical, a process which is associated with a change in absorption that can be translated 

spectrophotometrically.  

Figure 3. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activities of two varieties of 

ginger treated with different concentration of SA compared with positive controls  

(α-tocopherol and BHT). Error bar represents standard error of means. 

 

To date, more than 8000 phenolic compounds are known in plants, of which almost two-thirds 

belong to the predominantly water soluble flavonoid antioxidant family. Fisetin and anthocyanin were 

reported as potent antioxidant compounds with high antioxidant activity (DPPH activity) [32–34], and 

in the current study high concentrations of fisetin and anthocyanin were observed in ginger treated 

with 10
−5

 M SA. The high antioxidant activity in ginger varieties observed with the 10
−5

 M SA 

treatment is attributed to the high concentrations of anthocyanin and fisetin in these varieties. In this 

study, positive and significant (p < 0.05) correlations have been observed between anthocyanin  

(R
2
 = 0.88) and fisetin (R

2
 = 0.87) content with DPPH activity (Figure 4). The present findings are 

consistent with other research reports which found positive and significant correlations between 

anthocyanin and fisetin with antioxidant activity in medicinal plants [35,36]. This effect maybe due to 

the electron-donating ability of these compounds. 

Figure 4. Relationship between anthocyanin and fisetin with DPPH activity in ginger varieties. 
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2.4. Anticancer Activity 

The two ginger varieties were found to express MCF-7 and MDA-MB-231 cancer inhibitory 

activity when tested at concentrations of 4.6875–300 µg mL
−1

 (Table 3). Significant tumor inhibition 

was observed at 37.5 µg mL
−1

. At a concentration of 37.5 µg mL
−1

 most of the extracts exhibited 

strong anticancer activity towards MCF-7 and MDA-MB-231 cells. Maximum MCF-7 and  

MDA-MB-231 cell line inhibition was observed with H. Bara with values of 61.53% and 59.88%, 

respectively when treated with 10
−5

 M SA, while minimum MDA-MB-231 cell line inhibition was 

observed with the untreated H. Bentong (with values of 45.30% and 40.64%, respectively). MCF-7 and 

MDA-MB-231 cell lines treated with tamoxifen (positive control) showed 77.44% and 73.82% 

inhibition at the same concentration. Based on several in vivo and in vitro studies, many mechanisms 

of anticancer action may be involved. These include cell cycle arrest, carcinogen inactivation, 

antiproliferation, inhibition of angiogenesis, induction of apoptosis and differentiation, antioxidation 

and reversal of multi-drug resistance or a combination of these mechanisms [37–39]. Flavonoids are 

among the best candidates for mediating the protective effect of diets rich in fruits and vegetables with 

respect to colorectal cancer. Additional information on their effects on cancer cells and their 

mechanisms of action were obtained by adding, a series of related flavonoids to cultures of cancer 

cells; all flavonoid compounds were found to increase growth inhibition and cell loss at concentrations 

of 1 to 100 mM, with relative effectiveness being fisetin > kaempferol [40]. Hence, flavonoid 

compounds could probably be responsible for the anticancer activity of Z. officinale. According to the 

American National Cancer Institute, the criterion of normal cell viability for crude extracts of herbs is 

76% [41]. This implies that extracts of herbs that show cell viability lower than this range are suitable 

for human consumption and are not harmful. Anthocyanin is a potent antioxidant [42–45]. 

Anthocyanin fractions extracted from different sources, including grape rinds and red rice [46], flower 

petals [47], Vaccinium species [48], red soyabeans and red beans [49], different cherry and berry 

extracts [50–52], and purple corn [53], have demonstrated anticancer activity. Katsube et al. [51] 

reported HCT-116 colon cancer cells were inhibited by anthocyanin-containing berry extracts 

including cowberry, blueberry, strawberry and bilberry extracts [51]. Similarly, tart cherry 

anthocyanins were shown to inhibit the growth of human colon cancer cell lines HCT116 and HT-29 [52]. 

Fisetin is found in several plants, fruits, vegetables, nuts and wine [54] and displays a variety of 

biological effects including anti-inflammatory, antioxidant [55,56], anti-carcinogenic and in vitro  

anti-angiogenesis [57]. In vivo, fisetin has recently been shown to possess interesting anticancer 

activity in mice bearing prostate tumours [58], lung carcinoma [59] and human embryonal  

carcinoma [60]. The in vivo mechanism of action appears rather complex and may include  

anti-angiogenic, anti-metastatic and anti-androgenic activities [61].  

