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Abstract: Hereditary hemochromatosis (HH) is an autosomal recessive disorder 

characterized by enhanced intestinal absorption of dietary iron. Without therapeutic 

intervention, iron overload leads to multiple organ damage such as liver  

cirrhosis, cardiomyopathy, diabetes, arthritis, hypogonadism and skin pigmentation. Most 

HH patients carry HFE mutant genotypes: homozygosity for p.Cys282Tyr or 

p.Cys282Tyr/p.His63Asp compound heterozygosity. In addition to HFE gene, mutations in 

the genes that encode hemojuvelin (HJV), hepcidin (HAMP), transferrin receptor 2 (TFR2) 

and ferroportin (SLC40A1) have been associated with regulation of iron homeostasis and 

development of HH. The aim of this review was to identify the main gene mutations 

involved in the pathogenesis of type 1, 2, 3 and 4 HH and their genetic testing indication. 

HFE testing for the two main mutations (p.Cys282Tyr and p.His63Asp) should be 

performed in all patients with primary iron overload and unexplained increased transferrin 

saturation and/or serum ferritin values. The evaluation of the HJV p.Gly320Val mutation 

must be the molecular test of choice in suspected patients with juvenile hemochromatosis 

with less than 30 years and cardiac or endocrine manifestations. In conclusion, HH is an 

example that genetic testing can, in addition to performing the differential diagnostic with 

secondary iron overload, lead to more adequate and faster treatment. 

Keywords: hemochromatosis; primary iron overload; HFE; high-resolution melting; HJV; 
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1. Introduction 

Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by enhanced 

intestinal absorption of dietary iron. Without therapeutic intervention, iron overload leads to multiple 

organ damage such as liver cirrhosis, cardiomyopathy, diabetes, arthritis, hypogonadism and skin 

pigmentation. However, iron can be efficiently and safely removed by therapeutic phlebotomy, which 

is initiated by withdrawing blood at a rate of 500 mL per week until serum ferritin reaches <50 µg/L. 

The oral iron chelator deferasirox is not registered for genetic iron overload, since conventional 

phlebotomies have much lower side effects. But recent studies reported that oral chelator could be used 

in exceptional cases [1–5]. 

The major mutation that has been associated with disease is the p.Cys282Tyr in the HFE gene that 

occurs in approximately 80% of HH cases. In addition, a high proportion of the remaining patients are 

compound heterozygous for the HFE p.Cys282Tyr and the common HFE p.His63Asp alteration [6–8]. 

In Northern European populations, the HFE p.Cys282Tyr homozygous genotype is particularly common 

(1 in 200–300 healthy subjects) and the HFE 282Tyr allele frequency is high (5.1 to 8.2%) [9]. In 

contrast, in countries with racial/ethnic heterogeneity from South America, Asia and Africa a lower 

prevalence of HH have been observed, and an increased number of patients with primary iron overload 

do not carry the p.Cys282Tyr/p.Cys282Tyr or p.Cys282Tyr/p.His63Asp genotypes [10,11] (for example, 

a minor allele frequency of p.Cys282Tyr allele of 2.3% is observed in Brazilian blood donors) [12,13].  

In addition to the HFE gene, mutations in the genes that encode hemojuvelin (HJV), hepcidin 

(HAMP), transferrin receptor 2 (TFR2) and ferroportin (SLC40A1) have been associated with regulation 

of iron homeostasis and development of HH [9,14,15]. 

Early diagnostic and initiation of iron-depletion therapy ensure life quality and increase survival 

times of HH patients. In this scenario, genetic testing applied to HH can, in addition to performing the 

differential diagnostic with secondary iron overload, lead to more adequate and faster treatment. Thus, 

the pivotal aim of this review was to identify the main gene mutations involved in the pathogenesis of 

the type 1, 2, 3 and 4 HH and their genetic testing indications. 

