Supplementary Materials

Table S1. 20 flavonoids derivatives inhibitors of the 2009 H1N1 neuraminidase.

Inhibitors

Hydrophilic (blue color) and hydrophobic (red color) parts for SIE and RDF calculations

Experimental Binding free energy $\Delta G_{_{b}}^{^{Exp}}$ (kcal/mol) and Experimental IC₅₀ (mM)

1: (2Z)-6-hydroxy-2-[(4-hydroxyphenyl)methylene]benzofuran-3-one

2: (2Z)-4,6-dihydroxy-2-[(4-hydroxyphenyl)methylene]benzofuran-3-one

3: (2Z)-2-[(3,4-dihydroxyphenyl)methylene]-6-hydroxy-benzofuran-3-one

Table S1. Cont.

Inhibitors Experimental Binding free energy ΔG_b^{Exp} (kcal/mol) Hydrophilic (blue color) and hydrophobic (red color) parts for SIE and RDF calculations and Experimental IC₅₀ (mM) **4:** 5,7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one -6.430HO (0.00854)OH O **5:** 7-hydroxy-3-(4-hydroxyphenyl)chromen-4-one -6.296(0.00943)0 ОН **6:** 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-chromen-4-one OH -6.265ОН (0.00965)ОН O 7: 5,7-dihydroxy-2-phenyl-chromen-4-one -6.014(0.01162)

ОН

0

Table S1. Cont.

8: 5,7-dihydroxy-2-(4-hydroxyphenyl)-8-methoxy-chromen-4-one

9: 5,7-dihydroxy-2-(4-hydroxyphenyl)-6-methoxy-chromen-4-one

10: 5,6,7-trihydroxy-2-(4-hydroxyphenyl)chromen-4-one

11: 5,6,7-trihydroxy-2-(4-hydroxyphenyl)chromen-4-one

Table S1. Cont.

12: [5-hydroxy-2-(3,4,5-trihydroxyphenyl)chroman-7-yl]

3,4,5-trihydroxybenzoate

13: 3,5,7-trihydroxy-2-(4-hydroxyphenyl)chromen-4-one

14: (2E)-2-benzylidene-6-hydroxy-benzofuran-3-one

15: 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-chromen-4-one

Table S1. Cont.

Inhibitors Hydrophilic (blue color) and hydrophobic (red color) parts for SIE and RDF calculations

16: 5-acetamido-4-hydroxy-2-[5-hydroxy-6-[4-(5-hydroxy-7-methoxy-4-oxo-chromen-2-yl)phenoxy]-2-(4-methoxyphenyl)-4-oxo-chromen-7-yl]oxy-6-(1,2,3-trihydroxypro pyl)tetrahydropyran-2-carboxylic acid

Experimental Binding free energy ΔG_b^{Exp} (kcal/mol) and Experimental IC₅₀ (mM)

-5.343 (0.01910)

17: 5,7-dihydroxy-3-(4-hydroxyphenyl)chromen-4-one

Table S1. Cont.

18: 5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

19: 2-(3,4-dihydroxyphenyl)-5-hydroxy-7-[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-4-one

Table S1. Cont.

Inhibitors Hydrophilic (blue color) and hydrophobic (red color) parts for SIE and RDF calculations

Experimental Binding free energy ΔG_b^{Exp} (kcal/mol) and Experimental IC₅₀ (mM)

20: 3-[4,5-dihydroxy-6-(hydroxymethyl)-3-(3,4,

5-trihydroxytetrahydropyran-2-yl)oxy-tetrahydropyran-2-yl]oxy-5,

7-dihydroxy-2-(4-hydroxyphenyl)chromen-4-one

-5.084 (0.02450) Int. J. Mol. Sci. 2012, 13

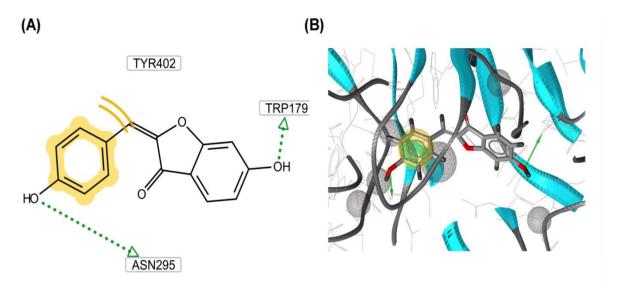
Table S2. Binding free energies analysis of hydrophobic natures of 20 flavonoids/hydrophobic natures of the important residue regions analyzed by the ligplot program (kcal/mol).

