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Abstract: With the widespread use of Roundup Ready soya (event 40-3-2) (RRS), the 

traceability of transgenic components, especially protein residues, in different soya-related 

foodstuffs has become an important issue. In this report, transgenic components in 

commercial soya (including RRS) protein concentrates were firstly detected by using 

polymerase chain reaction (PCR) and western blot. The results illustrated the different 

degradation patterns of the cp4-epsps gene and corresponding protein in RRS-derived 

protein concentrates. Furthermore, western blot was applied to investigate the single factor 

of food processing and the matrix on the disintegration of CP4-EPSPS protein in RRS 

powder and soya-derived foodstuffs, and trace the degradation patterns during the food 

production chain. Our results suggested that the exogenous full length of CP4-EPSPS 

protein in RRS powder was distinctively sensitive to various heat treatments, including heat, 

microwave and autoclave (especially), and only one degradation fragment (23.4 kD) of 

CP4-EPSPS protein was apparently observed when autoclaving was applied. By tracing the 
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protein degradation during RRS-related products, including tofu, tou-kan, and bean curd 

sheets, however, four degradation fragments (42.9, 38.2, 32.2 and 23.4 kD) were displayed, 

suggesting that both boiling and bittern adding procedures might have extensive effects on 

CP4-EPSPS protein degradation. Our results thus confirmed that the distinctive residues of 

the CP4-EPSPS component could be traced in RRS-related foodstuffs. 

Keywords: foodstuffs; Roundup Ready soybean; soya protein concentrates; traceability of 

CP4-EPSPS; western blot 

 

1. Introduction 

Roundup Ready soybean (event 40-3-2) (RRS) is one of the major genetically modified crop 

species. It is equivalent to traditional soya and the presence of the 5-enolpyruvylshikimate-3-phosphate 

synthesis from Agrobacterium sp. strain CP4 (CP4-EPSPS) gene and the corresponding protein. RRS 

has been authorized for the market in many countries and trading areas since the approval of its 

cultivation in some countries [1]. Considering the significant importance of soya products in human 

nutrition, RRS is firmly established in the human diet and has gained great popularity in the global 

market, especially in China [2]. For example, the main food products and food ingredients derived 

from soybean in China are soya-derived products, such as tofu, tou-kan and bean curd sheets, as well 

as soya protein concentrates or isolates used in the food industry. However, the possible risk of 

transgenic components of RRS in related food products has become an important issue. To ensure food 

safety control, all the foodstuffs derived from genetically modified technology must undergo a 

comprehensive evaluation before entering the market. Such assessment is of legal importance as part 

of the regulatory approval [3].  

Until now, most research on RRS assessments has been mainly carried out to evaluate the 

transgenic components in soya-related foodstuffs or trace CP4-EPSPS residue during the production 

chain of certain food products [4–6]. However, little is known about the transgenic components in soya 

protein concentrates even though they are the main food additives in the food production [7]. On the 

other hand, research has tended to focus on a DNA-based approach for detecting the degradation of 

transgenic component and the post-market traceability [6,8]. PCR and its derived approaches have 

been routinely applied during the safety assessment of RRS and the corresponding food products [4,9,10]. 

In contrast, few have applied the protein-based approach as it is more time-consuming, with a high 

cost for antibody preparation and protein sequencing.  

However, detection of exogenous protein is of great concern as it is linked to potential risks such as 

allergenicity, toxicity and dietary risks. Accordingly, the denaturation and degradation during food 

processing are important, assuming introduced protein(s) may not lose functional activity during the 

processing of raw grain into food [3]. Current protein-based detection involves mainly the application of 

immunological methods such as western blot and the enzyme-linked immunosorbent assays (ELISA). 

Between them, western blot is more favored in situations where the tested protein is difficult to extract. 