In the current study the highest values of both fisetin and athocyanin were detected in ginger 

varieties treated with 10
−5

 M SA. Meanwhile, the highest anticancer activity against MCF-7 and 

MDA-MB-231 cell lines has been observed with extracts of H. Bara treated with 10
−5

 M SA. This 

suggests that high anticancer activity in these varieties may be attributed to the high concentrations of 

potent anticancer components such as fisetin and anthocyanin. However, more research needs to be 

undertaken before the association between these flavonoids and anticancer activity in ginger varieties 

is more clearly understood. In varieties treated with SA the value of IC50 decreased significantly 
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compared to non treated plants. The IC50 values of Halia Bara extract (not treated with SA) against 

MCF-7 and MDA-MB-231 cells were 39.1 and 42.1 µg mL
−1

, respectively (Table 4). In H. Bara treated 

with 10
−5

 M SA, the IC50 value decreased to 31.5 and 40.6 µg mL
−1

 for MCF-7 and MDA-MB-231 

respectively; while the IC50 values of tamoxifen as a positive control for MCF-7 and MDA-MB-231 

cells were 17.4 and 19.5 µg mL
−1

, respectively. 

Table 3. Anticancer activities (cell viability) and percent of inhibition of ginger extracts 

towards MCF-7 and MDA-MB-231 cell lines as determined by the MTT assay  

(at concentration 37.5 µg mL
−1

). 

Variety SA (M) MCF-7 MDA-MB-231 
Inhibition % 

(MCF-7) 

Inhibition % 

(MDA-MB-231) 

H. Bentong 0 54.7 ± 2.17 
a
 59.36 ± 2.2 

a
 45.3 40.64 

10
−5

 41.08 ± 1.56 
b
 45.3 ± 1.63 

b
 58.92 54.7 

10
−3

 47.44 ± 1.64 
b
 48.69 ± 1.77 

b
 52.56 51.31 

H. Bara 0 51.63 ± 1.92 
a
 56.2 ± 2.11 

a
 48.37 43.8 

10
−5

 38.47 ± 1.15 
c
 40.12 ± 1.4 

c
 61.53 59.88 

10
−3

 42.28 ± 1.68 
b
 47.18 ± 1.58 

c
 58.72 52.82 

Positive control Tamoxifen 22.56 ± 1.07 26.18 ± 1.27 77.44 73.82 

All analyses are the mean of triplicate measurements ± standard deviation. Results expressed in percent of 

cell viability. Means not sharing a common letter were significantly different at p ≤ 0.05. 

Table 4. IC50 values of ginger extracts towards MCF-7 and MDA-MB-231 cancer cell 

lines as determined by the MTT assay. 

Variety SA (M) MCF-7 MDA-MB-231 

H. Bentong 0 50.6 ± 1.45 
a
 54.7 ± 1.74 

a
 

10
−5

 42.5 ± 1.33 
b
 48.8 ± 1.3b 

c
 

10
−3

 44.4 ± 1.72 
b
 50.6 ± 1.28 

b
 

H. Bara 0 39.1 ± 1.18 
c
 45.2 ± 1.14 

d
 

10
−5

 31.5 ± 1.66 
d
 40.6 ± 1.06 

f
 

10
−3

 33.6 ± 1.2 
d
 44.5 ± 1.66 

e
 

Tamoxifen  17.4 ± 2.16 19.5 ± 1.88 

All analyses are the mean of triplicate measurements ± standard deviation. Results expressed in percent of 

cell viability. Means not sharing a common letter were significantly different at p ≤ 0.05. 

3. Experimental Section  

3.1. Plant Material and Maintenance 

The rhizomes of ginger varieties Halia Bentong and Halia Bara (Zingiber officinale) were collected 

from the ginger planting area in Bentong Village, Malaysia. Voucher specimens were identified by the 

herbarium of the University Putra Malaysia, Selangor, Malaysia (H. Bentong Stone 6030 (KLU) and 

