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Abstract: Peptide deformylases (PDF) behave as monomeric metal cation hydrolases for 

the removal of the N-formyl group (Fo). This is an essential step in the N-terminal Met 

excision (NME) that occurs in these proteins from eukaryotic mitochondria or chloroplasts. 

Although PDFs have been identified and their structure and function have been 

characterized in several herbaceous species, it remains as yet unexplored in poplar. Here, 

we report on the first identification of two genes (PtrPDF1A and PtrPDF1B) respectively 

encoding two putative PDF polypeptides in Populus trichocarpa by genome-wide 

investigation. One of them (XP_002300047.1) encoded by PtrPDF1B (XM_002300011.1) 

was truncated, and then revised into a complete sequence based on its ESTs support with 

high confidence. We document that the two PDF1s of Populus are evolutionarily divergent, 

likely as a result of independent duplicated events. Furthermore, in silico simulations 

demonstrated that PtrPDF1A and PtrPDF1B should act as similar PDF catalytic activities 

to their corresponding PDF orthologs in Arabidopsis. This result would be value of for 
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further assessment of their biological activities in poplar, and further experiments are now 

required to confirm them.  

Keywords: peptide deformylase; N-terminal Met excision; in silico simulation;  

genome-wide investigation; phylogenetic analysis; gene duplication; ghromosome location; 

gene structure display 

 

1. Introduction 

In all organisms, the protein synthesis machinery requires newly synthesized peptides to start 

systematically with methionine (Met) [1]. Approximately two-thirds of mature proteins undergo  

N-terminal Met excision (NME) by Met aminopeptidase (MAP; EC 3.4.11.18), which proteolytically 

removes the N-terminal Met if the residue at position two has a side-chain with a radius of gyration of 

1.29 Å or less [2–5]. However, MAP cannot cleave Met with an N-formyl group (Fo) from eubacteria, 

mitochondria and chloroplasts, where the N-terminal Met moiety must be N-formylated by a 

formyltransferase [5,6]. 

Removal of the Fo is undertaken by peptide deformylase (PDF), and is therefore an essential  

first step in allowing the subsequent NME occurrence in the eukaryotic mitochondria or  

chloroplasts [1,2,7]. Most PDFs are monomeric hydrolases and all contain three signature sequence 

motifs, comprising the active pocket of the enzyme and a metal cation: (i) GψGψAAXQ (motif 1);  

(ii) EGCLS (motif 2) and (iii) HEψDH (motif 3), where ψ is a hydrophobic amino acid [8,9]. The Cys 

of motif 2 and the two His residues of motif 3 stabilize metal ion coordination at the active site of  

PDF [8,9]. PDFs are important for some biological processes such as development of chloroplast in 

rice [10], and cell proliferation in humans [11]. 

Recent studies, together with the release of complete genome sequences for different organisms, 

have led to the identification of PDFs in eukaryotes; two PDFs have been identified in Arabidopsis [8,9], 

three in rice [10] and one in humans [11]. Since these PDFs do not contain the two insertions typical of 

PDF2 molecules, all eukaryotic PDFs are grouped as type 1 (PDF1). In Arabidopsis, the two PDF1s 

form two subclasses: PDF1A that localizes to the mitochondria, and PDF1B that localizes to  

plastids [1,12]. These crystal structures of Arabidopsis PDF1A and PDF1B have been determined, not 

only indicating several similarities to bacterial PDFs and their function activity for the removal of the 

N-formyl group, but also showing several clear differences between AtPDF1A (At1g15390.1) and 

AtPDF1B (At5g14660.1) [8,9].  

