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Abstract: Circular dichroism (CD) spectroscopy is an optical technique that measures the 

difference in the absorption of left and right circularly polarized light. This technique has 

been widely employed in the studies of nucleic acids structures and the use of it to monitor 

conformational polymorphism of DNA has grown tremendously in the past few decades. 

DNA may undergo conformational changes to B-form, A-form, Z-form, quadruplexes, 

triplexes and other structures as a result of the binding process to different compounds. 

Here we review the recent CD spectroscopic studies of the induction of DNA conformational 

changes by different ligands, which includes metal derivative complex of aureolic family 

drugs, actinomycin D, neomycin, cisplatin, and polyamine. It is clear that CD spectroscopy 

is extremely sensitive and relatively inexpensive, as compared with other techniques. These 

studies show that CD spectroscopy is a powerful technique to monitor DNA conformational 

changes resulting from drug binding and also shows its potential to be a drug-screening 

platform in the future. 

Keywords: DNA structure; circular dichroism; conformational changes; DNA-binding 

drugs; thermodynamic parameters 
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1. Introduction 

Circular dichroism (CD) spectroscopy is an optical technique that measures the difference in the 

absorption of left and right circularly polarized light [1]. This phenomenon originated from the 

absorption of optically active chiral molecules. CD spectroscopy is very sensitive to the secondary 

structure of polypeptides and proteins and thus has been employed in many different fields, such as 

investigation of the proteins’ secondary structure and spectral studies of DNA [2–5]. Recently, the 

structures of small organic molecules such as oligo-peptides and oligo-nucleotides have been studied 

with this technique with 180–300 nm ultraviolet light range [6–9].  

Structural information on the oligo-nucleotides at atomic level cannot be provided by CD 

spectroscopy because the theoretical description is very complex [10]. However, CD spectroscopy 

offers significant cost and sensitivity advantages when compared with other analysis methods. (i) CD 

measurement is inexpensive, fast and allows comparative studies of related oligo-nucleotides in 

various conditions; (ii) We could easily titrate oligo-nucleotides with various agents such as acids, salts, 

alcohols, drugs and compounds to induce DNA conformational isomerizations; (iii) CD spectroscopy can 

be used to study oligo-nucleotides as well as longer DNA fragments with a 3000–8000 base pair [11]; 

(iv) CD can be used to make correlations between X-ray diffraction and infrared spectroscopy because 

it can analyze not only in solutions but also in films [12]; (v) CD shows extreme sensitivity for low 

concentrations of DNA (20 μg/mL). In addition, CD shows very high sensitivity (it is possible to detect 

as little as 25 μg oligonucleotides) which made it a useful method for study low solubility samples.  

NMR, X-ray diffraction and other conformational analysis methods have many disadvantages, such 

as the need for large amounts of oligo-nucleotides, short length of DNA molecules, limited 

experimental conditions (in solution or crystallization form) and a single discrete structure instead of a 

mixture of isomerizing conformers. Knowing the advantages and disadvantages of different analysis 

methods, CD is considered to be one of the easiest and convenient methods designed to study the 

secondary structure of DNA. 

Over the last three decades, enormous advances and efforts have been focused on ligand-DNA 

interactions. The study of ligand-DNA interactions is critical for a complete understanding of 

replication and transcription processes, which are attractive targets for the rational design of anticancer 

and antibiotic drugs. Most chemotherapeutic anticancer drugs currently used come from or are derived 

from DNA-binding ligands which interact with the DNA duplex by three general binding modes: DNA 

intercalation, groove binding and covalent binding [13]. DNA interacting drugs exhibit cytotoxic 

activity to tumor cell through preventing DNA relaxation, blocking gene expression and inhibiting 

DNA replication. The importance of discovering and designing DNA interacting drug is undisputable. 