This method can evaluate and trace the degradation characteristics of the target protein [11]. 
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Considering the deduced risks of exogenous protein, it is crucial to reveal the effect of food 

processing on exogenous protein and detect its residue more accurately. Meanwhile, traceability along 

the food production chain would determine whether the transgenic component in foodstuffs or 

corresponding middle products are from genetically modified (GM) sources or due to the GM 

contamination during manufacturing [6]. Thus, the determination of the stability and/or stable 

fragments during the above process is of great significance.  

In our study, we performed semi-quantitative PCR and western blot to study the different 

disintegration modes of CP4-EPSPS gene and protein in the commercial soya (including RRS) protein 

concentrates, since soy protein concentrates may be used as functional ingredients in the food industry. 

Interestingly, we discovered discrepancies in the degradation profiles of cp4-epsps gene and the 

corresponding protein among certain protein concentrate samples purchased from different sources. 

For further confirmation, western blot was applied to evaluate protein degradation of RRS powder 

responding to a particular factor which might occur in food processing, such as heating, microwave 

and autoclave. Middle- and end-products during the manufacturing processes of tofu, such as raw soya 

milk, boiled soya milk, bean dregs, tofu jelly and tofu, tou-kan and bean curd sheets, were examined 

and compared, to reveal the effect of the different food matrix on the changes of CP4-EPSPS protein and 

to trace the protein degradation patterns along the processing chain. The aim of the study was to 

investigate the effects of a single factor and the food matrix during the manufacturing on the 

degradation of CP4-EPSPS protein, and to reveal the possible residues of transgenic components in 

soya protein concentrates and RRS-derived foodstuffs. Additionally, we sought to provide more 

reliable and available evidence of the protein-based detection approach for the traceability of  

CP4-EPSPS protein in various RRS-derived food products. 

2. Results and Discussion 

2.1. Detection of Transgenic Components in Commercial Soya Protein Concentrates 

In our study, commercial soya protein concentrates were purchased from markets in different cities 

of China, among which only one sample from Anyang (Henan Province) was labeled as RRS protein 

concentrate. Then, qualitative PCR [12] and western blot were applied to detect the transgenic contents 

of these samples. For PCR, six primer pairs were used (Table 1). The efficiency of DNA extraction 

was confirmed by the PCR of lectin gene (data not shown). Our results further suggested that 

exogenous DNA degradation had been taken place during or after the processing of the protein 

concentrates (Figure 1a) as the band of full-length cp4-epsps gene (1584 bp) [13] only showed in the 

unprocessed RRS sample (RRS), while absent in all the five RRS protein concentrates and the 

unprocessed non-transgenic soya powder (Con). Meanwhile, fragments with the size of 338, 281, 319 

and 350 bp were detected and sequenced in the RRS protein concentrates from Anyang (Figure 1), 

suggesting the full-length gene had been disintegrated into smaller fragments. Similar results have 

been presented previously [14], claiming the presence of transgenic soya DNA in RRS powder and 

RRS-related protein concentrates. In comparison with those of three commercial soya protein 

concentrates bought from Nantong (Jiangsu Province), Nanjing (Jiangsu Province) and Anheng (Anhui 

Province), two bands (281 bp and 319 bp), which were also confirmed by sequencing, appeared in the 
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samples from Hangzhou (Zhejiang Province), suggesting the presence of residue in this protein 

concentrate (Figure 1d,e). A related explanation might be attributed to the fact that the soya protein 

concentrates purchased from Hangzhou, assuming it was RR-related, displayed a different degradation 

pattern of cp4-epsps caused by other manufacturing technologies of soya protein isolates. Previous 

studies have already confirmed that different processing procedures led to various cp4-epsps DNA 

degradation patterns in the corresponding food products [15–18].  

Table 1. Primer pairs sequences and related information of cp4-epsps gene. 

