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Abstract: Tryptophan hydroxylase-1 (TPH1) is a key enzyme in the synthesis of serotonin. 

As a neurotransmitter, serotonin plays important physiological roles both peripherally and 

centrally. In this study, a combination of ligand-based and structure-based methods is used 

to clarify the essential quantitative structure-activity relationship (QSAR) of known TPH1 

inhibitors. A multicomplex-based pharmacophore (MCBP) guided method has been 

suggested to generate a comprehensive pharmacophore of TPH1 kinase based on three 

crystal structures of TPH1-inhibitor complex. This model has been successfully used to 

identify the bioactive conformation and align 32 structurally diverse substituted phenylalanine 

derivatives. The QSAR analyses have been performed on these TPH1 inhibitors based on 

the MCBP guided alignment. These results may provide important information for further 

design and virtual screening of novel TPH1 inhibitors. 
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1. Introduction  

Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter that modulates central 

and peripheral functions through action on platelets, smooth muscles, neurons, and other cell  
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types in the gastrointestinal (GI) tract or in the central nervous system (CNS). The biosynthesis of 

Serotonin is limited by the hydroxylation of tryptophan which is catalyzed by tryptophan hydroxylase 

(TPH). Two vertebrate isoforms of TPH, TPH1 and TPH2, have been described [1–3]. In the GI 

system, TPH1 is primarily expressed and dysregulation of the peripheral 5-HT signaling system is 

involved in the etiology of several conditions such as functional GI disorders, chemotherapy-induced 

emesis, and heart valve damage [4,5]. Therefore, inhibitors of TPH1 have proven effective in treating 

chemotherapy-induced emesis, as well as diarrhea, in carcinoid tumor patients. Some pharmaceutical 

companies are developing candidate drug molecules based on this target for treating dysregulation of 

the serotonergic system, such as irritable bowel syndrome [6]. 

Some research results focused on the physiological function of the gut-derived serotonin show that  

5-HT is a powerful inhibitor of osteoblast proliferation and bone formation [7–9]. Yadav V.K. and  

co-workers reported that inhibitors of gut-derived serotonin synthesis have the potential to become a 

new class of bone anabolic drugs that can be added to the armamentarium to treat osteoporosis [10]. 

Small molecule inhibitors of TPH1 can be considered as a new target to treat osteoporosis and this 

mechanism is different from any known drugs (Estrogen or Bisphosphonates) [11]. Therefore, 

structure-activity relationship (SAR) studies on the known TPH1 inhibitors are very interesting and 

meaningful for discovering new anti-osteoporosis candidate compounds. Recently, a novel series of 

phenylalanine was reported as a kind of selective TPH1 inhibitor [12,13]. However, quantitative 

structure-activity relationship (QSAR) focusing on phenylalanine series compounds as TPH1 

inhibitors have not been reported. In this study, combination of the ligand-based and structure-based 

methods is used to clarify the essential quantitative structure-activity relationship of the known TPH1 

inhibitors. First of all, a multicomplex-based pharmacophore has been generated from a comprehensive 

pharmacophore map of TPH1 based on three crystal structures of TPH1-inhibitor complex. Secondly, a 

multicomplex-based pharmacophore guided alignment procedure is used in the data set, which is 

further exploited in the development of predictive 3D-QSAR models. Finally, reliable CoMFA models 

are developed based on these pharmacophore models [14–16].  

As a part of the ongoing work in our research groups aimed at the search for selective TPH1 

inhibitors, and our recent attempts to explore how to generate more accurate and reasonable structure-based 

pharmacophore models, the combined structure-based and ligand-based drug design strategy is useful 

to gain further insights into the molecular recognition patterns required for TPH1 protein binding, and 

for developing a multicomplex-based pharmacophore model that can be used for virtual screening to 

discover novel potential lead compounds. The multicomplex-based pharmacophore and 3D-QSAR 

models can help us to predict the biological activities of the series compounds with a change in the 

chemical substitutions and to provide some useful references for the design of new TPH1 inhibitors. 

