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Abstract: Cinnamic acid and its derivatives have shown a variety of pharmacologic 

properties. However, little is known about the antiglycation properties of cinnamic acid and 

its derivatives. The present study sought to characterize the protein glycation inhibitory 

activity of cinnamic acid and its derivatives in a bovine serum albumin (BSA)/fructose 

system. The results demonstrated that cinnamic acid and its derivatives significantly 

inhibited the formation of advanced glycation end products (AGEs) by approximately 

11.96–63.36% at a concentration of 1 mM. The strongest inhibitory activity against the 

formation of AGEs was shown by cinnamic acid. Furthermore, cinnamic acid and its 

derivatives reduced the level of fructosamine, the formation of Nε-(carboxymethyl) lysine 

(CML), and the level of amyloid cross β-structure. Cinnamic acid and its derivatives also 

prevented oxidative protein damages, including effects on protein carbonyl formation and 

thiol oxidation of BSA. Our findings may lead to the possibility of using cinnamic acid and 

its derivatives for preventing AGE-mediated diabetic complications. 
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1. Introduction 

Chronic hyperglycemia causes non-enzymatic protein glycation by reducing sugars, such as glucose 

and fructose, which react with the free amino groups of protein to initiate a complex cascade of 

repeated condensations, rearrangements, oxidative modifications, ultimately forming advanced 

glycation end products (AGEs) [1,2]. It has been clearly demonstrated that the accumulation of AGEs 

in body tissue is the leading cause of several age-related degeneration, atherosclerosis and diabetic 

complications such as retinopathy, nephropathy and neuropathy [3–5]. A comprehensive review of the 

current scientific literature reveals that the inhibition of AGE formation is one of the therapeutic 

approaches to prevent the progression of diabetic complications [6]. For example, aminoguanidine 

(AG), a small synthetic hydrazine-like compound, has shown promising results in terms of inhibition 

of AGE formation, and has received the most interest from a Phase III clinical trials perspective. 

However, the trial was terminated because it has shown some toxicity problems in diabetic 

nephropathy, such as flu-like symptoms, gastrointestinal problems and anemia [7,8]. In this regard, the 

effort has been directed in finding effective phytochemical compounds from dietary plants, fruits and 

herbal medicines against protein glycation [9–12].  

Cinnamic acid and its derivatives are often characteristic of a plant species or even of a particular 

organ or tissue of that plant (Figure 1). Previous studies have shown the pharmacological properties of 

cinnamic acid and its derivatives, including hepatoprotective [13], anti-oxidant [14], and anti-diabetic 

activities [15]. To the best of our knowledge, studies regarding the protein glycation inhibitory effect 

of cinnamic acid and its derivatives have not been investigated. Therefore, the purpose of the present 

study was carried out to determine the inhibitory effect of cinnamic acid and its derivatives (Figure 1) 

against bovine serum albumin (BSA) in fructose-mediated non-enzymatic glycation. Moreover, we 

also examined the inhibitory effect of cinnamic acid and its derivatives on oxidation-dependent 

damages to BSA induced by fructose. Finally, we investigated their ability to inhibit the formation of 

the major chemical AG structure, N-(carboxymethyl)lysine (CML). 

Figure 1. Structure of cinnamic acid and its derivatives. 
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Figure 1. Cont. 

Compound R1 R2 R3 Chemical name 
1 H H H Cinnamic acid (CA) 
2 OH H H o-Hydroxycinnamic acid (o-HCA) 
3 H OH H m-Hydroxycinnamic acid(m-HCA) 
4 H H OH p-Hydroxycinnamic acid (p-HCA) 
5 OCH3 H H o-Methoxycinnamic acid (o-MCA) 
6 H OCH3 H m-Methoxycinnamic acid (m-MCA) 
7 H H OCH3 p-Methoxycinnamic acid (p-MCA) 

2. Results and Discussion 

2.1. The Effect of Cinnamic Acid and Its Derivatives on AGEs Formation  

Figure 2 shows the effects of seven compounds at concentration of 1 mM on the total AGEs 

formation during 28 days of incubation. The fluorescent intensity of BSA incubated with fructose 

significantly increased about 7.8-fold when compared to BSA, indicating progressive formation of 