Inhibitor	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Arg152	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Asn295	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Asn325	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Asn344	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Asp151	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Asp294	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Glu119	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Glu228	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Glu277	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ser180	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ser247	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ser366	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ser367	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Thr226	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trp179	-2.348	-1.941	-1.985	-1.958	-2.067	-1.835	-2.419	-2.128	-1.854	-1.965	-1.761	-2.769	-1.803	-1.121	-1.922	-2.961	-2.151	-1.996	-1.856	-1.712
Tyr402	-1.944	-2.178	-1.978	-2.665	-2.588	-2.145	-1.718	-1.179	-2.114	-1.611	-2.021	-3.143	-1.607	-1.287	-1.744	-2.872	-1.951	-1.853	-1.706	-1.665
Val346	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TIP3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
water																				

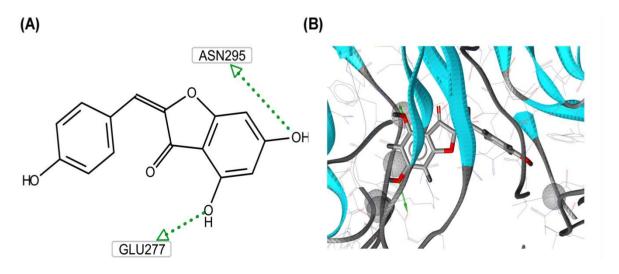
Int. J. Mol. Sci. 2012, 13

Table S3. Binding free energies analysis of hydrophilic nature of 20 flavonoids/hydrophilic nature of natures of the important residue regions analyzed by the ligplot program (kcal/mol).