Gene Location Primer sequence 
Amplicon 
size (bp) 

Annealing 
temperature 

cp4-epsps 
(AB209952.1) 

298–1881 
 
517–854 
 
614–1111 
 
843–1123 
 
1111–1429 
 
1431–1780 
 

5'-ATGGCACAAATTAACAACAT-3' 
5'-TCAGGCAGCCTTCGTATC-3' 
5'-CTTCACGGTGCAAGCAGC-3' 
5'-TCGTAGACCCCGACGAGG-3' 
5'-CCTTCATGTTCGGCGGTCTCG-3' 
5'-ACGTCATGATCGGCTCGATG-3' 
5'-CGGGGTCTACGATTTCGA-3' 
5'-GCCCTGCAGCATCTTTTC-3' 
5'-TGCGATCATACGGAAAAG-3' 
5'-CAGCGTGGAGGAGCGAAC-3' 
5'-TCGCTCCTCCACGCTGAA-3' 
5'-CCGTGACAGGGTTTTCCG-3' 

1584 
 

338 
 

498 
 

281 
 

319 
 

350 

52 
 

50 
 

55 
 

56 
 

52 
 

50 

Figure 1. Agarose gel electrophoresis of PCR products of cp4-epsps gene fragments in 

commercial soya protein concentrates purchased from different cities in China. Different 

primer pairs used were shown in Table 1. Lane M, molecular weight marker (DL 2000TM 

Marker, TaKaRa); Roundup Ready soya (RRS), unprocessed RRS powder; Lane 1-5, 

commercial soya protein concentrates, purchased from Anyang (Henan Province, labeled 

to be RRS protein concentrate), Nantong (Jiangsu Province), Hangzhou (Zhejiang 

Province), Nanjing (Jiangsu Province) and Anheng (Anhui Province), respectively; 

unprocessed non-transgenic soya powder (Con). The sizes of the expected PCR 

amplification products are indicated by the arrows on the right. 
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However, western blot demonstrated distinctive results. Mature CP4-EPSPS protein (47.6 kD) only 

presented in RRS and its protein concentrate from Anyang (Henan Province) but was absent in  

non-transgenic soya as well as four other commercial soya protein isolates, confirming the specificity 

of the antibody we used (Figure 2a). Compared to the PCR results (Figure 1), no mature or degraded 

protein was detected in the samples from Hangzhou (Zhejiang Province). This distinction could be 

explained by the hypothesis that the cp4-epsps gene and corresponding protein responded differentally 

to food processing, and the protein, provided that it was RR-related, was degraded either completely to 

smaller peptides or amino acids, or partially to fragments that could not be detected by the antibody 

used in our study. 

Figure 2. Western blot analysis of the CP4-EPSPS protein in commercial soya protein 

concentrates purchased from different cities in China. Lane M, protein molecular weight 

marker (a, prestained protein molecular marker, Fermentas; b, protein molecular weight 

marker, TaKaRa); Lane RRS, unprocessed RRS powder; Lane 1-5, commercial soya 

protein concentrates, purchased from Anyang (Henan Province, labeled to be RRS protein 

concentrate), Nantong (Jiangsu Province), Hangzhou (Zhejiang Province), Nanjing (Jiangsu 

Province) and Anheng (Anhui Province), respectively; unprocessed non-transgenic soya 

powder (Con). The antibody used was SC-16 (a). Corresponding Coomassie Brilliant Blue-

stained gels of (a) are also provided (b). The solid black arrow shows the immunoreactive 

band corresponding to mature CP4-EPSPS protein (47.6 kD). The dashed black arrows 

present in the western blot are due to the non-specific staining because both of them 

existed in the RRS and Con samples. 

 

2.2. Effect of Single-Factor Treatment on CP4-EPSPS Protein Degradation  

It is well known that heating is one of the major ways of processing commercial soya protein 

concentrates. To investigate the effects of food processing on CP4-EPSPS protein degradation and its 

traceability along the production chain, three factors, namely heat, microwave and autoclave were 

examined separately. These factors are all closely involved in food manufacturing, used to produce 

products like tofu and soya drinks. We also applied unprocessed 100% RRS as the positive control [19].  
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For heat treatment, the native CP4-EPSPS protein (47.6 kD) was only absent in unprocessed  

non-transgenic soya (Con) (Figure 3a). Meanwhile, no significant degradation of native CP4-EPSPS 

protein and total protein (Figure 3b) were observed in either of the 5% RRS samples upon heat 

treatment. The results indicated that the native protein may be robust to heat treatment, although the 

partial degradation of the CP4-EPSPS protein could not be easily ruled out, because the N-terminal of  

CP4-EPSPS protein is the recognition site of the SC-16 antibody. 