AGEs. When the glycation occurred in the presence of cinnamic acid, we observed that cinnamic acid 

significantly reduced the formation of AGEs by 63.36 ± 1.07%, as compared to BSA incubated with 

fructose. Upon the introduction of a hydroxyl group at the ortho-position of cinnamic acid (o-HCA), it 

was found that the percentage inhibition of AGE formation was 35.49 ± 1.73%. The addition of a 

hydroxyl residue in the cinnamic acid at the meta- or para- positions resulted in a significant loss of 

inhibitory activity (m-HCA = 11.96 ± 2.02%, and p-HCA = 16.95 ± 1.95%). Replacement of a 

hydroxyl residue in cinnamic acid by a methoxyl residue at the ortho- (o-MCA), meta- (m-MCA) or 

para-positions (p-MCA), produced respective percentage inhibitions of AGE formation of 20.25 ± 

2.17%, 21.45 ± 1.67% and 26.10 ± 1.58%. However, these compounds were less potent than AG 

(79.46 ± 0.38%), which was used as control. 

Protein glycation involves a series of complex reactions that occur between monosaccharides 

(glucose and fructose) and amino acids or proteins, which produce an unstable Schiff base, and then 

form an Amadori product such a fructosamine [1,2]. During the propagation reaction, the Amadori 

products react with the amino acids to form irreversible AGEs. According to the data obtained from 

this study, cinnamic acid was the strongest anti-glycating inhibitor among the compounds tested. Our 

findings also revealed that the presence of hydroxy or methoxy groups in cinnamic acid caused a 

significant decrease in the protein glycation inhibitory activity. The data presented here suggest that 

the presence of hydroxy or methoxy residues in cinnamic acid is not important for antiglycation 

activity. However, these findings are in contrast to our previous study reporting the structure-activity 

relationship of cinnamic acid and its derivatives on the inhibition of intestinal -glucosidase [16]. It is 

worth noting that cinnamic acid was found to be a weak inhibitor against intestinal maltase and sucrase 

[16]. In addition, the introduction of a hydroxyl group at various positions of the cinnamic acid 

molecule can increase intestinal maltase and sucrase inhibitory activities, whereas the presence of 

methoxy residue on cinnamic acid demonstrates less potent activity than the presence of hydroxy 

residue. In addition, it has been reported that cinnamic acid has no insulin secreting activity, whereas 

the introduction of hydroxy residues to cinnamic acid causes an increase in insulin secreting activity 
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from pancreatic β-cell [17]. Meanwhile, substitution of the hydroxy in cinnamic acid by the  

methoxy residue markedly increases the activity of insulin secretion. These findings suggest that 

adding hydroxy and methoxy residues in cinnamic acid is an important factor to exhibit  

insulinotropic activity. 

Figure 2. The effects of cinnamic acid and its derivatives (1 mM) and aminoguanidine 

(AG, 1 mM) on fluorescent AGEs formation in the BSA/fructose system. Each value 

represents the mean ± SEM (n=3). a P < 0.05 compared to BSA, b P < 0.05 compared to 

BSA +Fr (Fructose). 

 

2.2. The Effect of Cinnamic Acid and its Derivatives on the Level of Fructosamine and the Formation 

of CML 

After day 28 of the experiment, the level of fructosamine in BSA incubated with fructose produced 

a 4.5-fold increase compared to BSA (Figure 3). The results showed that cinnamic acid significantly 

decreased the level of fructosamine by about 44.3%. In addition, 6 other compounds suppressed the 

elevation of fructosamine by approximately 5.5%–40.0%, whereas AG caused a decrease in the level 

of fructosamine by 35.8%. Figure 4 shows the effect of cinnamic acid and its derivatives on  

protein-bound CML formation. The results showed that the formation of CML in BSA incubated with 

fructose was significantly 4.26-times higher than BSA incubated without fructose. The addition of 

cinnamic acid and its derivatives to the solution could reduce CML-derived AGE by approximately 

8.6–30.2%, whereas AG inhibited the formation of CML by 67.9% when compared to BSA incubated 

with fructose. 
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Figure 3. The effects of cinnamic acid and its derivatives (1 mM) and AG (1 mM) on the 

level of fructosamine in the BSA/fructose system. Each value represents the mean ± SEM 

(n = 3). a P < 0.05 compared to BSA, b P < 0.05 compared to BSA +Fr (Fructose). 