The theoretical results can offer some useful references for the design of new TPH1 inhibitors as  

anti-osteoporosis drugs. 
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2. Computational Methods 

2.1. Generation of Multicomplex-Based Pharmacophore Models 

A set of 3 crystal structures of TPH1 in complex with diverse ligands (Table 1) was obtained from 

the Protein Data Bank (PDB) [17]. Water molecules in ligand-binding sites have been reported to play 

a crucial role in mediating the interactions between TPH1 and its ligands, and they can provide useful 

information for the process of pharmacophore construction. Therefore, all the water molecules in the 

crystal structures were retained. The coordinates of 3 TPH1-ligand X-ray crystal structures were 

transformed into a common reference frame by using “Multiple Structure Alignment” module within 

Discovery Studio (DS). 

Table 1. Analyses of critical amino acids for TPH1 inhibition from three co-crystal 

structures deposited in the Protein Data Bank (PDB). 

 3HF6 3HF8 3HFB 

Resolution 1.80Å 1.85 Å 1.92 Å 
Ligand LXO MLO ML4 

Release date 2009-11-24 2010-04-21 2010-04-21 
Interception residue    

 Tyr235 Try235 Arg257 
 - Leu236 - 
 Arg257 Arg257 - 
 Tyr264 Tyr264 Tyr264 
 Thr265 Pro265 Pro265 
 Pro266 - - 
 Glu267 Pro267 - 
 Pro268 Pro268 - 
 His272 His272 His272 
 - - Glu306 
 Phe313 Phe313 - 
 Glu317 Glu317 Glu317 
 Ser336 Ser336 Ser336 
 - - Ser337 
 - Cys364 Cys364 

Pharmacophore model features    
Neg 1 √ √ √ 

Donor 1 √ √ √ 
Donor 2 √ √ √ 
Donor 3  √ √ 

Acceptor 1 √  √ 
HP 1 √ √ √ 
HP 2 √ √ √ 
HP 3 √ √ √ 
HP 4  √  
HP 5  √  
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The complex of TPH1 with the docked conformation of compound 12 was used as the starting 

structure for the generation of the pharmacophore model in the present study. The software 

Ligandscout 1.03 was applied for the detection and interpretation of crucial interaction patterns 

between TPH1 and compound 12 [18]. Ligandscout extracts and interprets the ligand and the 

macromolecular environment from the PDB file, then automatically creates and visualizes an advanced 

pharmacophore model. The pharmacophore model was exported as a hypoedit script and converted 

into the Discovery Studio format with the Hypoedit tool [19]. Subsequently, the pharmacophore model 

was used for mapping all of the molecules. 

2.2. Data Set and Molecular Sketching 

Except for some compounds with no activity or unclear activity, 26 phenylalanine compounds from 

references are selected as the training set [12,13], among which 6 compounds are randomly chosen as 

the testing set (the testing set is marked by *). According to research practice, all original IC50 values 

(μmol/L) were converted to negative logarithm of IC50 (pIC50) and used as dependent variable in our 

3D-QSAR study. The structure of these compounds and their activity values are listed in Table 2.  

Table 2. Results of the CoMFA analysis. 

PLS Statistics S E S.E. 

rcv
2 0.467 0.359 0.570 

N 6 3 6 

r2 0.914 0.816 0.986 

SEE 0.128 0.236 0.098 

F-value 180.43 50.10 309.77 

rpred
2   0.672 

Field Contribution (%)    

Steric   0.829 

Electrostatic   0.171 

Among all the compounds in the data set, compound 12 was selected as the template to construct other 

compounds because of its high biological activity and representative chemical structure, and the computation 

was completed by SYBYL 6.9 program package (Tripos) on a PC workstation [20]. Except for some special 

notes, default values were chosen. The calculation can be defined as follows: after the construction of 

molecules, hydrogen and Gasteiger-Hückel charges were added to the compounds. Then their geometries 

were optimized by the conjugate gradient method in TRIPOS force field. The energy convergence criterion is 

0.001 kcal/mol. 