2. HH Types, Related Genes and Their Main Mutations 

According to OMIM (Online Mendelian Inheritance in Man, www.ncbi.nlm.nih.gov/omin) 5 types 

of HH have been identified on the basis of clinical, biochemical, and genetic characteristics (Table 1). 

The classic hemochromatosis is most often caused by a mutation in a gene designated HFE on 

chromosome 6p21.3. Nonetheless, in minor frequency, there are 4 additional disorders of primary iron 

overload: juvenile hemochromatosis (JH) or type 2 hemochromatosis, which is divided into 2 forms: 

type 2A JH, caused by mutations in the HJV gene on chromosome 1q21, and type 2B JH, caused by 

mutations in the HAMP gene on chromosome 19q13. HH types 3 and 4 are caused by mutations in the 

TFR2 and SLC40A1 genes on chromosomes 7q22 and 2q32, respectively (Table 1) [16–19]. 
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Table 1. Characteristics according to HH types. 

HH 

types 

Phenotype 

MIM 

number 

Gene 

MIM 

number 

Location Inheritance Gene product function 
Main clinical 

manifestations 

1 235200 
HFE, 

613609 
6p21.3 AR 

Involved in hepcidin 

synthesis via BMP6, 

interaction with TFR1. 

Arthropathy, skin 

pigmentation, liver 

damage, diabetes, 

endocrine dysfunction, 

cardiomyopathy, 

hypogonadism. 

2A 602390 
HJV, 

608374 
1p21 AR 

Involved in hepcidin 

synthesis, BMP  

co-receptor. 

Types 2: earlier onset, 

<30 years old. 

Hypogonadism and 

cardiomyopathy more 

prevalent. 
2B 613313 

HAMP, 

606464 
19q13 AR 

Downregulation of iron 

efflux from enterocytes. 

3 604250 
TFR2, 

604720 
7q22 AR 

Involved in hepcidin 

synthesis, interaction with 

transferrin. 

As for type 1. 

4 606069 
SLC40A1, 

604653 
2q32 AD Duodenal iron export. 

Lower tolerance to 

phlebotomies and may 

have anemia. 

MIM: Mendelian Inheritance in Man; TFR1: transferrin receptor 1, HFE: encodes HFE protein; HJV: 

encodes hemojuvelin; HAMP: encodes hepcidin; TFR2: encodes transferrin receptor 2; SLC40A1: encodes 

ferroportin; BMP6: bone morphogenetic protein 6, AR: autosomal recessive; AD: autosomal dominant.  

 

2.1. HFE 

HFE related-HH (OMIM 235200), classified as type 1, is the most frequent form of the disease and 

the most common autosomal recessive disorder in Northern European populations. HH is characterized 

by enhanced intestinal absorption of iron leading to multiple organ damage, such as cirrhosis, 

hepatoma, diabetes mellitus, arthritis, cardiomyopathy, and hypogonadism [20–23]. 

HFE gene (613609), constituted by 6 exons, encodes a membrane protein that is similar to major 

histocompatibility class I-like proteins, called HFE. 

Most HH patients carry homozygosity for p.Cys282Tyr or p.Cys282Tyr/p.His63Asp compound 

heterozygous genotypes. Besides the missense mutation at position 282, where cysteine is replaced by 

tyrosine (p.Cys282Tyr, c.845G>A, rs1800562) and the common substitution of histidine for aspartic 

acid at position 63 (p.His63Asp, c.187C>G, rs1799945), a third mutation is also commonly assessed: 

the substitution of cysteine for serine at amino acid position 65 (p.Ser65Cys, c.193A>T, rs1800730). 

However, recent reports have suggested that rare HFE variants, such as p.Gly43Ala, p.Leu46Trp, 

p.Val53Met, p.Gly93Arg, p.Ile105Thr, p.Gln127His, p.Asp129Asn, p.Glu168Gln, p.Glu168del, 

p.Leu183Pro, p.Glu277Lys, p.Gln283Pro, p.Val284Met, p.Arg330Met, and a deletion in the 6p 

chromosome region containing HFE could also be linked to HH thus contributing to genetic and 

phenotypic heterogeneity of the disease [6,7,9,15,24,25]. 