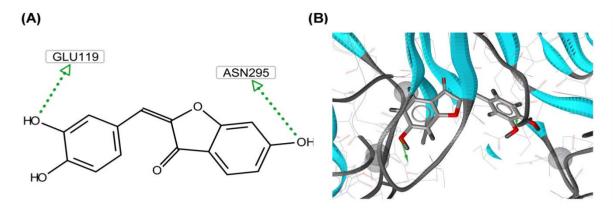
Inhibitor	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Arg152	-0.56	-0.722	-0.507	-1.334	-0.154	-1.896	-1.11	-1.506	-0.868	-1.248	-1.587	-1.624	-1.761	-0.72	-1.105	-1.561	-0.601	-2.252	-2.409	-2.733
Asn295	-0.378	-0.46	-0.185	-0.172	-0.012	-0.514	-0.768	-0.524	-0.426	-0.506	-0.885	-2.247	-1.239	-0.538	-1.534	-1.321	-0.649	-1.871	-2.169	-2.333
Asn325	-0.174	-0.19	-0.082	-0.25	0.054	-0.134	-0.086	-0.214	-0.1	-0.15	-0.302	-0.61	-0.254	-0.166	-0.294	-0.794	-0.234	-0.502	-0.814	-0.846
Asn344	-0.199	-0.255	0.073	-0.515	-0.125	-0.359	-0.191	-0.239	-0.034	-0.355	-0.487	-0.988	-0.419	-0.011	-0.619	-0.803	-0.044	-0.965	-0.756	-0.868
Asp151	-0.031	-0.065	-0.073	-0.43	-0.034	-0.546	-0.144	-0.316	-0.202	-0.55	-0.473	-0.765	-0.171	-0.034	-0.286	-1.636	-0.196	-0.458	-0.621	-0.689
Asp295	-0.546	-0.556	-0.176	-0.281	0.059	-0.021	-0.491	-0.071	-0.292	-0.001	-0.096	-0.649	-0.566	-0.361	-0.621	-1.571	-0.371	-0.404	-0.599	-0.619
Glu119	-0.138	-0.196	-0.292	-0.901	-0.049	-0.993	-0.119	-0.883	-0.145	-0.391	-0.542	-1.446	-0.187	-0.128	-0.362	-1.377	-0.017	-1.012	-1.442	-1.558
Glu228	-0.04	-0.086	-0.138	-0.621	0.003	-0.725	-0.087	-0.555	-0.129	-0.741	-0.778	-1.326	-0.24	-0.037	-0.385	-1.119	-0.06	-0.948	-1.144	-1.236
Glu277	-0.142	-0.176	-0.184	-0.541	-0.145	-0.657	-0.255	-0.427	-0.313	-0.661	-0.584	-1.176	-0.282	-0.145	-0.397	-1.332	0.108	-0.654	-1.317	-1.385
Ser180	-0.044	-0.066	-0.03	-0.261	-0.093	-0.389	-0.223	-0.099	-0.297	-0.381	-0.19	-0.826	-0.124	-0.053	-0.209	-0.859	-0.139	-0.375	-0.804	-0.848
Ser247	-0.098	-0.11	-0.154	-0.28	-0.052	-0.268	-0.032	-0.328	-0.016	-0.28	-0.394	-0.75	-0.158	-0.092	-0.188	-0.888	-0.168	-0.694	-0.928	-0.952
Ser366	-0.319	-0.325	-0.097	-0.16	0.104	-0.004	-0.286	-0.034	0.152	0.02	-0.037	-0.815	-0.319	-0.136	-0.364	-0.814	-0.154	-0.622	-0.739	-0.751
Ser367	-0.227	-0.231	-0.079	-0.121	-0.045	-0.017	-0.205	-0.037	0.067	-0.021	-0.059	-0.711	-0.247	-0.225	-0.257	-0.757	-0.217	-0.659	-0.737	-0.745
Thr226	-0.292	-0.294	-0.218	-0.239	-0.051	-0.187	-0.281	-0.197	-0.115	-0.159	-0.178	-0.804	-0.272	-0.111	-0.307	-0.857	-0.137	-0.763	-0.802	-0.806
Trp179	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tyr402	-0.352	-0.354	-0.278	-0.299	-0.111	-0.247	-0.341	-0.257	-0.235	-0.279	-0.298	-0.824	-0.392	-0.231	-0.367	-0.917	-0.197	-0.913	-0.952	-0.956
Val346	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tip3	-0.614	-0.685	-0.603	-0.689	-0.645	-0.879	-0.513	-0.613	-0.615	-0.7606	-0.654	-2.577	-0.516	-0.2261	-0.878	-1.861	-0.135	-1.824	-1.713	-1.864

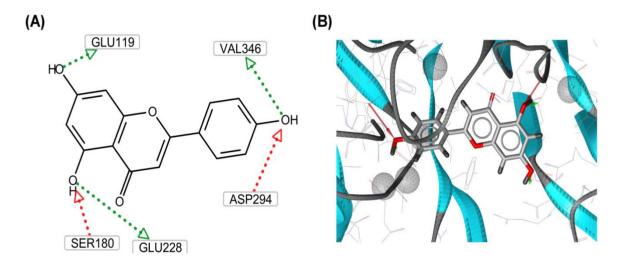

Table S4. Hydrophilic and hydrophobic natures of the important residue regions analyzed by the ligplot program.

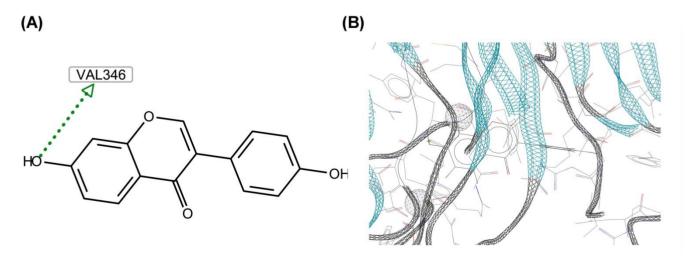
The important residue regions analyzed by the ligplot program	Hydrophilic (blue color) and hydrophobic (red color) parts for SIE and RDF calculation
Arg152	
Asn295, Asn325 and Asn344	O N N
Asp151 and Asp295,	O N
Glu119, Glu228 and Glu277,	O O O N
Ser180, Ser247, Ser366 and Ser367,	O N
Thr226	O O O
Trp179	O N
Tyr402	O N