Although amount of research efforts have been employed in exploring PDFs structure and function 

for several plant species, such as Arabidopsis [1,8,9,12] and rice [10], such research has not yet been 

directed towards woody trees. In order to identify all genes encoding PDFs and explore their function 

in poplar, we initiate one genome-wide investigation combined with in silico simulations. In this work, 

we identified two genes encoding PDFs across the complete P. trichocarpa genome, and proposed that 

poplar PDFs should possess similar biological activities to their corresponding PDF orthologs in 

Arabidopsis. This result would be valuable towards further assessment of their functional roles  

in poplar. 
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2. Results and Discussion 

2.1. Identification and Characterization of PDF Genes in Populus  

To identify poplar PDF genes and their putative encoded polypeptides occurred in the complete  

P. trichocarpa genome, Hidden Markov Model (HMM) profile file of the PDF domain (PF01327) [13,14] 

was exploited as a query file for a search across the P. trichocarpa protein sequence data [15]. A total 

of two non-redundant putative genes were identified as PDF genes because of their encoding 

polypeptides significantly matched the known PDF domain (Table 1). Furthermore, to calibrate our 

identification of the two PDF genes from JGI poplar database, their encoding proteins were further 

compared by a BLASTP search against NCBI Reference sequence (RefSeq) database, which provides 

a non-redundant and validated collection of sequences representing genomic data, transcripts and 

proteins [16,17]. As a result, the two poplar PDF genes (640630 and 173925) respectively possess 

their individual counterparts of protein and mRNA in NCBI RefSeq database (Table 1), suggesting that 

they should represent correct proteins or genes. Thus, in this endeavor, two PDF1 genes (and their 

corresponding encoding PDF proteins) were identified in total across the P. trichocarpa genome by the 

genome-wide investigation. The P. trichocarpa genome encodes the similar numbers of PDF1 gene 

members as several herbaceous plants, such as Arabidopsis [12] and rice [1], indicating no expansion 

present in poplar PDF gene members. In contrast, the expansion was often present in large number of 

Populus multigene families [15]. The result might reflect the analogous need for PDF activities 

involved in Fo Removal between woody and herbaceous plants.  

Table 1. Characterization and identification of Peptide deformylases (PDF) genes of poplar. 

JGI NO. 
Novel simplified 

nomenclature 

Refseq 

protein ID 

Refseq 

RNA ID (CDS) 
Chromosome Location 

640630 PtrPDF1A XP_002298107.1 XM_002298071.1 LG_I: 9208431-9211542 (+) 

173925 PtrPDF1B XP_002300047.1 XM_002300011.1 LG_I: 21839768-21844235 (−) 

2.2. Revision of Poplar PDF Gene-encoding Proteins  

To provide a simplified nomenclature for each identified protein, the two identified PDFs were 

respectively denominated as PtrPDF1B (XP_002300047.1) and PtrPDF1A (XP_002298107.1) 

according to their individual best hits with their orthologs in Arabidopsis (Figure 1 and Table 1). It is 

noteworthy that the coding sequence (CDS, XM_002300011.1) encoding PtrPDF1B might be 

uncompleted because of its absence of start codon “ATG” and stop codon, which leads to the truncated 

N-terminus and C-terminus of PtrPDF1B proteins. In order to amend it (XM_002300011.1) into 

complete CDS sequence, its corresponding Expressed Sequence Tags (ESTs) were retrieved by a 

BLASTN online search [18]. These 5' and 3' perfectly matched ESTs from NCBI were respectively 

applied for the alignment with 5' and 3' terminus of the CDS sequence (Figure 2a,b). The sequence 

alignment and further comparative analyses clearly demonstrated that upstream of the first three 

nucleotides “CTA” from the transcript (XM_002300011.1) should be extended by the “ATG” 

encoding Met as initiation codon as well as the followed 24 nucleotide acid sequences encoding one 

polypeptide with 8 consecutive amino acids (Figure 2a). Furthermore, downstream of the last three 
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nucleotides “AAA” from the transcript (XM_002300011.1) should be extended by the “TTA” 

encoding Leu as well as the following “TAA” encoding stop codon (Figure 2b). Although the CDS 

(XM_002300011.1) and protein sequence (XP_002300047.1) of PtrPDF1B were obtained from the 

NCBI Reference sequence (RefSeq) database, which provides a non-redundant and validated 

collection of sequences representing genomic data, transcripts and proteins [16,17], they will need to 

be refined since they could represent one truncated transcript or protein. In this endeavor, the truncated 

CDS/transcript of PtrPDF1B were confirmed by ESTs support with high confidence and revised into 

complete CDS sequence, whereas the corresponding full-length protein sequence of PtrPDF1B was 

also obtained, as shown in Figure 2a–c.  