The study of drug-DNA interactions and the mechanisms of drug action is highly important for drug 

discovery of more efficient and specifically-targeted drugs with fewer side effects [14]. In this review, 

we summarized the studies of CD spectra, monitoring DNA conformational change upon treatment 

with several DNA-binding ligands, such as the metal derivative complex of aureolic family drugs, 

actinomycin D (ActD), cisplatin and polyamines. 
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2. Conformational Polymorphism of DNA and DNA-Drug Complexes Monitored by CD 

2.1. DNA (B-form, A-form, Z-form and Quadruplexes) 

In the most common double helical structure, right-handed B-DNA, the helix makes a turn every 

3.4 nm. There are about 10 base pairs per turn and +36° rotation per base pair [15]. The long 

wavelength CD spectrum of the sequentially heterogeneous DNA is conservative, but the CD spectra 

of synthetic oligo-nucleotides are depended on the primary sequence. B-form oligo-nucleotides are 

characterized by a positive long wavelength band at about 260–280 nm and a negative band around 

245 nm. However, the position and amplitude of the CD bands show markedly differences in terms of 

sequence diversity [16–18]. 

A-DNA is α-helical double helix (right-handed) fairly similar to the B-DNA form, but with a 

shorter and more compact helical structure. A-DNA occurs only in dehydrated samples and favors low 

water conditions such as found in aqueous ethanol [19]. However, the slight increase in the number of 

base pairs per rotation and the smaller rise/turn of A-DNA compared to B-DNA results in a deepening 

of the major groove and preventing access by proteins. The CD spectrum of poly[d(G)]·poly[d(C)] is 

similar to that of the true A-form DNA and is characterized by a dominant positive band at 260 nm and 

a negative band at 210 nm [18,20]. 

Z-form DNA is a left-handed helix with a zigzag phosphate backbone and shows only little 

difference in width of major and minor grooves. Formation of this structure is generally unfavorable, 

although certain conditions can promote it: by raising negative super helical stress or under low salt 

conditions of the molecule rich in purine-pyrimidine sequences [21]. The CD spectrum of Z-form 

DNA shows an inversion of the CD spectrum of the B-form, and it contains a negative band at about 

290 nm, a positive band around 260 nm, and extremely deep negative band at 205 nm [22,23]. 

Self-complemented guanine-rich oligonucleotides (GROs) are found in many telomeric repeat 

sequences, and the G-quadruplex DNA has been constructed from quadruple strands of GROs with a 

building around tetrads of hydrogen-bonded guanine bases. There are two different types of  

G-quadruplexes; the spectra of parallel G-quadruplex has a dominant positive band at 260 nm, whereas 

the spectra of anti-parallel G-quadruplex has a negative band at 260 nm and positive band at  

290 nm [24,25]. Moreover, both of them have an additional characteristic positive peak at 210 nm [26]. 

2.2. Chromomycin A3(Chro) 

The anticancer antibiotic chromomycin A3 (Chro), a DNA minor groove binding drug which 

interferes with replication and transcription is a member of the aureolic family of drugs isolated from 

Streptomyces griseus [27–29]. This drug contains di- and trisaccharide moieties connected to a  

β-ketophenol chromophore via O-glycosidic bonds disposed in a 2, 6 relationship about the anthracene 

ring, with the disaccharide at the two position and the trisaccharide attached at the 6 position (Figure 1). 

Chromomycin has been used for the treatment of malignant diseases, such as malignancy-associated 

hypercalcemia and testicular cancer [30].  
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Figure 1. The chemical structure of chromomycin A3 (Chro). The oxygen atoms that 

coordinate the metal ion are shaded. 

 

Previous optical spectroscopy and structural studies have shown that divalent metal ions, such as 

Mg
2+

, Fe
2+

, or Co
2+

, are required for Chro to bind to GC-rich oligonucleotide duplexes that are at least 

three base pairs long [31–33]. The metal ion alternation to influence the effect of aureolic family drugs 

in disease therapy has been discussed. Previous studies have reported that Chro is capable of forming a 

dimeric complex via chelation with Fe
2+

 in the absence of DNA. To explore the conformational 

changes of hairpin DNA duplexes upon binding to the [(Chro)2-Fe
2+

] complex, DNA conformations 

were monitored in the absence or presence of the [(Chro)2-Fe
2+

] complex using CD spectroscopy. The 

DNA tested here form self-complementary hairpin duplexes by using trinucleotides, 5′-TGT-3′, as a 

loop region. In addition, their stem regions were identical, except for the central portion of four paired 

nucleotides that have central 2 base-paired (bp) G-tract with directions of either 5′-GC-3′ or 5′-CG-3′ 

flanked by G and C, i.e., 4 bp G-tract (or A and T, i.e., 2 bp G-tract flanked by A and T). Previously, 

we have showed that the conformation of [(Chro)2-Mg
2+

] remains basically unchanged with and 

without DNA. Therefore, in the CD spectra of hairpin DNA duplexes complexed to [(Chro)2-Fe
2+