The first proposed pathogenic mechanism for explaining HH was the disruption of a disulfide bond 

in HFE that is critical for its binding to β2 microglobulin. This complex interacts with transferrin 

receptor 1, decreasing the affinity with transferrin and consequently modulating iron absorption in 

http://omim.org/entry/602390
http://omim.org/entry/608374
http://omim.org/entry/613313
http://omim.org/entry/606464
http://omim.org/entry/604250
http://omim.org/entry/604720
http://omim.org/entry/606069
http://omim.org/entry/604653
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enterocytes [26]. However, in recent years, evidences indicating HFE protein as a hepcidin modulator 

have emerged. The functional loss of HFE in mice and humans has been shown to reduce hepcidin 

synthesis [27–29] and that HFE loss seems to be associated with blunted signaling responses to BMP6 

(bone morphogenetic protein 6), a key regulator of hepcidin, in vitro and in vivo [30,31]. Indeed, HFE 

related-HH has been associated with reduced hepcidin levels (Figure 1) [24,28,29]. 

Figure 1. Normal (A) and hemochromatosis (B) conditions. A1: HFE, HJV, and TFR2 

modulates hepcidin synthesis by hepatocytes; A2: normal hepcidin levels; A3: hepcidin-

ferroportin interaction with internalization and ferroportin degradation in enterocytes; A4: 

normal iron absorption. B1: HFE or HJV or TFR2 gene mutations alter hepcidin synthesis 

modulation; B2: lower hepcidin levels; B3: decreased hepcidin-ferroportin interaction and 

increased ferroportin activity; B4: iron overload observed in types 1, 2 and 3 

hemochromatosis. TFR2: transferrin receptor 2; TFR1: transferrin receptor 1, HFE: HFE 

protein; HJV: hemojuvelin. 
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2.2. HJV and HAMP 

Juvenile hemochromatosis (JH), also classified as type 2, is a rare autosomal recessive disorder  

of iron overload that leads to organ damage before the age of 30, and usually causes  

cardiomyopathy, hypogonadotrophic hypogonadism, liver damages and endocrine dysfunctions. Types 

2A (OMIM 602390) and 2B (OMIM 613313) are caused by mutations in HJV and HAMP genes, 

respectively [32,33].  

HJV (608374) gene, constituted by 4 exons, was identified in 2004 and encodes a protein called 

hemojuvelin [32]. Patients with type 2A JH and knockout mice models demonstrate low hepcidin 

levels implying that hemojuvelin is involved in the hepcidin synthesis [34]. HAMP gene (606464), 

constituted by 3 exons, encodes hepcidin, a peptide known as iron hormone. Hepcidin is produced  

by hepatocytes and it plays a role in iron absorption related to ferroportin degradation of the 

enterocytes [33,35]. 

Several HJV mutations have been found in patients: p.Arg54del, p.Cys80Arg, p.Ser85Pro, 

p.Gly99Arg, p.Gly99Val, p.Leu101Pro, p.Gly116del, p.Cys119Phe, p.Ile222Asn, p.Arg131fs, 

p.Asp149fs, p.Leu165del, p.Ala168Asp, p.Phe170Ser, p.Asp172Glu, p.Arg176Cys, p.Trp191Cys, 

p.Asn196Lys, p.Ser205Arg, p.Ile222Asn, p.Lys234del, p.Asp249His, p.Gly250Val, p.Asn269fs, 

p.Ile281Thr, p.Arg288Trp, p.Cys321Trp, p.Cys321del, p.Arg326del, p.Ser328fs, p.Cys361fs, and 

p.Arg385del. However, the HJV p.Gly320Val is the most frequent mutation and has been reported in 

JH patients in several populations around the world [22,32,36–39]. In contrast, mutations in HAMP are 

a very rare cause of JH: p.Met31fs, p.Met50fs, p.Arg56del, p.Arg59Gly, p.Cys70Arg, p.Gly71Asp, 

and p.Cys78Thr [22,33,40,41]. In addition, some studies support the concept that digenic inheritance 

of HFE and HJV or of HFE and HAMP mutations can lead to iron overload or may aggravate the 

phenotype [37,39,41–44]. 