 

Figure 4. The effects of cinnamic acid and its derivatives (1 mM) and AG (1 mM) on the 

level of Nε-(carboxymethyl) lysine (CML) in the BSA/fructose system. Each value 

represents the mean ± SEM (n = 3). a P < 0.05 compared to BSA, b P < 0.05 compared to 

BSA +Fr (Fructose). 

 

The determination of BSA fructosamine levels is used to monitor the accumulation of early 

(Amadori) glycation products. The results demonstrated that the reduced level of fructosamine by 

cinnamic acid and its derivatives was associated with the decreased formation of AGEs. Our results 
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suggest that cinnamic acid and its derivatives have an inhibitory effect on Amadori production, 

resulting in the prevention of conversion into AGEs. Nε-(carboxymethyl) lysine (CML) is the most 

used marker for AGEs in humans [18]. This product can accumulate in tissues, causing increased 

inflammation, reduced antioxidant defense, and accelerated micro- and macrovasculopathies [19]. The 

findings indicate that cinnamic acid and its derivatives are effective in reducing CML formation 

associated with reduced levels of fructosamine.  

Cinnamon, used variously in food as a herb or spice, has been shown to ameliorate the symptoms of 

metabolic syndromes, such as insulin resistance, elevated levels of glucose and lipids and decreased 

antioxidant [20]. There are some reports in the literature showing that cinnamon extract exhibits potent 

inhibition of protein glycation [9,10]. The constituents of cinnamon bark are mainly cinnamic acid, 

cinnamaldehyde and cinnamic alcohol [21]. Therefore, it is possible that the reduced protein glycation 

of cinnamon extract observed in the previous study can be best explained by the inhibitory activity of 

cinnamic acid. 

2.3. The Effect of Cinnamic Acid and Its Derivatives on the Level of Amyloid Cross-β Structure 

As shown in Figure 5, the level of amyloid cross-β structure in BSA was determined by using 

thioflavin T, a fluorescent dye that specifically binds with fibrous structures. The fluorescent intensity 

of BSA incubated with fructose resulted in a 3.86-fold increased response, as compared with BSA 

incubated without fructose, suggesting that the protein glycation progressively induced the formation 

of amyloid cross-β structure in BSA. The results showed that cinnamic acid markedly decreased the 

fluorescent intensity of BSA incubated with fructose. Furthermore, reduced fluorescent intensity was 

also observed in BSA by incubation of fructose and the series of hydroxycinnamic acids (o-HCA,  

m-HCA, and p-HCA), whereas the presence of the series of methoxycinnamic acids (o-MCA, m-MCA, 

and p-MCA could decrease fluorescence intensity slightly. 

Figure 5. The effects of cinnamic acid and its derivatives (1mM) and AG (1 mM) on 

thioflavin T fluorescence in the BSA/fructose system. Each value represents the mean ± 

SEM (n = 3). a P < 0.05 compared to BSA, b P < 0.05 compared to BSA +Fr (Fructose). 
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Glycation is a key mechanism to induce the conformational changes of protein by increasing the 

level of amyloid cross β-structure, which plays a fundamental role in the protein aggregation. Studies 

reveal that the deposition of protein aggregation has been associated with the progression of several 

debilitating degenerative diseases including hemodialysis amyloidosis, diabetes, Parkinson’s disease 

and Alzheimer’s disease [22–24]. Notably, accumulation of protein aggregation causes pancreatic islet 

amyloidosis, which directly induces β-cell damage and impaired insulin secretion [25]. Our data 

clearly establish that cinnamic acid and its derivatives suppress in the level of amyloid cross  

β-structure of BSA. This beneficial effect of cinnamic acid and its derivatives may help to reduce a 

risk of developing debilitating degenerative diseases in diabetic patients.  

2.4. The Effect of Cinnamic Acid and its Derivatives on Glycation-Induced Protein Oxidation 

Table 1 shows the results for available free thiol groups and oxidative modification of BSA on 

cinnamic acid and its derivatives. A significant decrease in free thiol groups was observed in BSA 

incubated with fructose, indicating that protein glycation modified thiol groups to form disulfide in 

BSA. It found that cinnamic acid and its derivatives significantly reduced the oxidation of thiol groups 

by approximately 9.5–28.6%, whereas AG also protected the loss of protein thiol groups about 22.2%, 

as compared to BSA incubated with fructose.  

Table 1. The effects of cinnamic acid and its derivatives (1 mM) and AG (1 mM) on thiol 

group content and protein carbonyl formation of fructose-modified BSA. 