2.3. Conformational Model Analysis and Alignment Rule 

For the training and test sets molecules, conformational models representing their available 

conformational space were calculated. All molecules were subjected to Diverse Conformation 

Generation protocol to produce a maximum of 255 conformations within 20 kcal/mol in energy from 

the global minimization. All other parameters used were kept at their default settings.  
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In the 3D-QSAR studies, alignment rule and biological conformation selection are two important 

factors to construct reliable models. All the molecules in the training and test sets were mapped 

simultaneously onto the pharmacophore model using “flexible” fitting method and “best mapping 

only” option in the Ligand Pharmacophore Mapping protocol. The conformation with highest fit value  

(i.e., best fitting the pharmacophore) was assumed as the bioactive conformation for each compound. 

The final aligned molecules were exported to SYBYL for CoMFA analysis. 

2.4. CoMFA Study 

The 3D-QSAR studies (CoMFA and CoMSIA) were done on a PC workstation using SYBYL 6.9 

software. The superimposed molecules were kept in a 3D grid (spacing set at 2 Å), then steric and 

electrostatic fields were calculated at various grid points using Lennard-Jonnes and Coulombic 

potentials, respectively, for CoMFA studies. A sp3 carbon atom having a charge of +1 and a radius of 

1.52 Å was used as a probe to calculate various steric and electrostatic fields for all three of the 

alignments. Various steric and electrostatic cutoffs and grid spacings were tried to investigate the 

influence of different parameter settings on CoMFA. 

2.5. Partial Least Square Analysis (PLS) and Model Validation 

Partial least squares (PLS) [21] methodology was used for all the 3D-QSAR analyses. The  

cross-validation [22] analysis was performed using leave-one-out (LOO) method in which one 

compound was removed from the dataset, and its activity was predicted using the model derived from 

the rest of the dataset. The cross-validated r2 that resulted in the optimum number of components and 

lowest standard error of prediction were considered for further analysis. To speed up the analysis and 

reduce noise, a minimum filter value of 2.00 kcal/mol was used. Final analysis was performed to 

calculate conventional r2 using the optimum number of components obtained from the cross-validation 

analysis. CoMFA standard scaling was applied to all of the CoMFA analysis. 

The predictive power of the 3D-QSAR models were determined from external test sets that were 

excluded during model development. The inhibitors in the test sets were given exactly the same 

pretreatment as the inhibitors in the corresponding training sets. The correlation between the 

experimental and predicted activity for all models was calculated as a predictive r2 value. 

3. Results and Discussion 

3.1. Generation and Validation of Multicomplex-Based Phamacophore 

Three X-ray crystallography structures of TPH1 in complex with small molecular inhibitors  

were used to construct the pharmacophore. Results of molecular superposition from the result based on 

Modeller [23] are reported below (Figure 1). The detected pharmacophore features as well as their 

statistical frequency, which measures how many complexes a given pharmacophore feature can be found 

in, are showed in Table 1. One can see that there were 10 pharmacophore features, including 1 hydrogen 

bond acceptor (A1), 3 hydrogen bond donors (D1–D3) and 5 hydrophobic features (H1–H5) and  

1 negative ionizable point. In the 10 detected pharmacophore features, 7 features (A1, D1, D2, H1, H2, 

H3 and Neg1) were found to be common in the 3 complexes. It is believed that the pharmacophore 



Int. J. Mol. Sci. 2012, 13 5353 

 

 

features, which present in the complexes with a high probability, were likely to be more important than 

features that exhibit a low probability. For a full pharmacophore map, it was also important to include 

excluded volume features, which reflected potential steric restriction and corresponded to the positions 

that were inaccessible to any potential ligand. The comprehensive pharmacophore map and the ligand 

binding conformation at the ATP site of TPH1 is shown in Figure 2. The comprehensive pharmacophore 

map initially obtained was too restrictive and not suitable for the virtual screening since it contained a 

large number of chemical features and the fit of a molecule to such a pharmacophore was still out of 

reach for today’s state-of-the-art computational tools. A correctly reduced pharmacophore model would 

be much preferred in terms of practical application [24]. According to our experience, the top ranked 

seven features (A1, D1, D2, H1, H2, H3 and Neg1) would be more appropriate in practice, and 

consequently they were selected from the comprehensive pharmacophore map and were merged to 

generate a multicomplex-based phamacophore (Figures 3 and 4). The difference of the chemical feature in 

this position between the ligand-based pharmacophore model and multicomplex-based pharmacophore 

was mainly due to the distinct methodologies that have been employed. In LigandScout, the 

pharmacophore feature was added to the model only if a reasonable interaction pattern between the 

ligand and the receptor was found. In contrast, the pharmacophore hypothesis generated in Catalyst 

merely includes ligand information. 