For both type 2A and 2B JH, it is well established that the cause of iron overload may be explained 

by decreases in the synthesis and, consequently depressed hepcidin levels (Figure 1) [34,45].  

Cell-surface expression of hemojuvelin was associated with increased expression of hepcidin; likewise, 

loss of hemojuvelin expression, as in juvenile hemochromatosis, was associated with reduced hepcidin 

expression [22,46]. 

HJV seems to play a role in iron absorption and release from cells and has anti-inflammatory 

properties [47]. An important study revealed that HJV acts as a BMP co-receptor and signals via the 

SMAD pathway to regulate hepcidin expression [46,48]. A BMP6 dependent signaling pathway has 

been shown to play a key role in regulation of hepcidin expression [24]. BMPs bind to type I and type 

II serine threonine kinase receptors, which phosphorylate specific intracellular SMAD proteins 

(SMAD1,5,8). Phosphorylated SMAD1,5,8 (P-SMAD1,5,8) binds to the common mediator SMAD4, 

and the SMAD complex translocates to the nucleus to affect transcription of target genes HAMP 

(encoding hepcidin) is transcriptionally up-regulated by BMPs [46,49–52]. Impaired hepatic signaling 

through mutations in genes encoding either the ligand BMP6, the BMP coreceptor hemojuvelin or 

Smad4 leads to low hepcidin levels and iron overload in mice. Collectively, these data show that  

BMP-SMAD signaling is an important regulatory pathway for hepcidin expression and thus iron 

metabolism [53–56]. 

http://omim.org/entry/602390
http://omim.org/entry/613313
http://omim.org/entry/608374
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2.3. TFR2 

Type 3 HH (OMIM 604250) is an autosomal recessive disease caused by mutations in TFR2 gene 

and iron overload is similar to HFE related-HH phenotype. TFR2 gene (604720), constituted by 18 

exons, encodes transferrin receptor 2 protein (TFR2). TFR2 is involved with uptake of transferrin 

bound iron by hepatocytes and it is also involved in the hepcidin synthesis [57–60]. One possibility is 

that it operates in the pathway discussed above for HFE (or in a parallel pathway of its own) facilitating 

the BMP/SMAD signaling that activates hepcidin expression. Another possibility is that TFR2, which 

is also able to interact with HFE, forms an iron-sensing complex that modulates hepcidin expression in 

response to blood levels of diferric transferrin [24,61–63]. 

This disorder seems to be rare and few TFR2 mutations have been reported: p.His33Asn, p.Glu60del, 

p.Arg105del, p.Met172Lys, p.Tyr250del, p.Gln317del, p.Arg396del, p.Ala444Thr, p.Arg455Gln, 

p.Arg481His, p.Leu490Arg, p.Val561del, p.Gln690Pro, and p.Gly792Arg. In both animal models and 

patients with TFR2 related-HH decreased hepcidin levels were observed (Figure 1) [22,42,57,64–67]. 

2.4. SLC40A1 

Type 4 HH (OMIM 606069) has an autosomal dominant pattern and it is caused by mutations in the 

SLC40A1 gene. This rare disease can present peculiar clinical features such as high serum ferritin 

levels plus low or normal transferrin saturation values until the end stage of the disease. It may also be 

the presence of a mild iron-deficient anemia in the initial stage and a reduced tolerance to therapeutic 

phlebotomy [45,68,69]. 