Figure 3. Western blot analysis of the CP4-EPSPS protein in heat processed 5% RRS 

powder (5% RRS). Lane M, protein molecular weight marker (a, prestained protein 

molecular marker, Fermentas; b, protein molecular weight marker, TaKaRa); Lane RRS, 

unprocessed 100% RRS powder; Lane 1, 2, 3, 4, and 5: heat processed 5% RRS powder for 

5, 15, 30, 60, and 120 min, respectively; Lane Con, unprocessed non-transgenic soya 

powder. The antibody used was SC-16 (a). Corresponding Coomassie Brilliant Blue-stained 

gels of (a) are also provided (b). The solid black arrow shows the immunoreactive band 

corresponding to mature CP4-EPSPS protein (47.6 kD). The dashed black arrows present 

in the western blot are due to the non-specific staining because both of them existed in the 

RRS and Con samples. 

 

Microwave treatment, simulating dry heating, showed a more intensive effect on the CP4-EPSPS 

protein, in that when the treatment time was raised to 35 min, the soya powder was totally carbonized. 

Accordingly, we only examined RRS exposed to microwaves for a maximum of 30 min at the 

maximum power. The mature band of CP4-EPSPS (47.6 kD) could only be detected in the 

unprocessed RRS and processed sample for 1 min and 5 min of treatment. When the treatment time 

was raised to 10 min, native protein could not be detected, confirming the decomposition of the mature 

protein. In addition, after a treatment of 30 min, degradation of the total protein could be clearly 

observed on the SDS-PAGE gel (Figure 4b). 
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Figure 4. Western blot analysis of the CP4-EPSPS protein in microwave processed 5% 

RRS powder (5% RRS). Lane M, protein molecular weight marker (a, prestained protein 

molecular marker, Fermentas; b, protein molecular weight marker, TaKaRa); Lane RRS, 

unprocessed 100% RRS powder; Lane 1, 2, 3, 4, and 5: microwave processed 5% RRS 

powder for 1, 5, 10, 20, and 30 min, respectively; Lane Con, unprocessed non-transgenic 

soya powder. The antibody used was SC-16 (a). Corresponding Coomassie Brilliant Blue-

stained gels of (a) are also provided (b). The solid black arrow shows the immunoreactive 

band corresponding to mature CP4-EPSPS protein (47.6 kD). The dashed black arrows 

present in the western blot are due to the non-specific staining because both of them 

existed in the RRS and Con samples. 

 

Autoclaving, used to manufacture soya drink, textured vegetable protein, soybean meal, maize 

instant tortilla, etc., generated a more violent effect on protein in contrast to heat and microwave 

treatment. Mature CP4-EPSPS protein was only detected in the unprocessed soya and the 5% RRS 

sample that went through with only 10 min of autoclaving treatment. A degradation fragment (23.4 kD) 

appeared at the time interval from 10 min to 60 min but was absent when the treatment time was raised 

to 120 min (Figure 5a). The amount of the degradation product (23.4 kD) increased slightly during the 

time interval, indicating the dramatic impact of such treatment on the CP4-EPSPS protein degradation. 

Similarly, total protein displayed significant disintegration during the whole treatment period. Based 

on SDS-PAGE results, it could scarcely be observed when the treatment time reached 120 min (Figure 5b). 