Figure 1. Superimposition of three TPH1 proteins. 

 

Figure 2. Specific regions of the ATP binding pocket of TPH1. 
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Figure 3. LigandScout pharmacophore model generated from compound 12-TPH1 

complex (red arrows, hydrogen bond acceptor (HBA); greens arrow, hydrogen bond donor 

(HBD); yellow spheres, hydrophobic sites; gray spheres, excluded volumes). 

 

Figure 4. The mapping of multicomplex-based pharmcophore and the best mapping 

conformation (red bars) and the bound conformation (black bars) for the ligand 12 to TPH1 

are superimposed on the pharmacophore model. Screenshots were taken from Discovery 

Studio. Features of the pharmacophore models are color-coded as follows: hydrogen bond 

acceptor (HBA), green; hydrogen bond donor (HBD), violet; hydrophobic (HY), light blue.  

 

A reliable pharmacophore model may be used to determine the bioactive conformations of the 

ligands that share the same binding mode. The conformation selected for each compound, assumed as 

the bioactive conformation, corresponds to the conformation which best fits the pharmacophore. To 

verify whether the pharmacophore model finds the correct bioactive conformation, we applied the 

method to a substituted 3-(5-(pyrazine-2-yl)-phenyl)-2-aminopropanoic acid inhibitor (compound 12), 

whose bioactive conformation is known from co-crystal structure of TPH1 and the binding mode is 

similar to the other derivatives. Thus, the X-ray crystal structure of TPH1 kinase (PDB code: 3HFB) 

was selected from the Protein Data Bank. The bound conformation of this inhibitor was respectively 

mapped onto the pharmacophore model using “flexible” fitting method and “best mapping only” option 

in the Ligand Pharmacophore Mapping protocol and was meanwhile superimposed to the best mapping 

conformations (Figure 4). The Root-mean-square deviation (RMSD) value between the heavy atom 
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positions of the bound and the best mapping conformation was 0.45 Å. The result showed that the 

pharmacophore model is capable of reproducing the bioactive conformation from the Protein Data 

Bank and supported our choice for the bioactive conformation obtained from the best mapping 

conformation of the calculated ensemble to the alignment in 3D-QSAR analysis, rather than the 

commonly used energy minimization method. 

3.2. Alignment of Molecules in the Training and Test Sets 

One of the most fundamental problems when trying to develop a good and predictive 3D-QSAR 

model, is how to align the investigated compounds. This becomes especially critical when one is 

dealing with a set of structurally flexible and diverse compounds [25]. A pharmacophore model also 

constitutes a useful tool to guide the alignment of compounds in 3D-QSAR study. Compared with the 

scaffold alignment based on the atom RMS fitting, which is commonly used in 3D-QSAR study, the 

pharmacophore-based alignment approach is more advantageous in aligning flexible and diverse 

molecules [26]. Figure 5 shows an alignment of all molecules in the training and test sets by the 

pharmacophore model. It seemed that the alignment was good when the bioactive conformations were 

automatically aligned to the pharmacophore model. The amino group and one of the nitrogen atoms in 

heterocyclic moiety superimpose or locate near hydrogen bonds features in hinge to force all 

compounds to take similar space orientations, which represents that the urea moiety could access the 

back hydrophobic pocket adjacent to the ATP binding site. For these compounds with good inhibitory 

activities, they can produce good fits with all features in the pharmacophore model. While for those 

compounds with poor inhibitory activity, they can only produce relatively good fits with one feature missed.  