], the 

CD spectra of the [(Chro)2-Fe
2+

] complex were all subtracted to minimize the interference from 

[(Chro)2-Fe
2+

]. In Figure 2A, the same profiles were observed for the CD spectra of the hairpin DNA 

duplexes containing regions of 4 bp G-tract. The CD spectra are similar to typical B-DNA, which 

showed a band of negative and positive peaks at 250 and 280 nm, respectively [34]. An increase in the 

CD spectra intensity at ~220 and 280 nm in all hairpin DNA duplexes containing regions of 4 bp  

G-tract is observed with the presence of [(Chro)2-Fe
2+

] complex (Figure 2B). Furthermore, DNA 

duplex GGCC exhibits the largest change in CD intensity at 280 nm and a smaller peak at 265 nm in 

the presence of the [(Chro)2-Fe
2+

] complex, which are similar to the A-DNA profile. 
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Figure 2. (A) CD spectra of hairpin DNA duplexes including GGCC, CGCG, GCGC and 

CCGG in 25 mM Tris-HCl buffer at pH 7.3 with 50 mM NaCl at 25 °C. The concentration 

of DNA was 20 µM; (B) Normalized sum of the CD spectra of the [(Chro)2-Fe
2+

]-hairpin 

DNA duplex including GGCC, CGCG, GCGC, and CCGG minus [(Chro)2-Fe
2+

] dimer in 

25 mM Tris-HCl buffer at pH 7.3 with 50 mM NaCl at 25 °C [34]. Reprinted with 

permission from ref. [34]. (Copyright 2008, American Chemical Society) 

 

Circular dichroism was also used to measure the interactions between hairpin DNA duplexes  

that contains regions of 2 bp G-tract flanked by A and T and [(Chro)2-Fe
2+

] [34]. Results of CD 

measurements revealed only slight peak height differences at ~220 and 280 nm between the DNA 

duplex with/without the treatment of [(Chro)2-Fe
2+

] (parts A and B of Figure 3), suggesting subtle 

structural differences between the two. This is basically consistent with the previous observation that 

hairpin DNA duplexes containing regions of 2 bp G-tract flanked by A and T exhibited lower 

equilibrium constants (Ka) upon binding to [(Chro)2-Fe
2+

]. In addition, upon binding to [(Chro)2-Fe
2+

], 

the CD spectra of AGCT and ACGT were shifted toward longer wavelengths (~275–280 nm), 

suggesting a slightly different binding mode. 

Figure 3. (A) CD spectra of hairpin DNA duplexes including AGCT, ACGT, TGCA, and 

TCGA. The concentration of DNA was 20 µM; (B) Normalized sum of the CD spectrum of 

the [(Chro)2-Fe
2+

]-hairpin DNA duplex including AGCT, ACGT, TGCA, and TCGA minus 

[(Chro)2-Fe
2+

] dimer in 25 mM Tris-HCl buffer at pH 7.3 with 50 mM NaCl at 25 °C [34]. 

Reprinted with permission from ref. [34]. (Copyright 2008, American Chemical Society) 
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2.3. Mithramycin (Mith) 

The anticancer antibiotic Mithramycin (Mith) is an RNA synthesis inhibitor and belongs to the 

aureolic family isolated from S. griseus [35]. Mith consists of aglycone ring, a chromomycinone 

moiety, and sugar residues connected to its either side by O-glycosidic bonds (Figure 4). Mith is a 

DNA-binding antitumor agent that inhibits tumor cell replication and transcription [36,37]. It is 

currently used in multiple areas of research, several cancer therapies and Paget’s disease [28,38,39]. 

Recently, Fibach et al. [40] revealed that Mith is a potent inducer of fetal hemoglobin production in 

normal and thalassemic human erythroid precursor cells, and suggested that Mith may be used as a 

therapeutic agent in certain neoplastic diseases. 

Figure 4. Chemical structure of mithramycin (Mith). 