Together, our results disclosed that the CP4-EPSPS protein was sensitive to heat, microwave and 

autoclave, but to different degrees. Microwave and autoclaving exhibit the most extensive impact on 

the CP4-EPSPS protein and total protein in RRS powder, followed by treatments. Yet, only one 

degradation fragment with the size of 23.4 kD was observed when autoclaving was applied, which 

might be also attributable to the suitable recognition site of the antibody. Considering this, we further 

suggested that the N-terminal amino acid sequence might be more sensitive to these treatments 

mentioned above. Previous study has claimed that the food processing of soya ingredients would result 

in the loss of immunochemical recognition [14]. 
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Figure 5. Western blot analysis of the CP4-EPSPS protein in autoclaving processed 5% 

RRS powder (5% RRS). Lane M, protein molecular weight marker (a, prestained protein 

molecular marker, Fermentas; b, protein molecular weight marker, TaKaRa); Lane RRS, 

unprocessed 100% RRS powder; Lane 1, 2, 3, 4, and 5: autoclaving processed 5% RRS 

powder for 10, 20, 30, 60, and 120 min, respectively; Lane Con, unprocessed non-transgenic 

soya powder. The antibody used was SC-16 (a). Corresponding Coomassie Brilliant Blue-stained 

gels of (a) are also provided (b). The solid black arrow shows the immunoreactive band 

corresponding to mature CP4-EPSPS protein (47.6 kD). The red arrows show the 

immunoreactive bands corresponding to the possible degradation fragments of the  

CP4-EPSPS protein (23.4 kD). The dashed black arrows present in the western blot are due 

to the non-specific staining because both of them existed in RRS and Con samples. 

 

2.3. Effect of Food Matrix on CP4-EPSPS Protein Degradation and Traceability during Food Processing 

To take the study further, we investigated the effect of the food matrix on the CP4-EPSPS protein 

degradation and traced the protein along the production chain. Grinding, boiling, bittern adding and 

coagulating are four critical processes in tofu, tou-kan and bean curd sheets production and  

the middle-products are raw soya milk, boiled soya milk, bean dregs and tofu jelly (Figure 6). Results 

in Figure 7a showed that the native CP4-EPSPS protein was only detected in unprocessed RRS and 

absent in all other samples. Four degradation fragments were displayed, with the molecular weight of 

42.9, 38.2, 32.2 and 23.4 kD, respectively. We noticed that the amount of the smallest degradation 

product (23.4 kD) increased steadily during processing from middle-products tofu jelly to the three end 

products, suggesting the procedure of bittern adding and coagulating might have a dramatic impact on 

the CP4-EPSPS protein. Such a fragment was also found when autoclaving was applied (Figure 5a). 

Autoclaving simulates moist heating under pressure, used to manufacture soy drink, textured vegetable 

protein, and soya meal. Accordingly, we concluded that the effects of heating up and squeezing 

involved in the procedures of bittern adding and coagulating might be mimicked by autoclaving, at 

least partially, thus generating a similar fragment of the CP4-EPSPS protein. Additionally, the total 

protein in all of the tested samples was largely degraded after the process of boiling (Figure 7b). In 

contrast with the above results by using a single factor test (Figures 3–5), it was further intimated that 

the degradation site of the CP4-EPSPS protein might vary in response to the food matrix.  
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Figure 6. Sampling from the production chain of RRS-derived products. 

 

Figure 7. Western blot analysis of the CP4-EPSPS protein in Roundup Ready soybean-derived 

food products. Lane M, protein molecular weight marker (a, prestained protein molecular 

weight marker, Fermentas; b, protein molecular weight marker, TaKaRa); Lane RRS, 

unprocessed 100% RRS powder; Lane 1, raw soya milk; Lane 2, boiled soya milk; Lane 3, 

bean dregs; Lane 4, tofu jelly; Lane 5, tofu; Lane 6, tou-kan; Lane 7, bean curd sheets; 

Lane Con, unprocessed non-transgenic soya powder. The antibody used was SC-16 (a). 

Corresponding Coomassie Brilliant Blue-stained gels of (a) is also provided (b). The solid 

black and red arrows show the immunoreactive band corresponding to mature and the 

possible degradation fragments of the CP4-EPSPS protein (47.6; 42.9, 38.2, 32.2 and  

23.4 kD). The dashed black arrows present in the western blot are due to the non-specific 

staining because both of them existed in the RRS and Con samples. 