Figure 5. Molecular alignments used in the present study, obtained from the pharmacophore 

model alignment. 

 

3.3. CoMFA Models 

All of the CoMFA models were developed from the training set of 26 inhibitors and the test set of  

6 inhibitors using MCBP alignments, and the results of the CoMFA analyses are presented in Table 2. 
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The statistical information and quality of 3D-QSAR models based on two different alignments have 

been compared, as the alignment of the molecules is the most crucial step in the development of the 

3D-QSAR models using CoMFA. The 3D-QSAR models with a rcv
2 value >0.3 are considered 

significant, although a rcv
2 value >0.4 is preferred [27]. Among all models generated using two 

alignments, the best model was the CoMFA model with MCBP alignment, having a rcv
2 value of 0.57.  

The CoMFA models were built after model development and validation based on the internal 

predictions of the training set and the external predictions of the test set. PLS analyses of the  

TPH1 inhibitor training sets showed a high cross-validated rcv
2 value of 0.57 using six principal 

components and non-cross-validated r2 value of 0.986. All of the parameters of these CoMFA models 

showed certain reliability and feasible predictability to help us design new and high selectivity  

TPH1 inhibitors. From Table 3 we can see that almost all compounds in the test set yielded a good 

predicted pIC50 within 1 log unit of the experimental value. The PLS analysis results obtained from 

structurally diverse TPH1 inhibitors were similar which further strengthens the robustness of the 

multicomplex-based phamacophore guided alignment. This might be due to the fact that the 

multicomplex-based phamacophore considered a large number of interactions between the TPH1 

protein and the small molecular inhibitors at the ATP active sites. The Aurora-A inhibitory activity 

(pIC50) and the residual values for the training set and the test set compounds used for the best CoMFA 

model are given in Table 3. The graphical plot of observed vs. calculated TPH1 inhibitory activity for 

both the training set as well as the test set is shown in Figure 6. 

Table 3. Structures and pIC50 values (experimental and predicted) and residuals of the 

training set and test set compounds. 

NH2

OH

O

X
R Ar

 

Compound Ar X R IC50 pIC50 CoMFA pred Residue

1 
 

NH 
 

0.24 6.62 6.81 −0.19 

2 * 
 

NH 
 

0.96 6.02 5.82 0.2 

3 
 

NH 0.11 6.96 6.94 0.02 

4 
 

NH 
 

6.15 5.21 5.61 −0.4 

5 
 

NH 0.19 6.72 6.85 −0.13 

6 
 

NH 
 

0.046 7.34 7.59 −0.25 
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Table 3. Cont. 

Compound Ar X R IC50 pIC50 CoMFA pred residue

7 
 

NH 
 

0.013 7.89 7.91 −0.02 

8 
 

NH 0.045 7.35 7.73 −0.38 

9 * 
 

NH 0.031 7.51 7.55 −0.04 

10 
 

NH 0.069 7.16 7.14 0.02 

11 
 

NH 0.044 7.36 7.47 −0.11 

12 
 

NH 0.04 7.40 7.66 −0.26 

13 

N

N N

NH2  

NH 

 

0.026 7.59 7.40 0.19 

14 * 

N

N N

NH2  

NH 
 

0.024 7.62 7.63 −0.01 

15 

N

N N

NH2  

NH N 0.024 7.62 7.47 0.15 

16 N N

NH2  

NH 0.032 7.49 7.53 −0.04 

17 N N

NH2  

O 0.38 6.42 6.89 −0.47 

18 * 
 

NH 0.97 6.01 5.92 0.09 
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Table 3. Cont. 

Compound Ar X R IC50 pIC50 CoMFA pred residue

19 N N

N

NH2  

NH 
 

0.5 6.30 6.36 −0.06 

20 

 

NH 
 

0.12 6.92 7.09 −0.17 

21 * 

 

NH 
 

0.1 7.00 6.81 0.19 

22 

 

NH 
 

0.12 6.92 6.63 0.29 

23 

 

NH 0.06 7.22 7.20 0.02 

24 

 

NH 0.007 8.15 8.03 0.12 

25 

 

NH 0.038 7.42 7.52 −0.1 

26 

 

NH 0.15 6.82 6.51 0.31 

27 * 

 

NH 0.014 7.85 7.81 0.04 

28 

 

NH 0.16 6.80 7.02 −0.22 

29 

 

NH 

 

0.044 7.36 8.13 −0.77 
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Table 3. Cont. 