H. Bara Stone 7233 (KLU)). Rhizomes were sprouted for two weeks in 10 cm diameter pots filled with 

peat. They were then transferred to polyethylene bags filled with a soilless mixture consisting of burnt 

rice husk and coco peat (1:1). The plants were grown in a glasshouse at the Universiti Putra Malaysia 
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(UPM) glasshouse complex. The seedlings were raised in specially constructed growth chambers 

receiving 12-h photoperiod and average photosynthetic photon flux density of 310 µmol m
−2

 s
−1

. Day 

and night temperatures were maintained at 30 ± 1.0 °C and 20 ± 1.5 °C, respectively, and relative 

humidity of between 70% and 80%. At the second leaf stage, the ginger seedlings were sprayed with 

two concentrations (10
−3

 or 10
−5

 M) of salicylic acid solution (SA; 2-hydroxybenzoic acid +100 µL 

dimethyl sulfoxide +0.02% polyoxyethylenesorbitan monolaurate, Tween 20, Sigma Chemicals;  

pH 6.5). Control plants were sprayed with the same solution but without SA. Plants were sprayed early 

in the morning with 10 mL of the respective solutions once a week for four weeks.  

3.2. Extract Preparation 

Leaf samples (0.25 g) were extracted with 20 mL of methanol, and 5 mL of 6 M HCl was added to 

each extract to give a total volume of 25 mL. The extracts were then refluxed at 90 °C for 2 h. Aliquots 

of 500 µL were taken before and after hydrolysis, filtered through a 0.45 µm filter, and analyzed for 

flavonoids using High Performance Liquid Chromatography (HPLC) [62]. 

3.3. High Performance Liquid Chromatography (HPLC) Analysis  

3.3.1. Standard Curve Preparation 

The standard stock solutions were prepared by dissolving standards in methanol to 100 µg mL
−1

. 

For the calibration curves, four additional concentrations (20, 40, 60 and 80 µg mL
−1

) were prepared 

by the dilution of the stock solutions with methanol.  

3.3.2. Chromatography Conditions  

Reversed-phase HPLC was used to assay flavonoid composition. The Agilent HPLC system used 

consisted of a Model 1100 pump equipped with a multi-solvent delivery system, an L-7400 ultraviolet 

(UV) detector, and fitted with an Agilent C18 (5 µm, 4.6 mm internal diameter 250 mm) column. The 

mobile phase consisted of: (A) 2% acetic acid (CH3COOH) and (B) 0.5% acetic acid-acetonitrile 

(CH3CN), (50:50 v/v). The mobile phase was filtered under vacuum through a 0.45 um membrane 

filter before use. Gradient elution was performed as follows: 0 min, 95:5; 10 min, 90:10; 40 min, 

60:40, 55 min, 45:55; 60 min, 20:80; and 65 min, 0:100. The flow rate was maintained at 1 mL min
−1

 

and UV absorbance was measured at 280–365 nm. The operating temperature was maintained at room 

temperature [63]. Identification of the flavonoids was achieved by comparison of retention times with 

standards, UV spectra and UV absorbance ratios after co-injection of samples and standards. The 

standards were purchased from Sigma–Aldrich (St. Louis, MO, USA). 

3.4. Chalcone Synthase (CHS) Assay 

CHS activity was assayed spectrophotometrically as described in Obinata et al. [17]. Enzymes were 

extracted at 4 °C by homogenizing the frozen harvested cells (0.4 g) in 1 mL of 0.1 M borate buffer 

(pH 8.8) containing 1 mM 2-mercaptoethanol with a homogenizer (Polytron). The homogenates were 

treated with 0.1 g of Dowex l × 4 for 10 min and the cell debris and resin were removed by 
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centrifugation at 15,000 rpm for 10 min. A 0.2 g sample of Dowex l × 4 resin was added to the 

supernatant and treated for another 20 min. The resin was then removed by centrifugation at  

15,000 rpm for 15 min. The resultant supernatant was used in the CHS assay. The CHS assay was 

performed with 100 µL of enzyme extract mixed with 1.89 mL of 50 mM Tris-HCI buffer, pH 7.6, 

containing 10 mM KCN. The enzyme reaction was allowed to proceed for 1 min at 30 °C after adding 

10 mg chalcone to 10 µL ethylene glycol monomethylether. The activity was determined by measuring 

the absorbance at 370 nm. 

3.5. Determination of Antioxidant Activities 

3.5.1. Ferric Reducing Antioxidant Potential (FRAP) Assay 

The stock solutions consisted of 300 mM acetate buffer, 10 mM TPTZ (2,4,6-tripyridyl-S-triazine) 

solution in 40 mM HCl, and 20 mM FeCl3 solution. Acetate buffer (25 mL) and TPTZ (2.5 mL) were 

mixed, and 2.5 mL FeCl3 added. Leaf extract (150 µL) was added to 2850 µL of the FRAP solution 

and kept for 30 min in the dark place. The absorbance of solution was measured at 593 nm using a 

spectrophotometer (U-2001, Hitachi Instruments Inc., Tokyo, Japan) [64]. 