 

Previous study, applying quantitative PCR (qPCR) detected the cp4-epsps degradation during a 

similar process [4] and suggested the concentration of transgenic component remained stable during 

manufacturing. Similarly, another study traced the cp4-epsps degradation during tofu production, and 

demonstrated that the procedures of boiling as well as bittern adding did not cause dramatic DNA 

M RRS 1 2 3 4 5 6 7 Con 
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44.3 
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degradation as a 595-bp could be detected throughout the process [20]. By contrast, a previous report 

examined the change of gene during soymilk processing produced by RRS, and revealed that thermal 

treatment had a relatively more dramatic effect on the exogenous gene than on the endogenous gene [21]. 

However, little study has covered the traceability of the CP4-EPSPS protein along the food 

manufacturing line. Considering the risks of exogenous protein such as allergenicity and toxicity, it is 

of great value to detect the exogenous protein and its residue at a realistic and precise value. Moreover, 

determination of the stability and stable fragments during the processing is of great importance as it 

will provide sufficient evidence as to whether introduced gene(s)/protein(s) would lose functional 

activity during processing of raw grain into food [20,22]. In this report, we confirmed the validity of 

western blot to trace transgenic components and their degradation, since the specifically degraded four 

fragments of the CP4-EPSPS protein could be clearly observed. Additionally, our traceability along the 

food production chain might be used as an approach to determine the transgenic components in food 

products, or in the corresponding middle products produced from RRS sources, or due to the RRS 

contamination during manufacturing. 

3. Experimental Section 

3.1. Plant Materials 

Crushed powder of RRS (event 40-3-2), soya standard with RRS concentration of 5% or 100% and 

non-transgenic soya (Con) were kindly provided by Jiangsu Province Entry-Exit Inspection and 

Quarantine Bureau, China, and all of them have been certified. For commercial soya protein 

concentrates analysis, five soybean protein isolate products were purchased separately from markets in 

different cities in China, namely Anyang (Henan Province), Nantong (Jiangsu Province), Hangzhou 

(Zhejiang Province), Nanjing (Jiangsu Province) and Anheng (Anhui Province). 

3.2. Heat Processing Operation 

Soya powder (1.0 g) was directly placed in an Eppendorf tube. Heat processing operations (95 °C) 

in a water bath (DK-BD, Shanghai Yiheng Technology Co., Ltd., Shanghai, China) were carried out 

for the indicated time intervals. At least three replicates were performed. 

3.3. Microwave Treatment 

Soya powder (3.0 g) was spread homogeneously and heated in a microwave oven (MWO; 

WP700P21, Galanz, Shunde, China) at 750 W for the indicated times. The MWO exposure was 

restricted to 30 min as serious charring occurred when subjected to 35 min. All the processing steps 

were carried out in triplicate. 

3.4. Autoclaving 

Soya powder (3.0 g) was directly autoclaved using an automated high-pressure steam sterilizer 

(LDZX-30KBS, Shanghai Shenan Medical Instrument Factory, Shanghai, China) at 121 °C and  
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0.1 MPa for the indicated times. The heating and cooling time was not included. All the processing 

steps were carried out in triplicate. 

3.5. Food Matrix  

Transgenic RRS was produced into soya-derived food products such as tofu, tou-kan and bean curd 

sheets. According to critical processing procedures (Figure 6), certain middle products (raw soya milk, 

boiled soya milk, bean dregs and tofu jelly) and three end products (tofu, tou-kan and bean curd sheets) 

were taken as samples. 

3.6. DNA Extraction  

DNA was extracted from the samples mentioned above with an identical fresh weight by using a 

cetyltrimethylammonium bromide (CTAB) method [12].  

3.7. PCR Reaction 

Primer sequences and related information of cp4-epsps, were presented in Table 1. The PCR 

reaction was run as follows: an initial denaturation at 94 °C for 10 min; with 40 cycles at 94 °C for  

1 min, annealing (for each primer, annealing temperature was listed in Table 1) for 1 min, 72 °C for 

20–100 s (depending on the length of amplicon); and a final extension at 72 °C for 10 min. The 

amplified fragments were analyzed by 1.5% agarose gel electrophoresis stained with ethidium bromide. 