SLC40A1 (604353) gene, constituted by 8 exons, encodes a membrane transporter called ferroportin 

that modulates iron efflux [70]. SLC40A1 mutations, such as p.His32Arg, p.Tyr64Asn, p.Val72Asp, 

p.Ala77Asp, p.Gly80Val, p.Arg88Thr, p.Asn144His, p.Asp157Gly, p.Asp157Asn, p.Val162del, 

p.Asn174Ile, p.Arg178Gly, p.Ile180Thr, p.Asp181Val, p.Gln182His, p.Asn185Asp, p.Gln248His, 

p.Gly267Asp, p.Gly323Val, p.Cys326Ser, p.Cys326Tyr, p.Gly330del, p.Ser338Arg, p.Arg489Ser, 

p.Gly490Asp, and p.Gly490Val were associated with type 4 HH. Two hypotheses have been proposed 

to account for this disease: the trapping of iron in macrophages that are unable to export iron and the 

failure to be degraded by interaction with hepcidin [22,42,69–74]. 

3. Biochemical Assays for Body Iron Store Analysis 

The most common biochemical assays performed in laboratorial routine for iron overload analysis 

are serum iron, TIBC (total iron binding capacity), transferrin saturation (TS, which is a ratio between 

serum iron and TIBC expressed as percentage), and serum ferritin. Serum ferritin is a highly sensitive 

test for iron overload in HH, but it has low specificity, being also elevated in inflammatory process, 

diabetes, alcohol consumption, and liver damage.  

Usually, TS values can be a helpful tool as a marker of iron overload. Some studies reported that TS 

values are usually higher than 50% in females and 60% in males with iron overload caused by genetic 

alterations [16,75–77]. In addition, a scale has been proposed by the Haute Autorité de Santé as 

clinical recommendations on the HH management: stage 0: without biochemical and clinical 

abnormalities; stage 1: increased TS (>45%), normal serum ferritin, and no clinical symptoms; stage 2: 

http://omim.org/entry/604250
http://omim.org/entry/604720
http://omim.org/entry/606069
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increased TS, increased serum ferritin (>200 µg/L in females and >300 µg/L in males), but no clinical 

symptoms; stage 3: abnormal biochemical values and initial clinical symptoms (fatigue, arthritis, 

impotence, skin hyperpigmentation); and stage 4: abnormal biochemical values, and clinical symptoms 

manifesting organ damage (cirrhosis, diabetes, hypogonadism, or cardiomyopathy) [76,78]. 

In this context, patients with suspect iron overload should primarily be evaluated through fasting TS 

and serum ferritin. HFE mutations molecular assay should be performed only in those with increased 

biochemical values [79].  

4. Genetic Testing and Methodology 

4.1. Genetic Testing 

HFE testing for the two main mutations (p.Cys282Tyr and p.His63Asp) should be performed in all 

patients with unexplained increased TS and/or serum ferritin values (Figure 2). In these cases, the 

molecular diagnostic of HFE related-HH is usually associated with the presence of the p.Cys282Tyr 

homozygosity and p.Cys282Tyr/p.His63Asp compound heterozygous genotypes. However, p.His63Asp 

homozygous and p.His63Asp/p.Ser65Cys compound heterozygous genotypes have been associated 

with HH phenotype [3,15,23]. 

Figure 2. Representation of diagnostic strategy for patients suspected hereditary 

hemochromatosis (HH). * Recommendations report TS > 45%, SF > 200 µg/L in females and > 

300 µg/L in males; or in advanced stages: TS > 50% in females and TS > 60% in males, in the 

absence of secondary causes [79,80]. ** Some patients with primary iron overload may not present 

mutation during this genetic approach. Very rare mutations in other genes can be involved [15,81]. 

Abbreviations: TS: transferrin saturation; SF: serum ferritin; JH: juveline hemochromatosis. + 

means positive result, and − means negative result. 
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In the absence of the mentioned HFE genotype combinations, other HH types could be considered. 

When there is genetic iron overload in a patient with less than 30 years and cardiac or endocrine 

manifestations, JH diagnostic is suggestive (Figure 2). Thus, the evaluation of the p.Gly320Val 

mutation in the HJV gene must be the molecular test of choice. According to several studies, this 

procedure would confirm the majority of JH cases [5,29]. Early diagnosis is paramount. If result is 

negative, sequencing should be performed to evaluate the HJV and HAMP genes (Figure 2). Our group 

reported a case with both clinical and molecular diagnostic of JH, and the use of deferasirox  

therapy adjunct to venesections during the initial treatment presented significant improvements as 

cardiomyopathy and liver disease were prevented, and endocrine functions were normalized [5].  