Figure 1. Alignment of the PDF sequences between poplar and Arabidopsis. One complete 

amino acid sequence alignment of the two poplar PDFs with their orthologs in Arabidopsis 

was performed. It was found that they respectively shared the best amino acid sequence 

identities with AtPDF1A (AT1G15390) and AtPDF1B (AtPDF1B). Motifs 1, 2 and 3 are 

indicated as blue frames. White characters in grey boxes indicate strict identity, and black 

characters in white boxes indicate similarity. α, η and β represent α-helix, short 310 helix 

and β-sheets, respectively. (a) Sequence alignment of PtrPDF1A (XP_002298107.1) with 

AtPDF1A of Arabidopsis; (b) Sequence alignment of PtrPDF1B (XP_002300047.1) with 

AtPDF1B of Arabidopsis. Gaps were introduced to insure maximum identity.  
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Figure 2. Revision of PtrPDF1B transcript and its encoding protein from NCBI RefSeq 

database by multiple sequence alignment. (a) Multiple sequence alignment of 5' terminus 

between the original PtrPDF1B transcript, as well as its corresponding genome DNA and 

ESTs; (b) Multiple sequence alignment of 3' terminus between the original PtrPDF1B 

transcript and its corresponding ESTs; (c) Schematic diagram of the revised complete CDS 

of PtrPDF1B and its encoding full-length protein sequence. The amino acid encoded by 

each codon is displayed in the bottom of sequence alignment. Nucleotide acid sequences 

marked with open blue box represents the extended 5' or 3' terminus of PtrPDF1B 

transcript, while amino acid sequences marked with open blue box represents the extended 

N- or C- terminus of PtrPDF1B protein. 

 

2.3. Divergence in Poplar PDF1s 

Divergence in PDF1s that might give rise to be functionally distinct has found in herbaceous plants, 

such as Arabidopsis and rice. To examine whether similar PDF1s divergence occurs in Populus, an 

unrooted tree was constructed by both Neighbor-Joining [19] and Minimum-Evolution methods using 

MEGA 5.0 [20] based on alignments of these full-length PDF proteins sequences (Figure 3a). The tree 

topologies generated by the two methods were comparable without modifications at branches, and 
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supported by their high bootstrap values of >60, suggesting that we constructed a reliable unrooted tree 

topology, in which two distinct clans occur, including PDF1 and PDF2 clans (Figure 3a). Phylogenetic 

analysis demonstrates that PDF1 of Populus is encoded by evolutionarily divergent genes, which is 

consistent with previous reports in Arabidopsis and rice (PDF1A and PDF1B; Figure 3a) [2].  

In addition, divergence occurred between PtrPDF1A and PtrPDF1B. This is supported by an apparent 

difference in their amino acid sequences, especially with one relatively shorter C-terminal sequence in 

PtrPDF1B. Our results indicated that divergence of PDF1 should be extended to Populus as a model 

woody plant, and the divergence might be caused by independent duplicated events. It is worth noting 

that another obvious divergence also exists in PDF1A (plant type PDF1A and animal type PDF1A) 

that the result supports previous phylogenetic analyses (Figure 3a) [2]. 