 

Mithramycin forms a stable dimeric complex by chelating with Fe(II). The structural effects of the 

[(Mith)2-Fe
2+

] complex on the conformation change of d(TTGGCCAA)2 DNA duplex has been 

characterized using CD analyses [41]. As shown in Figure 5, the CD spectra of the [(Mith)2-Fe
2+

] 

complex exhibit negative and positive peak intensities at 275 and 300 nm, whereas the CD spectra of 

d(TTGGCCAA)2 show a similar profile with B-DNA which have a band with negative and positive 

peaks around 250 and 280 nm. The CD spectra of Mith and DNA signals overlap in the 200–300 nm 

regions. In addition, the CD spectra of [(Mith)2-Fe
2+

]-d(TTGGCCAA)2 complex show a higher CD 

intensity at 287 and 275 nm when compared with the CD spectra sum of the [(Mith)2-Fe
2+

] complex 

plus d(TTGGCCAA)2, resulting from a strong exciton-type couplet. It could be used as evidence for 

the relative binding affinities of the [(Mith)2-Fe
2+

] complex toward this DNA oligomer duplex.  
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Figure 5. Comparison of the CD spectra of the [(Mith)2-Fe
+2

] complex, d(TTGGCCAA)2, 

[(Mith)2-Fe
+2

]-d(TTGGCCAA)2 complex and the sum of the CD spectra of [(Mith)2-Fe
+2

] 

plus d(TTGGCCAA)2 in 20 mM sodium-cacodylate buffer at pH 7.3 with 100 mM NaCl at 

25 °C. This figure was adapted from M.-H. Hou et al. [41] with permission. 

 

2.4. Actinomycin D (ActD) 

Actinomycin D (ActD) (Figure 6) is a potent anticancer drug which binds to DNA by intercalating 

its phenoxazone ring at a GpC step with the two cyclic pentapeptides of the drug located in the DNA 

minor groove [42,43], thereby interfering with replication and transcription [44,45]. ActD binds 

specifically to the GpC sequence [46] by forming strong hydrogen bonds between the NH/C=O groups 

of threonines of ActD and the corresponding N3/N2 sites of adjacent guanine bases of the GpC step. 

Interestingly, many GpC binding sites are formed when the (CTG)n triplet sequence adopts a hairpin 

arm (as part of a cruciform) or duplex form, but with alternating T:T mispairs. Studies on the properties 

of ActD and their interaction with DNA are significantly important in developing new drugs because 

CTG/CAG triplet repeat expansions (TREs) within genes are associated with various neurological 

diseases, including Huntington’s disease, myotonic dystrophy, spinocerebellar ataxia and spinal and 

bulbar muscular atrophy [47–49].  

Figure 6. Chemical structure of ActD. The cyclic pentapeptide attached to the quinonoid 

ring and the benzenoid ring of the phenoxazone group are labeled α and β, respectively. 
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Figure 7A shows the CD spectra of DNA duplexes with AT0, AT1 and TT1 in the absence (top) 

and presence (bottom) of ActD, respectively [50]. The spectral changes observed for the ActD-DNA 

complexes showed a red shift from 275 to 290 nm, due to a A-type DNA transition upon ActD 

interaction [51]. In addition, the self-priming sequence CTG1 [5'-(CAG)4 (CTG)16-3'] can form  

intra-strand hairpins consisting of both normal and mismatched base pairs, which promote  

primer-template slippage during DNA replication. The CD spectra of CTG1 showed concomitant 

increased peak intensity in the presence of 10 µM ActD (Figure 7B). It suggests that conformational 

changes of long CTG repeats as well as increased stability are induced upon addition of ActD. 

Figure 7. (A) CD spectra of AT0, AT1 and TT1 (4 µM) in standard buffer alone (top) and 

with 10 µM ActD are graphed (bottom). The CD spectra of ActD-DNA complexes were 

obtained by subtracting the spectrum of ActD, and DNA duplexes used in this study and 

include AT0, AT1 and TT1 (rectangles represent the binding sites for the phenoxazone ring 

of ActD); (B) CD spectra of CTG1 (1 µM) in the same buffer solution. The CD spectra of 

ActD-DNA complexes were obtained by subtracting the spectrum of ActD alone. This 

figure was adapted from M.-H. Hou et al. [50] with permission. 