Mutations in the TFR2 and SLC40A1 genes are rare compared with HFE mutations and they have 

also been reported in children, adolescents, and adults. These genes should be sequenced after negative 

results for other genes (Figure 2). Nowadays, the costs for sequencing have come down, especially if it 

evaluates the number of bases per dollar of the next generation sequencings. However, for the most 

part of clinical practice around the world, screening of HFE, HJV, HAMP, TFR2 and SLC40A1 

through direct sequencing is not widely available. This approach is usually reserved for scientific 

studies and for very specific cases such as patients who are not responsive to treatment and had more 

severe complications due to iron overload. In addition and for the most part of cases, the treatment  

is not dependent on molecular diagnosis. Our group reported that direct sequencing does not 

significantly improve the diagnostic throughput as when it was compared to the sole HFE main 

mutations testing [15,19,79,80]. 

4.2. Methodology 

Genotyping of HFE p.Cys282Tyr and p.His63Asp mutations is one of the most requested molecular 

assays in the laboratorial routine. The analysis of single nucleotide polymorphisms, for example HFE 

p.Cys282Tyr, HFE p.His63Asp, and HJV p.Gly320Val, can be performed by several available 

methods for genotyping (Figure 2), such as restriction fragment length polymorphisms (RFLP),  

allele-specific amplification analysis real time-polymerase, denaturing HPLC, sequencing strategies, 

TaqMan assay, multiplex amplification followed by reverse hybridization [79,82–84]. A high-resolution-

melting (HRM) assay was developed by our group for genotyping HFE p.Cys282Tyr and p.His63Asp 

mutations in a unique procedure being capable of ensuring the result in approximately 112 minutes and, 

with cost-effectiveness especially in a large-scale demand, compared to methods cited above. The 

advantages of genotyping with this procedure were the non-dependence on gel electrophoresis and on 

mutagenic reagents for visualization of fragments, and the reduction of the chances for contamination 

due to sample preparation compared to RFLP and sequencing strategies. There are disadvantages for 

the HRM method: interference from another genetic variant that may be present in the amplicon 

leading to misdiagnosis by altering the curve pattern of the target-mutation. The amplicon for the HFE 

p.Cys282Tyr mutation may present the following known genetic variants: p.Thr281Thr, p.Gln283Pro, 

p.Val284Met; and the amplicon for the HFE p.His63Asp mutation may present the p.Ser65Cys known 

genetic variants. Moreover, non-described mutations may also be present [83,85,86]. 
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5. Conclusions 

Advances in the understanding of HH have been obtained over the years: association of the HFE 

p.Cys282Tyr as the main mutation involved, genetic markers for juvenile hemochromatosis and 

several pathogenic mutations associated with non-HFE HH, hepcidin as an iron hormone, new 

techniques for the laboratorial evaluation, and increased knowledge about HH management. 

Nonetheless, there are still unclear points to be explored in the HH context: the exact role of the HFE 

protein, molecular pathways of the hepcidin synthesis, the identification of non-genetic factors that 

affect penetrance, more robust functional prediction tools, and protein functionality assays more 

informative and easier for the study of identified genetic alterations. 

HFE testing for the two main mutations (p.Cys282Tyr and p.His63Asp) should be performed in all 

suspected patients with primary iron overload and unexplained increased TS and/or serum ferritin 

values. The evaluation of the HJV p.Gly320Val mutation must be the molecular test of choice in 

suspected patients with juvenile hemochromatosis. 

In conclusion, hereditary hemochromatosis is an example that genetic testing can, in addition to 

performing the differential diagnostic with secondary iron overload, lead to more adequate and  

faster treatment. 
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