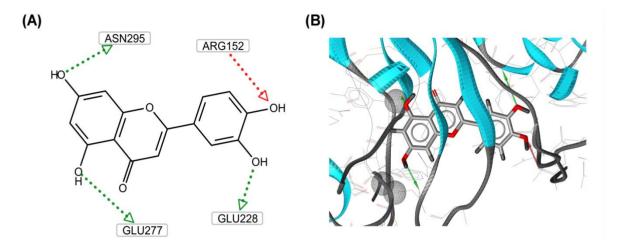

Table S4. Cont.

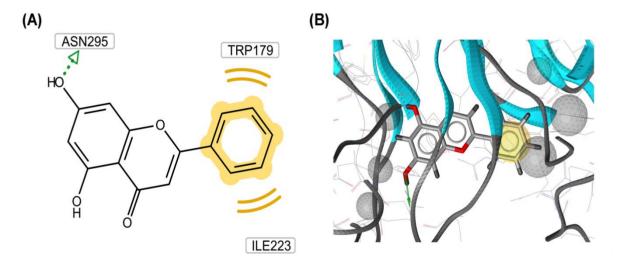
The important residue regions analyzed by the ligplot program	Hydrophilic (blue color) and hydrophobic (red color) parts for SIE and RDF calculation
Val346	O Z

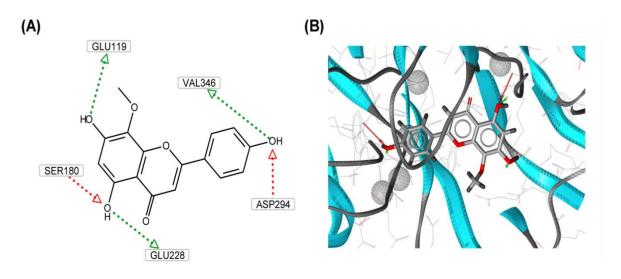

Figure S1. (**A**) Pharmacophore of Inhibitor 1; (**B**) Inhibitor 1 bound to the binding site of the 2009 H1N1 neuraminidase.

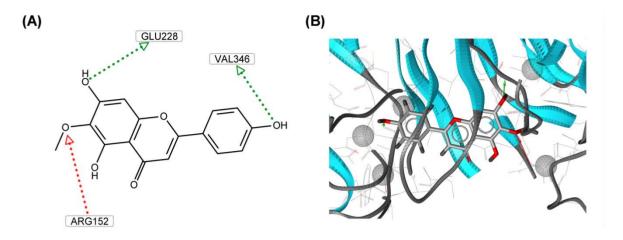

Figure S2. (**A**) Pharmacophore of Inhibitor 2; (**B**) Inhibitor 2 bound to the binding site of the 2009 H1N1 neuraminidase.

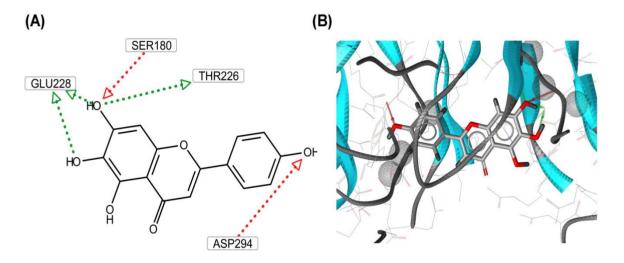

Figure S3. (**A**) Pharmacophore of Inhibitor 3; (**B**) Inhibitor 3 bound to the binding site of the 2009 H1N1 neuraminidase.

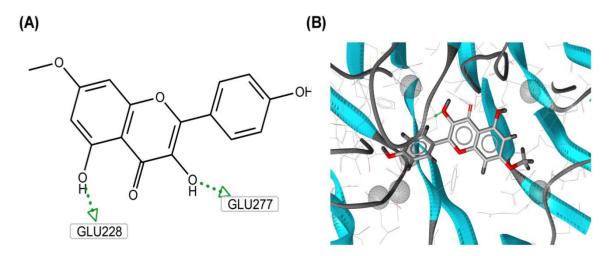

Figure S4. (**A**) Pharmacophore of Inhibitor 4; (**B**) Inhibitor 4 bound to the binding site of the 2009 H1N1 neuraminidase.