Figure 3. Phylogenetic analysis and gene structure display of the Populus PDF1 genes  

(a) Phylogenetic analysis of Populus PDF1 genes. Neighbor-joining bootstrap and 

Minimum Evolution values for clans supported above the 60% level were respectively 

indicated above and below the branches in red font. All PDF protein names and their 

individual corresponding ID number for phylogenetic analysis are listed as follows: 

SpnPDF2 (Q9F2F0); EcoPDF1B (P0A6K3); DmePDF1A-1 (Q8INL3); DmePDF1A-2 

(Q9VGY2); HsaPDF1A (Q9HBH1); OsaPDF1B (Q5VNN5); OsaPDF1A (B6RGY0); 

AthPDF1B (Q9FUZ2); AthPDF1A (Q9FV53); PtrPDF1A (XP_002298107.1); PtrPDF1B 

(XP_002300047.1). The blue diamonds are highlighted in the front of all PtrPDF1A and 

PtrPDF1B from Populus. PtrPDF1B* represents the revised PtrPDF1B protein sequence in 

our study; (b) Schematic representation of the intron/exon structure for the Populus PDF1 

genes. Exons and introns of Populus PDF1 genes are represented by green boxes and black 

lines, respectively, and their sizes could be estimated by the scale at the bottom. 

 

The gene structural display could provide us additional information for the evolutionary 

relationship of multi-gene families [21]. To further gain novel insight into the phylogenetic 
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relationship of poplar PDF1 genes, the exon/intron organization was illustrated for individual PDF1 

genes by comparison of the cDNA sequences and their corresponding genomic sequences (Figure 3b). 

As a result, the two evolutionarily divergent PDF1 genes members in poplar exhibited a different 

distribution of exon/intron structure such that PtrPDF1A and PrtPDF1B respectively possessed four 

and six exons in their individual coding regions (Figure 3b). The difference in exon/intron architecture 

of PtrPDF1A and PrtPDF1B might support the divergence in PDF1 genes of poplar from the 

phylogenetic analysis (Figure 3a).  

2.4. Chromosome Location and Duplication of PDF1 Genes in Populus  

In silico mapping of the gene loci showed that both the two PDF genes of PtrPDF1A and 

PtrPDF1B were found on Linkage Group I (LG I), one of the 19 LGs (Table 1 and Figure 4). Previous 

analysis of Populus genome has identified the presence of paralogous segments caused by the  

whole-genome duplication event in the Salicaceae (salicoid duplication), which occurred 65 million 

years ago and significantly contributed to the amplification of many multi-gene families [15]. To 

determine the possible relationship between the PDF1 genes and paralogous segments, the Populus 

PDF1 genes were mapped to the duplicated blocks of P. trichocarpa established in the studies of 

Tuskan and its coworkers [15]. The distribution of PDF1 genes relative to the duplicated blocks is 

illustrated in Figure 4. It was found that PtrPDF1B gene (50%), are represented within duplicated 

blocks, whereas PtrPDF1A are outside these duplicated blocks, suggesting that their occurrence should 

be caused by independent duplication events. The result is surprisingly consistent with the deduction 

from our phylogenetic analysis above. Furthermore, one duplicated pair (PtrPDF1B) harbored PDF1 

genes on only one of the blocks and lack corresponding duplicates, suggesting that dynamic changes 

on the loss event of its corresponding paralogous genes might have occurred following segmental 

duplication (Figure 4). The findings support the result that the most abundant genes losses in 

eukaryotes occur following the whole genome duplication [22]. 