 

2.5. Polyamines 

Polyamines are ubiquitous polycationic compounds, including spare aliphatic polycationic 

compounds, and they possess multiple positive charges (two for putrescine, three for spermidine and 

four for spermine) at physiological pH due to the protonations of their amine groups. Polyamines and 

the analogues are almost exclusively bound to DNA [52] or RNA [53–55] and are essential regulators 
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of cell growth and gene expression as well as mitosis and meiosis [56]. Information collected recently 

has shown that polyamines affect protein-DNA interaction [57,58] and modulate the transcription of 

various genes [59,60]. In some tumor cells, polyamines are regulated poorly, resulting in higher 

polyamine concentrations than those in normal cells [56]. Furthermore, polyamines are essential 

materials for catenation of supercoiled DNA by topoisomerase [61,62]. The interaction between 

polyamines with nucleic acids induces the transition of B-DNA to A-DNA or Z-DNA depending on 

the conditions [63–65]. In summary, polyamines play important roles in a variety of biological  

process [56], thus numerous studies on the function of polyamines have been published. 

Figure 8B and C show the CD spectra of DNA duplexes with normal (P1) and abnormal (M1 and 

B1) sequences in the presence of spermidine and spermine, respectively. As previous described, DNA 

duplexes (P1, M1 and B1) have a split peak which includes a large positive peak at 280 nm and a weak 

positive peak at 260 nm in the region of 260–290 nm of the spectrum similar to the (A)n·(T)n  

sequence [66]. In Figure 8B,C, a band with negative and positive peaks around 245 and 280 nm have 

been observed for the P1, M1, and B1 CD spectra, which is typical of B-DNA [67] and suggests that 

DNA duplexes remain as B-DNA conformation. However, addition of spermine causes a decrease in 

the intensity of both M1 and B1, and to a lesser extent P1 in the region of 240–250 nm.  

Figure 8. (A) DNA duplexes used in the study of polyamines include P1 (a perfect duplex), 

B1 (a bulged loop duplex), M1 (a mismatched duplex), H1, H2 and H3 (hairpin duplexes); 

(B)(C) CD spectra of P1 (solid line), B1 (dotted line) and M1 (broken line) in solution of 

20 mM Tris-HCl buffer at pH 7.3 with 5 mM (B) spermidine or (C) spermine at 10 °C; (D) 

CD spectra of H1 (solid line), H2 (broken line) and H3 (dotted line) in  

20 mM Tris-HCl buffer at pH 7.3 with 5 mM spermine at 10 °C. This figure was adapted 

from M.-H. Hou et al. [51] with permission. 
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In Figure 8D, the DNA hairpins H1 and H3 with a (dA·dT)n duplex stem have positive bands at  

265 nm in the presence of spermine, which is typical of A-DNA [68]. The observation suggested that 

an intermediated conformation between B-DNA and A-DNA might be formed for H1 and H3 DNA.  

2.6. Neomycin 

Neomycin belongs to aminoglycoside class of antibiotics that contain two or more aminosugars 

connected by glycosidic bonds. It has been reported that neomycin could stabilize DNA, RNA, and 

hybrid triple helices while having little effect on the stabilization of DNA duplex [69]. The 

competition dialysis studies have shown the binding preference of neomycin toward A-form nucleic 

acids [70–72]. The selectivity of neomycin most likely originates from its shape complementarity with 

the A-form nucleic acids and triplex DNA harboring a narrower major groove [71]. In addition, 

neomycin has been known to bind different RNA structures and is capable of binding tightly to  

poly(A) [73]. Furthermore, several neomycin conjugates have also been designed and synthesized which 

performed different nucleic acids selectivity from neomycin. For example, dimeric neomycin-neomycin, 

neomycin-methidium (NM), and perylene-neomycin conjugates could selectively interact with AT-rich 

DNA duplex, DNA:RNA hybrid duplex, and human telomeric G-quadruplex, respectively [74–76]. 

Novel neomycin-Hoechst 33258 conjugate shows remarkable stabilization of DNA duplexes and 

destabilization of the DNA triplex [77]. BQQ-neomycin and pyrene-neomycin conjugates are more 

potent in stabilizing DNA helices than neomycin [78,79].  