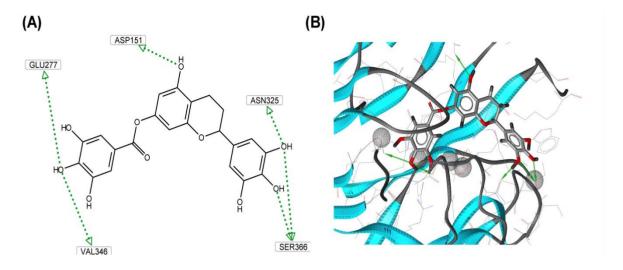

Figure S5. (**A**) Pharmacophore of Inhibitor 5; (**B**) Inhibitor 5 bound to the binding site of the 2009 H1N1 neuraminidase.

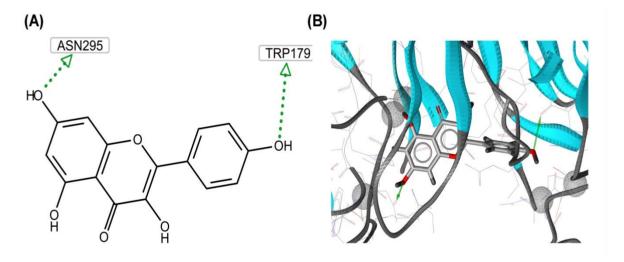

Figure S6. (**A**) Pharmacophore of Inhibitor 6; (**B**) Inhibitor 6 bound to the binding site of the 2009 H1N1 neuraminidase.

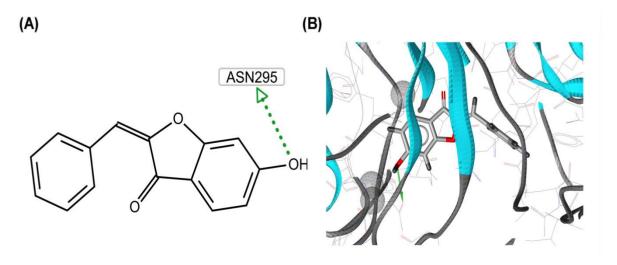

Figure S7. (**A**) Pharmacophore of Inhibitor 7; (**B**) Inhibitor 7 bound to the binding site of the 2009 H1N1 neuraminidase.

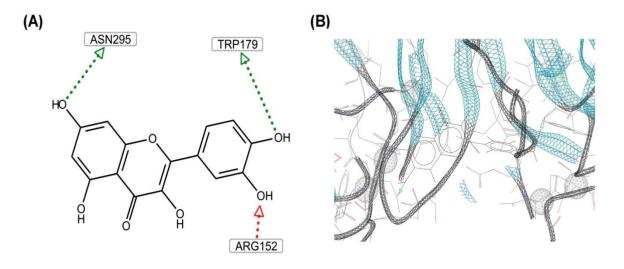

Figure S8. (**A**) Pharmacophore of Inhibitor 8; (**B**) Inhibitor 8 bound to the binding site of the 2009 H1N1 neuraminidase.

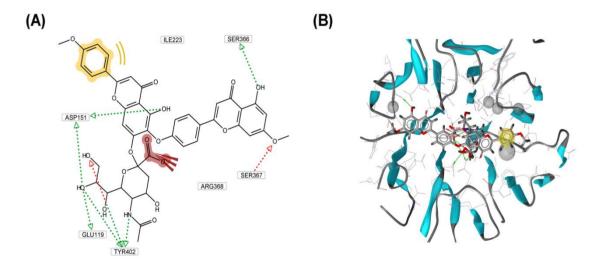

Figure S9. (A) Pharmacophore of Inhibitor 9; (B) Inhibitor 9 bound to the binding site of the 2009 H1N1 neuraminidase.