Compound 
Thiol group 

(nmol/mg protein) 
Protein carbonyl content 

(nmol/mg protein) 
BSA 0.89 ± 0.01 0.25 ± 0.02 

BSA+Fr 0.63 ± 0.03 a 2.30 ± 0.08 a 
BSA+Fr+ CA 0.75 ± 0.06 b 1.90 ± 0.07 b 

BSA+Fr+ o-HCA 0.71 ± 0.01 b 1.88 ± 0.07 b 
BSA+Fr+ m-HCA 0.69 ± 0.04 b 1.97 ± 0.05 b 
BSA+Fr+ p-HCA 0.80 ± 0.02 b 1.84 ± 0.05 b 
BSA+Fr+ o-MCA 0.76 ± 0.02 b 1.75 ± 0.07 b 
BSA+Fr+ m-MCA 0.76 ± 0.03 b 1.84 ± 0.04 b 
BSA+Fr+ p-MCA 0.74 ± 0.01 b 1.71 ± 0.10 b 

BSA+Fr+AG 0.81 ± 0.02 b 1.59 ± 0.77 b 
Each value represents the mean ± SE (n = 3). a P < 0.05 compared to BSA, b P < 0.05 compared to 
BSA + Fr (Fructose). 

The addition of fructose to the BSA solution for 28 days significantly increased the extent of 

protein carbonyl formation, compared to BSA in the absence of fructose. It found that cinnamic acid 

and its derivatives suppressed protein carbonyl formation by approximately 18.2–25.7% when 

compared to BSA incubated with fructose. In addition, AG reduced protein carbonyl formation in BSA 

incubated with fructose by 30.9%. 

In general, glycation and AGE-induced toxicity are known to be associated with increased free 

radical production [2]. In particular, the process of oxidative degradation of Amadori intermediates can 

generate free radicals, causing damage by oxidizing proteins [26]. Major molecular modifications of 
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protein structural changes can be investigated by protein carbonyl formations and the loss of protein 

thiol groups [27]. Moreover, the investigation of thiol group in BSA is the direct reflection of excess 

free radical generation [27]. The marked increase in protein carbonyl formation and the oxidation of 

thiols in BSA were observed fructose incubation. Our findings show that the addition of cinnamic acid 

and its derivatives together with fructose to a BSA solution significantly suppresses the protein 

carbonyl formation and oxidation of thiols. There is considerable evidence to support the argument that 

trapping free radicals and reactive carbonyl group formation by antioxidant compounds is a strategy 

for the inhibition of protein glycation [6]. Recently, cinnamic acid and its derivatives have shown 

favorable effects in antioxidant properties [10]. It can be assumed that the mechanism of cinnamic acid 

and its derivatives for lowering protein glycation may be related to their antioxidant activity. However, 

the antioxidant activity of cinnamic acid and its derivatives may not be the only reason to explain the 

antiglycating mechanism. Biochemical mechanisms of anti-glycation reactions have been recently 

proposed, such as breaking the cross-linking structures in AGEs that have been formed, blocking the 

carbonyl or dicarbonyl groups in reducing sugars, Schiff bases or Amadori and inhibiting the 

formation of late-stage Amadori products [6]. Further comprehensive studies of cinnamic acid and its 

derivatives are required to evaluate the antiglycating mechanisms described above. 

3. Experimental Section  

3.1. Chemicals 

o-Hydroxycinnamic acid (o-HCA), m-hydroxycinnamic acid (m-HCA) and p-hydroxycinnamic acid 

(p-HCA) were purchased from Fluka (St. Louis, MO). o-Methoxycinnamic acid (o-MCA),  

m-methoxycinnamic acid (m-MCA) and p-methoxycinnamic acid (p-MCA) were purchased from 

ACROS (Pittsburgh, PA, USA). Cinnamic acid, bovine serum albumin (BSA, fraction V), 

aminoguanidine hydrochloride, guanidine hydrochloride, thioflavin T, 5,5'-Dithiobis(2-nitrobenzoic 

acid), nitroblue-tetrazolium and L-cysteine were purchased from Sigma-Aldrich Co. (St. Louis, MO, 

USA). Fructose and 2,4-dinitrophenyl hydrazine were purchased from Ajax Finechem (Taren Point, 

Australia). Trichloroacetic acid was purchased from Merck (Darmstadt, FR, Germany). OxiSelect™ 

Nε-(carboxymethyl) lysine (CML) ELISA kit was obtained from Cell Biolabs (San Diego, CA, USA). 