Arya’s group has done several CD studies on these neomycin analogs to monitor  

drug-DNA interaction. They serially titrated neomycin into a solution of poly(A) and monitored by CD 

spectroscopy from 300 nm to 200 nm and the result indicated a binding ratio of one neomycin to  

10 adenine bases [73]. CD titrations of the oligomer triplex showed an apparent binding site of  

2.2 neomycin/triplex or ~6 base triplets/neomycin [80]. The CD titration studies of dimeric  

neomycin-neomycin conjugate also showed that depending on the structure/sequence of the duplex for 

AT-rich DNA duplexes, the conjugate binds to DNA with 10–12 base pairs/drug [74]. Moreover, CD 

experiment results of a series of neomycin conjugates showed that increasing concentration of NM to 

the DNA:RNA hybrid would result in a gradual increase in the melting temperature [75]. Furthermore, 

CD spectroscopy titrations of neomycin-Hoechst 33258-Pyrene Conjugate (NHP) showed a significant 

signal change in the poly(dA)·poly(dT) region, which is represented by a negative band at 248 nm and 

a positive band at 260 nm [81]. As the molar ratio of NHP:poly(dA)·poly(dT) increased, there is an 

increasingly positive CD signal in the region of 360 nm [81]. It has also been reported that addition of 

perylene-neomycin conjugate to the G-quadruplex DNA solution resulted in the changes in the CD 

intensity of the 295 and 260 nm bands and a slight red shift in the band at 295 nm, which suggests the 

interaction between the perylene-neomycin conjugate and G-quadruplex DNA [76]. Taken together, 

CD spectroscopy is an extremely useful tool to monitor specific DNA conformational changes  

by neomycin. 

2.7. Cisplatin 

Cisplatin is the first member of a class of platinum-containing anti-cancer drugs [82] which is used 

to treat various type of cancers. Cisplatin forms crosslink interaction with chromosomal DNA to 
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interfere with cell division by mitosis and leads to programmed cell death. This interference activity 

contributes to Cisplatin’s antitumor activity. Damage to DNA elicits DNA repair mechanisms and 

activates a programmed cell death process when the damage is too severe to be repaired. Recently, it 

has been reported that apoptosis would be induced by cisplatin on human colon cancer cells [83].  

The guanine N7 position is a favorable site for platinum complexes. Platinum complexes interact 

with DNA duplex mostly by forming a 1,2-intrastrand cross-link between the N7 atoms of two 

adjacent guanine bases. According to X-ray crystallographic studies, cisplatin induces the duplex to 

bend toward the major groove, resulting in significant widening of the minor groove. CD spectroscopy 

has been used to obtain structural information about the global changes in DNA conformation induced 

by platinum complexes. It has been shown that the intensity of the positive CD band of B-DNA at  

275 nm is increased as a consequence of DNA modification by the complexes containing the  

cis-[PtCl2(amine)2] unit that reflects distortions in DNA of a nondenaturational nature [84,85]. In 

addition, the platinum complexes binding to human telomeric G-quadruplex were studied by CD 

spectroscopy. The non-modified human telomere sequence gives the characteristic CD signature with a 

maximum at 295 nm and a minimum at 260 nm, and shows an antiparallel ―basket‖ structure [86]. As 

the pagination level of human telomere sequence increases (up to four platinum atoms per sequence on 

average), pronounced reduction in the magnitude of the CD is observed along with an increasing shift 

in the wavelength. In addition, cisplatin caused more pronounced influence on the CD spectra of 

quadruplexes formed by the model human telomere sequence when compared with transplanting [86]. 

2.8. The Effect of Polyamines on the Metal Derivative Complex of Aureolic Family Drug-DNA Complexes 

The paramagnetic metal ions Fe
2+

, Co
2+

, and Cu
2+

 with redo-cycling activities are required for 

several antibiotics to function properly, such as bleomycin and streptonigrin [37,87]. The positive 

charge (2+) and radii of these three transition metals are required for Chro-DNA dimeric complexes 

formation [88]. Spermine exists in the nucleus of cancer cells at millimolar concentrations, and has 

been reported to interact with transition metals to interfere with the activity of the aureolic family of 

drugs in cancer cells [89]. 