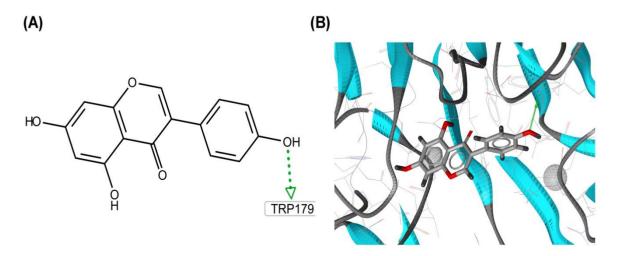

Figure S10. (**A**) Pharmacophore of Inhibitor 10; (**B**) Inhibitor 10 bound to the binding site of the 2009 H1N1 neuraminidase.

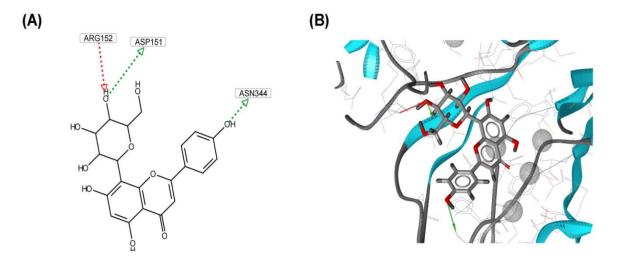

Figure S11. (**A**) Pharmacophore of Inhibitor 11; (**B**) Inhibitor 11 bound to the binding site of the 2009 H1N1 neuraminidase.

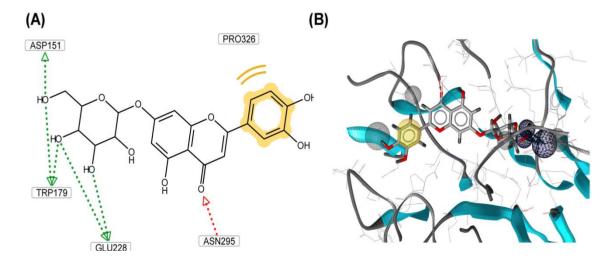

Figure S12. (**A**) Pharmacophore of Inhibitor 12; (**B**) Inhibitor 12 bound to the binding site of the 2009 H1N1 neuraminidase.

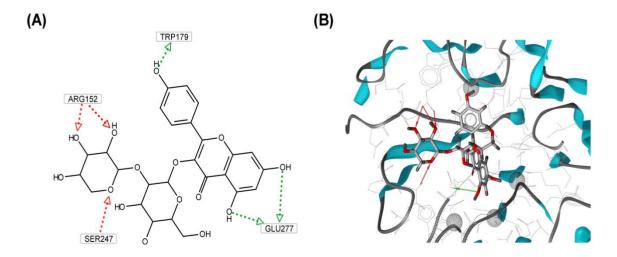

Figure S13. (**A**) Pharmacophore of Inhibitor 13; (**B**) Inhibitor 13 bound to the binding site of the 2009 H1N1 neuraminidase.

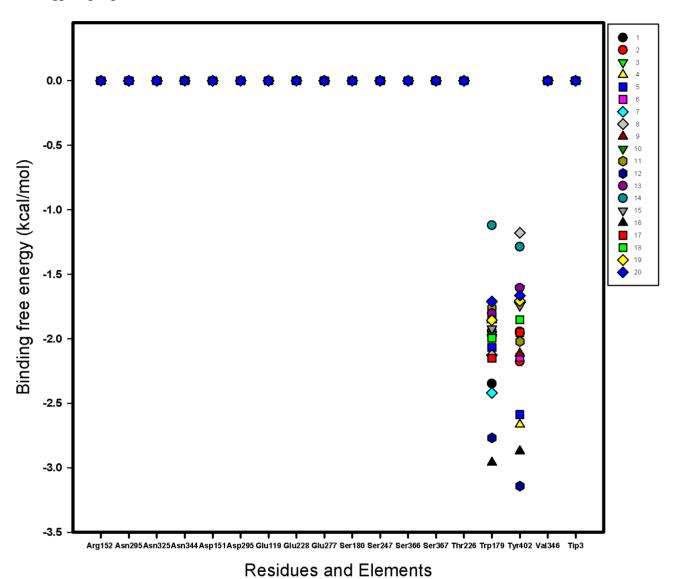

Figure S14. (**A**) Pharmacophore of Inhibitor 14; (**B**) Inhibitor 14 bound to the binding site of the 2009 H1N1 neuraminidase.