Each extract was amplified at least in duplicate assays. Finally, the PCR products were purified with 

gel extraction using AxyPrep Gel DNA Extraction Kit (Axygen, Hangzhou, China) according to the 

manufacturer’s protocol. The purified products were then cloned into the pMD19-T vector (TaKaRa) 

for sequencing (GenScript, Nanjing, China).  

3.8. Protein Extraction 

Total proteins from different samples (0.3 g) were extracted in 1 mL cold TPBS buffer (150 mM 

NaCl, 8 mM Na2HPO4·12H2O, 2 mM KH2PO4·H2O, 4 mM KCl, 0.05% Tween-20, and 2% SDS,  

pH 7.4). After shaking for 30 minutes at room temperature, the mixture was centrifuged twice at 

20,000 g in a rotor (model Avanti J-25, Beckman) for 15 min each. Total protein concentration was 

determined by BCA (Bicinchoninic acid) assay (Multisciences Biotechnology Co. Ltd., Hangzhou, 

China), using bovine serum albumin (BSA) as a standard. 

3.9. Western Blotting Analysis 

The predicted protein product of CP4-EPSPS comprises 527 amino acids with molecular weight of 

55.5 kD, which includes a 72 amino acid chloroplastic transit peptide proven previously [13], indicating a 

mature protein of 47.6 kD following the cleavage site of the transit peptide. In our experiment, one 

peptide sequence containing the specific amino acids corresponding to the mature CP4-EPSPS 

sequence positions (S19→R33) for the antigen were obtained by chemical synthesis. The peptide was 

hydrophilic, surface-oriented, and flexible. Synthetic peptides were purified by HPLC and coupled to 
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keyhole limpet haemacyanin (KLH). The CP4-EPSPS-KLHs were collected and used for producing 

the rabbit polyclonal antibody (SC-16).  

For the western blot analysis, protein (30 μg) or protein extracted from an equal weight of different 

samples was subjected to SDS-PAGE using a 12.5% acrylamide resolving gel (Mini Protean II System, 

Bio-Rad, Hertz, UK). Separated proteins were then transferred to polyvinylidene difluoride (PVDF) 

membranes, and non-specific binding of antibodies was blocked with 5% non-fat dried milk in 

phosphate-buffered saline (PBS, pH 7.4) overnight at 4 °C. Membranes were then incubated overnight 

at 4 °C, with primary antibodies diluted 1:3000 in PBS buffer plus 1% non-fat dried milk. Immune 

complexes were detected using horseradish peroxidase (HRP)-conjugated goat anti-rabbit 

immunoglobulin G. The color was developed with a solution containing 3,3'-diaminobenzidine 

tetrahydrochloride (DAB) as the HRP substrate. Meanwhile, identical SDS-PAGE gel was stained by 

Coomassie Brilliant Blue. 

4. Conclusions 

In this report, we have demonstrated for the first time the detection of the CP4-EPSPS protein in 

commercial soya protein concentrates by the western blot approach. Effects of the particular factor of 

food processing (heat, microwave and autoclave), along with the food matrix, such as the four critical 

processes in tofu, tou-kan and bean curd sheets production (grinding, boiling, bittern adding and 

coagulating) on the degradation of CP4-EPSPS protein, were compared in the RRS powder and the 

RRS-derived foodstuffs. Moreover, we have proved that it is possible to detect four degraded 

fragments of the CP4-EPSPS protein (42.9, 38.2, 32.2 and 23.4 kD) throughout the different processes 

of RRS-derived food products. Especially, the smallest fragment (23.4 kD) was also observed when 

autoclaving was applied. We further speculated that the N-terminal amino acid sequence of the  

CP4-EPSPS protein might be the degradation site for the various heating processes. Together, these 

findings are of great importance for the traceability of exogenous protein at the food process level.  
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