2.5. In Silico Simulation on the Poplar PDFs Reveal Analogous Activities with Their Individual 

Counterparts in Arabidopsis  

The sequence alignment of PtrPDF1A and PtrPDF1B with known PDF sequences from Arabidopsis 

separately revealed high sequence similarity, especially the three conserved function-related regions, 

motif 1, motif 2 and motif 3 (Figure 1a,b). Consequently, PDF activity should be present in the two 

identified PtrPDFs in poplar. However, high sequence homology of the primary structure only partly 

provides evidence for their analogous catalytic activity. The in silico modeling of PtrPDF1A and 

PtrPDF1B were performed to explore the functions of these two proteins. As Figure 5 shows, 

PtrPDF1A consists mainly of helices, β-sheets, turns and random coils (Figure 5c). It is identical to the 

structure of the known AtPDF1A (PDB code 1ZY1) protein [9], especially for the three conserved 

motifs (Figure 5a). However, there are differences in regions not directly related to the function. For 

example, the N-terminal α1-helix region of PtrPDF1A is split into two α-helices by a single turn 

whereas in AtPDF1A this is one continuous α1-helix. A similar situation is also observed between 

PtrPDF1B and AtPDF1B (PDB code 3CPM) [8] (Figure 5b,d). 
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Figure 4. Chromosomal location of the Populus PDF1 genes. Both two genes are mapped 

to the Linkage Groups I (LG I), one of nineteen LGs. Segmental duplicated homologous 

regions in the LG I and LG XVII of Populus obtained from the research of Tuskan and its 

co-workers [15], are shown with the common colors. The duplication blocks containing 

PDF1 genes are connected with lines in shaded colors. Chromosome numbers (LG I and 

XVII) and sizes (Mb) are indicated at the bottom and end of each chromosome. Scale at the 

bottom represents a 10 Mb chromosomal distance.  

 

Figure 5. Ribbons stereo views. (a) Ribbons stereo views of AtPDF1A; (b) Ribbons stereo 

views of AtPDF1A; (c) Ribbons stereo views of PtrPDF1A; (d) Ribbons stereo views of 

PtrPDF1B. The substrate Met-Ala-Ser is represented by a ball and stick model. Zn
2+

 is in 

the purple CPK model. Ribbon colors: helices, β-sheets, turns and random coils are in red, 

cyan, green and white, respectively. 
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As discussed above, the structures of PtrPDF1A and PtrPDF1B are similar to AtPDF1A and 

AtPDF1B, respectively. This conclusion is further supported by the analysis of the electrostatic 

potential surfaces (EPS). It is clear that the active sites of PtrPDF1A and PtrPDF1B are nearly the 

same as those of AtPDF1A and AtPDF1B, respectively (Figure 6). In addition, the binding sites of the 

substrate Met-Ala-Ser within AtPDF1A and PtrPDF1A are close in the structure (Figure 6a,c). The 

interaction energies (Einter) were calculated to be −208.75 and −122.21 kcal mol
−1

, respectively. During 

the ligand binding processes electrostatic effects play a large role, which amounts to 79% and 60% of 

the binding energies, respectively. For AtPDF1B and PtrPDF1B (Figure 6b,d), the energy values were 

−199.31 and −222.30 kcal mol
−1

, respectively. Electrostatic interactions (Eele) rather than van der Waals 

interactions (EvdW) play a dominant role in the ligand binding processes, contributing to almost 79% 

and 85% of the binding energies, respectively. In particular, PtrPDF1A and PtrPDF1B recognize the 

tripeptide Met-Ala-Ser, which is consist with experiments and previous reports [8,9]. The results 

provide a hypothesis that the putative PDFs of poplar should act with PDF catalytic activity and in a 

similar mechanism to their corresponding PDF orthologs in Arabidopsis. This result is important for 

further studying and examining their biological activities. 

Figure 6. Surface electrostatic potential. (a) Surface electrostatic potential of AtPDF1A; (b) 

Surface electrostatic potential of AtPDF1B; (c) Surface electrostatic potential of PtrPDF1A; 

(d) Surface electrostatic potential of PtrPDF1B. The Connolly surfaces of the proteins 

were created using the InsightII 2005 scripts. The electrostatic potential is indicated by the 

color saturation (red for negative and blue for positive). 

 

3. Experimental Section  

3.1. Identification of PDF Genes across Poplar Genome  

The complete protein sequence database was downloaded from Populus trichocarpa v1.1 [23]. 