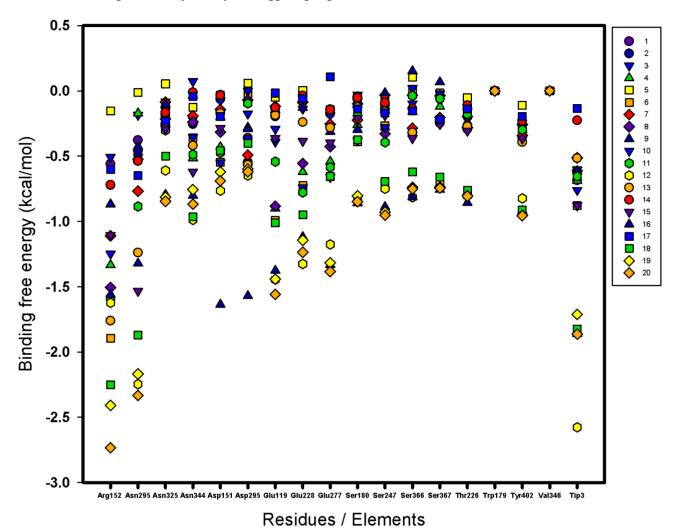

Figure S15. (**A**) Pharmacophore of Inhibitor 15; (**B**) Inhibitor 15 bound to the binding site of the 2009 H1N1 neuraminidase.


Figure S16. (**A**) Pharmacophore of Inhibitor 16; (**B**) Inhibitor 16 bound to the binding site of the 2009 H1N1 neuraminidase.


Figure S17. (**A**) Pharmacophore of Inhibitor 17; (**B**) Inhibitor 17 bound to the binding site of the 2009 H1N1 neuraminidase.


Figure S18. (**A**) Pharmacophore of Inhibitor 18; (**B**) Inhibitor 18 bound to the binding site of the 2009 H1N1 neuraminidase.


Figure S19. (**A**) Pharmacophore of Inhibitor 19; (**B**) Inhibitor 19 bound to the binding site of the 2009 H1N1 neuraminidase.


Figure S20. (**A**) Pharmacophore of Inhibitor 20; (**B**) Inhibitor 20 bound to the binding site of the 2009 H1N1 neuraminidase.

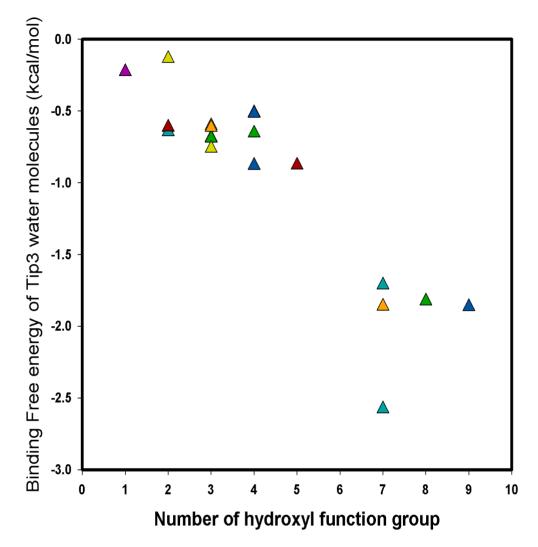

Figure S21. Binding free energies analysis of hydrophobic (aromatic) natures of 20 flavonoids/hydrophobic (aromatic) natures of the important residue regions analyzed by the ligplot program (kcal/mol).

Figure S22. Binding free energies analysis of hydrophilic (–OH, =O, –NH₂ and =NH functional groups) nature of 20 flavonoids/hydrophilic nature of natures of the important residue regions analyzed by the ligplot program (kcal/mol).

Figure S23. Correlation between binding free energies of Tip3 water molecules, and number of –OH and =O functional group of inhibitors.

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).