To monitor the effect of spermine on the structural integrity of the Fe
2+

-, Co
2+

-, and Cu
2+

-containing 

dimeric Chro complexes upon DNA binding, the DNA-Chro complexes interaction was examined with 

increasing concentration of spermine (0, 1, and 6 mM) [29]. As shown in Figure 9, the CD spectra of 

[(Chro)2-Co
2+

] and [(Chro)2-Fe
2+

] bound to the DNA duplex exhibited similar spectral features, with 

negative and positive peaks at 275 and 287 nm, respectively, which are good evidence for an 

octahedral coordination. However, adding 6 mM spermine to the DNA-[(Chro)2-Fe
2+

] complex reverted 

the CD spectrum to its original profile, suggesting spermine with this concentration is able to inhibit 

the formation of DNA-[(Chro)2-Fe
2+

] complex (Figure 9A). Surprisingly, the same concentration of 

spermine is unable to interfere with the interaction between DNA and the [(Chro)2-Co
2+

] complex 

(Figure 9B). In the reaction between DNA and [(Chro)2-Co
2+

], conformation of DNA changed upon 

binding with [(Chro)2-Co
2+

] and the CD spectra flattened at 275 and 287 nm upon this interaction 

(Figure 9C). Low concentration of spermine (1 mM) cause a slight decrease at 275 nm in the CD 

spectrum of the [(Chro)2-Cu
2+

]-DNA complex, implying that an interaction occurs between them. 

When the concentration of spermine increased to 6 mM, the DNA-[(Chro)2-Cu
2+

] adduct was 
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completely abolished, as demonstrated by an almost completely inverted CD spectrum (Figure 10C). 

These data provide strong evidence that spermine exhibits a strong affinity to Fe
2+

 and Cu
2+

 chelated 

by Chro, while it cannot disrupt the [(Chro)2-Co
2+

] complex even at a high concentration.  

Figure 9. CD spectra of (A) [(Chro)2-Fe
2+

]-DNA, (B) [(Chro)2-Co
2+

]-DNA, and (C) 

[(Chro)2-Cu
2+

]-DNA in the various concentrations of spermine (0, 1, and 6 mM). The drug 

concentration was 0.04 mM in a buffer of 20 mM Tris-HCl buffer (pH 7.3).  

The concentration of DNA was 20 μM. Synthetic hairpin DNA,  

5'-TTGGCCAATGTTTGGCCAA-3', was used in the CD study (hairpin loop underlined). 

This figure was adapted from W.-J. Lu et al. [29] with permission. 
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Figure 10. Comparison of the CD spectra of Mith-DNA, (Mith)2-metal ion(II)-DNA, and 

(Mith)2-metal ion(II)-DNA in the presence of (A,B) spermine (spm) and (C,D) spermidine 

(sdm) at 1 and 6 mM at 20 °C. Metal ions(II) include Fe
2+

 and Co
2+

. The drug 

concentration was 0.04 mM in a buffer of 20 mM Tris-HCl (pH 7.3). Reprinted with 

permission from ref. [90]. (Copyright 2009, American Chemical Society)  

 

Moreover, the effect of polyamines on DNA interacting with [(Mith)2-Fe
2+

] and [(Mith)2-Co
2+

] has 

also been studied using CD spectroscopy [90]. In the experiment, [(Mith)2-Fe
2+

] and [(Mith)2-Co
2+

] 

were incubated with hairpin DNA duplexes, allowing interaction to occur in the presence of increasing 

concentration of spermine or spermidine (0, 1, and 6 mM). There is one Mith DNA-binding site 

(GGCC) on the tested DNA, 5′-TTGGCCAATGTTTGGCCAA-3′, which also forms a hairpin duplex 

using 5′-TGT-3′ as the loop region. In Figure 10, the solid line represents the CD spectrum of DNA 

and Mith monomer complex (DNA + Mith) and their interaction is not induced with the lack of metal 

ions. However, Fe
2+

 and Co
2+

 ions caused a dramatic change in CD spectral features at 287 and  

275 nm, which proved the ability of metal ions to mediate the interaction between Mith and DNA 

oligomer duplex. A low concentration of spermine or spermidine (1 mM) caused minor intensity 

changes of [(Mith)2-Fe
2+

]-DNA at 275 and 287 nm, suggesting the complex was partially disrupted. A 

high concentration of spermine or spermidine (6 mM) was able to compete with Fe
2+

 for the 
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interaction with the complex as the CD spectrum of [(Mith)2-Fe
2+

]-DNA was found to completely 

revert to the same profile as DNA + Mith. On the other hand, the presence of polyamines does not 

create a different CD spectra of the [(Mith)2-Co
2+

]-DNA complexes. Thus, the copper ion in the 

[(Mith)2-Co
2+

]-DNA complex is more resistant to the interaction competition of polyamine. 