Hidden Markov Model (HMM) profile file (Pep_deformylase.hmm) of the Pfam PDF domain 
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(PF01327) from the Pfam database [24], was exploited as a query file to identify PDF genes in the 

Populus protein database using the hmmer search command of the HMMER (v 3.0) program, which 

was widely applied for identification of homologues of an interested protein family [14,25]. 

3.2. Revision of Poplar PDF Proteins  

The expressed sequence tags (EST) were retrieved by BLASTN the corresponding transcript/CDS 

from P. trichocarpa v1.1 [23] as query sequence online search against all of the Populus EST 

sequences in NCBI. Matches above 95% identity and over an alignment of at least 100 bp were 

considered as corresponding sequences of the PDF genes. Multiple sequences alignments of these 

sequences with their individual transcript/CDS sequence were performed using ClustalW program in 

BioEdit software under the default parameters settings [26]. Sequence alignments were manually 

adjusted to get maximum matching. 

3.3. Phylogenetic Analysis and Gene Structural Display  

The unrooted phylogenetic trees were constructed using MEGA 5.0 software [20], by both the 

Neighbor-joining method [19] and Maximum Likelihood method with parameters (p-distance and 

completed deletion) based on 11 aligned PDF sequences. The reliability of the phylogenetic tree was 

estimated using bootstrap value with 1000 replicates. Gene structure display server (GSDS) 

program [21] was applied to the illustrate exon/intron organization for individual PDF genes by 

comparison of the cDNA sequences and their corresponding genomic sequences.  

3.4. Chromosomal Location and in Silico Simulation  

The two identified PDF genes were located in the genome of P. trichocarpa using NCBI map 

viewer [27]. Identification of duplicated regions between chromosomes was completed as described in 

Tuskan et al. [15]. 

All the flexible docking simulations were performed with the different modules implemented under 

the InsightII 2005 software package [28] on Linux workstations, using the consistent-valence  

force-field (CVFF). The X-ray crystal structures AtPDF1A (PDB code 1ZY1) [9] and AtPDF1B (PDB 

code 3CPM) [8] were recovered from the RCSB Protein Data Bank and employed to construct the 

structures of PtrPDF1A and PtrPDF1B, applying the workspace in the Swiss Model [29,30]. The two 

protein models were optimized with the conjugated gradient algorithm (Discover 3.0 module). 

Geometry and partial atomic charges of the tripeptide Met-Ala-Ser were conducted throughout  

the Discover 3.0 module by applying the BFGS algorithm [31] with a convergence criterion of  

0.01 kcal·mol
−1

·Å
−1

. As demonstrated by previous results [32,33], the docking simulations were 

performed to explore and understand the interactions of PtrPDF1A and PtrPDF1B with the tripeptide 

Met-Ala-Ser using the general protocols in the InsightII 2005 software packages [32,34]. The 

interaction energies of the substrate with proteins were calculated by the Docking module [34]. More 

details describing the calculation processes can be found elsewhere [32,33]. 
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4. Conclusions  

Removal of the Fo undertaken by PDF is an essential first step of the NME occuring in the 

eukaryotic mitochondria or chloroplasts. Some advances have been made in exploring structure and 

function of PDFs for several plant species, such as Arabidopsis, maize and rice. However, such effort 

has not yet been directed towards poplars as model woody trees. In this work, the above issues are 

addressed using the method of one genome-wide investigation combined with in silico simulations.  

P. trichocarpa genome contains two evolutionarily divergent genes of PtrPDF1A and PtrPDF1B, 

which might be caused by independent duplicated events. Furthermore, PtrPDF1A and PtrPDF1B 

should act with similar PDF catalytic activity to their corresponding PDF orthologs in Arabidopsis. 

These results would be valuable resources for understanding the function of PDFs in poplar, and 

further experiments, based on our results, should be performed in the future.  
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