3.5.2. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Assay 

1,1-Diphenyl-2-picrylhydrazyl (DPPH) was purchased from Sigma–Aldrich. Butylated 

hydroxytoluene (BHT) and α-tocopherol were purchased from Merck (India). The radical scavenging 

ability was determined using the method described in Mensor et al. [65]. Briefly, an alcohol solution of 

DPPH (1 mL, 3 mg mL
−1

) was added to 2.5 mL samples containing different concentrations of extracts 

originating from different parts of the ginger varieties. The samples were first kept in the dark at room 

temperature and their absorbance was read at 518 nm after 30 min. The antiradical activity was 

determined using the following formula: 

Percent (%) inhibition of DPPH activity = [(A0 − A1)/A0)] × 100% (1) 

Where A0 is the absorbance value of the blank sample or control reaction, and A1 is the absorbance 

value of the test sample. The optic density of the samples and controls were measured in comparison to 

ethanol. BHT (butylhydroxytoluene) and α-tocopherol, were used as positive controls.  

3.6. Determination of Anticancer Activity  

3.6.1. Cell Culture and Treatment 

Human breast carcinoma cell lines (MCF-7 and MDA-MB-231) were cultured in 100 µL of RPMI 

1640 media (Roswell Park Memorial Institute) containing 10% fetal bovine serum (FBS). MCF-7 and 

MDA-MB-231 cells were incubated overnight at 37 °C in 5% CO2 for cell attachment. 
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3.6.2. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) Assay 

The assay was conducted as follows: Cancer cells were seeded in 96-well plates at a density of  

1 × 104 cells/well in 100 µL RPMI. At 24 h after seeding, the medium was removed and the cells were 

incubated for 3 days with RPMI in the absence or presence of various concentrations of ginger extracts. 

Ginger extract concentrations used ranged from 4.6875, 9.375, 18.75, 37.5, 75, 150 to 300 µg mL
−1

. After 

incubation, 20 µL of MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] reagent was 

added into each well. The plate was incubated again for 4 h in a CO2 incubator at 37 °C. The resulting 

MTT–products were determined by measuring the absorbance at 570 nm using ELISA reader [66]. 

Each point represents the mean of triplicate experiments. The cell viability was determined using  

the formula: 

Viability (%) = (optical density of sample/optical density of control) × 100 (2) 

3.7. Statistical Analysis 

Data were analyzed using the Statistical Analysis System (SAS, system 9.0; SAS Institute, Inc.: 

Cary, NC, USA, 2002). Means separation was performed using the Duncan multiple range test. The 

experimental results were expressed as mean ± standard deviation of three replicates. Mean differences 

at p ≤ 0.05 were regarded as significant. 

4. Conclusions  

This study demonstrated that foliar application of SA could be promoting the production of 

secondary metabolites and as a consequence, the antioxidant and anticancer properties of ginger 

varieties have been improved. SA is one of the special elicitors in the study of elicitation of secondary 

compounds through physiological pathways. Treatment of H. Bentong and H. Bara with SA improved 

production of fisetin and anthocyanin who have potent antioxidant activity and which were not 

detected in control plants. SA can act not only as an inducer but also as an inhibitor of secondary 

compound production [67] and in this study reduction of rutin and apigenin in both varieties was 

observed. In agreement with Nicholson and Hammerschmidt [68], an increase in the activity of CHS 

can be considered as a biochemical marker for resistance, given that this enzyme is the key for the 

necessary synthesis of flavonoid compounds. It would appear that foliar application of SA not only 

significantly enhances biomass production in ginger varieties, but that it also slightly increases the 

concentrations of several therapeutic compounds. Halia Bentong and Halia Bara exhibited promising 

anticancer activity on human breast cancer cell lines (MCF-7 and MDA-MB-231). The leaf extracts of 

these varieties contained appreciable amounts of effective flavonoid compounds like fisetin, morien, 

myreciten and anthocyanin, which is a potent agent for breast cancer growth inhibition. Subsequently, 

our MTT assay indicated that enriched Halia Bara leaf with 10
−5

 M of SA is a potential source of 

anticancer therapeutic compounds. It seems that SA could be used to enhance phyrochemical 

production and the pharmaceutical quality of ginger.  
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