3. Conclusion 

The purpose of this short review was to summarize the characteristics of CD spectra of important 

conformations of DNA and to demonstrate that CD spectroscopy is a useful way to monitor  

ligand-induced DNA conformational change. The recent development of CD-based technologies has 

made it possible to directly monitor the binding of ligands and compounds to a variety of DNA  

(Table 1). In these reports, CD spectroscopy is extremely useful in conformational studies of nucleic 

acids and for specific ligands that recognize DNA sequences and structures with high selectivity. More 

reliable studies, related to DNA-binding drugs, may emerge from ongoing experiments using CD 

spectrum technique.  

Table 1. CD-based studies of biospecific interaction analysis between DNA-binding 

ligands and target DNA sequences.  

Drugs Sequence Specificity Target Sequence 

Anticancer drug   

Chromomycin A3 G/C-rich sequence d(TTGGCCAA)2 

 G/C-rich sequence d(TTGGCCAA)2 

Mithramycin G/C-rich sequence d(TTGGCCAA)2 

Blenomycin G/C-rich sequence d(CCCCAGCTGGGG) 

Actinomycin D CTG triplet repeat sequence 

telomeric G-quadruplex 

d[(CAG)4·(CTG)16] 

d[GGG(TTAGGG)3] 

CC-1065 AT-rich sequence d(GAATT) 

Doxorubicin telomeric G-quadruplex d[GGG(TTAGGG)3] 

Sabarubicin telomeric G-quadruplex d[GGG(TTAGGG)3] 

Streptonigrin little sequence specificity d(GCATGC)2 

cis-Platin GC-rich sequence poly(dG)·poly(dC) 

SN-6999 AT-rich sequence poly(dA)·poly(dT) 

SN-18071 AT-rich sequence poly(dA)·poly(dT) 

Rebeccam ycin sequences containing GpT (ApC) 

and TpG (CpA) steps 

d(TGTTACGTT)2 

Antiviral drug   

Lamivudine little sequence specificity Calf thymus DNA 

Valacyclovir little sequence specificity Calf thymus DNA 

isatin-β-thiosemicarbazone little sequence specificity Calf thymus DNA 

Tartrazine little sequence specificity Calf thymus DNA 

bis-netropsin  AT-rich sequence poly(dA)·poly(dT) 

Distamycin AT-rich sequence poly(dA)·poly(dT) 

SN-7167 AT-rich sequence d(CGCGAATTCGCG) 2 

Berenil AT-rich sequence d(G4A4G4-[T4]*-C4T4C4-[T4]*-G4T4G4) 
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Table 1. Cont. 

Antimicrobial drug   

Neomycin A-form nucleic acids 16S A-site rRNA 

Neomycin dimer AT-rich sequence d[5′-A12-x-T12-3′]  

NHP AT-rich sequence poly(dA)·poly(dT) 

NM DNA:RNA hybrids poly(dA)·poly(rU)  

perylene-neomycin conjugate G-quadruplex DNA 5'-d[AG3(T2AG3)3] 

Mitomycin C GC-rich sequence poly(dG) · poly(dC) 

Phenanthrolin little sequence specificity Calf thymus DNA 

Nogalamycin little sequence specificity Calf thymus DNA 

Enrofloxacin little sequence specificity Calf thymus DNA 

Neocarzinostatin sequence-specific bulged DNA  

Others   

Polyamine Major groove of GC-rich duplexes  

Minor groove of AT-rich duplexes 

poly(dG)·poly(dC) 

poly(dA)·poly(dT) 

Pentamidine AT-rich sequence poly(dA)·poly(dT) 

* [T4] represents a stretch of four thymine residues. 
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