All other chemicals and solvents used in this study were of analytical grade. 

3.2. Glycation of Bovine Serum Albumin (BSA) 

The glycated BSA formation was undertaken in accordance with a previous method with a minor  

modification [28]. In brief, BSA (10 mg/ml) was incubated with 500 mM fructose in a 0.1 M 

phosphate buffered-saline, pH = 7.4 containing 0.02% sodium azide in the dark at 37 °C for 28 days. 

Before incubation, cinnamic acid and its derivatives and aminoguanidine (final concentration: 1 mM) 

were added to the mixtures. Dimethylsulfoxide (DMSO) was used for a solvent for this study (final 

concentration: 4.0%). The glycated BSA formation was measured by using fluorescent intensity at an 

excitation wavelength 355 nm and emission wavelength 460 nm.  
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3.3. Determination of Fructosamine 

The concentration of fructosamine, the Amadori product, was measured by using the  

nitroblue-tetrazolium (NBT) assay [29]. Briefly, glycated BSA was incubated with 0.5 mM NBT in  

0.1 M carbonate buffer, pH = 10.4 at 37 °C. The absorbance was measured at 530 nm. The 

concentration of fructosamine was calculated using the different absorption at the time point of  

10 and 15 min, and compared to 1-deoxy-1-morpholino-fructose (1-DMF) as the standard. 

3.4. Determination of Nε-(Carboxymethyl) Lysine (CML) 

Nε-(carboxymethyl) lysine (CML), a major AGE structure, was determined by using enzyme linked 

immunosorbant assay (ELISA) kit. The concentration of CML was calculated by using the standard 

CML-BSA curve from the assay kit.  

3.5. Determination of Amyloid Cross β Structure 

Thioflavin T, a marker of amyloid cross β structure, was measured according a previous method 

with minor modifications [30]. Briefly, glycated BSA was incubated with 32 µM thioflavin T in 0.1 M 

PBS, pH = 7.4. After 60 min incubation, the fluorescence intensity was measured at an excitation 

wavelength of 435 nm and an emission wavelength of 485 nm.  

3.6. Determination of Protein Carbonyl Content 

Carbonyl group in glycated BSA, a marker for protein oxidative damage, was assayed according to 

a previous method [31]. In brief, glycated BSA was incubated with 10 mM 2,4-dinitrophenylhydrazine 

(DNPH) in 2.5 M HCl at room temperature for 60 min. Afterwards, glycated BSA was precipitated by 

20% (w/v) trichloroacetic acid (TCA), left on ice for 5 min, and centrifuged at 10,000g for 10 min at  

4° C. The pellet was washed three times using 500 µL of 1:1 (v/v) ethanol:ethyl acetate mixture. The 

final pellet was dissolved in 6 M guanidine hydrochloride. The absorbance was read at 370 nm. The 

protein carbonyl group concentration was calculated by using absorption coefficient  

( = 22,000 M−1·cm−1). The results were expressed as nmol carbonyls/mg protein.  

3.7. Thiol Group Estimation 

The free thiol groups of glycated BSA were measured according to Ellman’s assay with slight 

modifications [32]. Briefly, glycated BSA was incubated with 5 mM 5,5'-dithiobis(2-nitrobenzoic 

acid) (DTNB) in 0.1 M PBS, pH 7.4 for 15 min. Thereafter, the absorbance was measured at 412 nm. 

The free thiol concentration was calculated by using L-cysteine as standard curve. The results were 

expressed as nmol/mg protein.  
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3.8. Statistical Analysis 

The results were expressed as the mean ± standard error of the mean (SEM) (n = 3). The statistical 

significance of the results was evaluated by using one-way ANOVA. The least significant difference 

(LSD) test was used for mean comparisons, and P < 0.05 was considered to be statistically significant. 

4. Conclusions  

We found that cinnamic acid and its derivatives could effectively protect BSA from fructose-mediated 

protein glycation in vitro. They also reduced the level of fructosamine, the formation of CML and the 

amyloid cross β-structure in BSA. In addition, cinnamic acid and its derivatives significantly decreased 

the protein carbonyl content and increased the level of protein thiol. These findings may be applied for 

prevention or management of AGE-mediated pathologies, particularly for those who are at risk of 

developing diabetic complications. 
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