Compound Ar X R IC50 pIC50 CoMFA pred residue

30 N N

N

NH2  

NH 

 

0.055 7.26 7.41 −0.15 

31 

 

NMe 

 

0.05 7.30 6.94 0.36 

32 

N N

N

N

O  

NH 
 

15.6 4.81 5.68 −0.87 

* The compounds of the test set. 

Figure 6. Graph of experimental values vs. predicted values for the training and test  

set compounds. 

 

3.4. Graphical Interpretation of the CoMFA Results 

The contour maps of CoMFA denoted the region in the space where the aligned molecules would 

favorably or unfavorably interact with the receptor where the presence of a group with a particular 

physicochemical activity bound to the receptor. The CoMFA results were graphically interpreted by 

field contribution maps using the “STDEV*COEFF” field type. 

Figure 7 showed the contour maps derived from the CoMFA model. The more potent analogue, 

compound 27 was embedded in the maps to demonstrate its affinity for the steric and electrostatic 

regions of inhibitors. The areas of yellow indicate regions of steric hindrance to activity, while green 

areas indicated a steric contribution to potency. The blue regions indicated positive electrostatic charge 

potential associated with increased activity, while regions of red show negative charge with increased 

activity. All of the contours represented the default 80 and 20% level contributions for favored and 

disfavored regions, respectively. 
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Figure 7. Contour maps of the multicomplex-based pharmacophore guided CoMFA 

models. (a) Electrostatic fields of CoMFA model with compound 27: Blue contours 

indicate regions where electropositive groups increase activity, while red contours indicate 

regions where electronegative groups increase activity; (b) Steric fields of CoMFA model 

with compound 27: Green contours indicate regions where bulky groups increase activity, 

while yellow contours indicate regions where bulky groups decrease activity.  

 

Figure 7a–d showed that the different physicochemical fields properties contours were mainly 

distributed within the region surrounding the substitute aromatic ring unit and near the region enclosed 

by the carboxyl group of the 2-aminopropanoic acid group of the reference inhibitor. This suggested 

that these functional groups tuned the affinity of each ligand. To the electrostatic properties, the  

blue contour presented in the 1 and 4 position of the 1,2,4-triazin ring in the map suggested that 

positive electrostatic charge groups, e.g., the more positive charged nitrogen may favor enhanced 

affinity between TPH1 and its inhibitors (Figure 7a), for example, compounds 13 to 17 bearing a  

4-amino-1,2,4-triazin ring have higher inhibitory activity than compounds 1 to 12 bearing a pyrazin 

ring. The green and yellow contour for the steric properties derived from the CoMFA studies indicated 

moderate steric interaction of the R group would benefit the inhibitor for increasing the activity with 

the TPH1 receptor (Figure 7b), for example, compound 7 with a naphthalene ring has higher inhibitory 

activity than compound 1 bearing a cyclo-hexane ring and 11 bearing a biphenyl group. The 

contributions from the steric and electrostatic fields for the present models were 0.829/0.171 (Table 2), 

respectively. Such contributions of field indicated that the variations in binding affinity among these 

inhibitors were dominated by steric interactions but distributed in different proportions across the 

binding sites of the TPH1 kinase. This factor could be applied to design highly potent and selective 

TPH1 inhibitors. 

4. Conclusion  

In conclusion, we utilized 3 crystal structures of human TPH1 bound to small molecular inhibitors 

to generate a multicomplex-based pharmacophore. The multicomplex-based pharmacophore was used 

to compare three previously reported ligand-based pharmacophore models. It has been validated that 

the multicomplex-based pharmacophore model was capable of predicting the bioactive conformations 

and molecular alignments of a wide variety of TPH1 inhibitors in the structurally diverse datasets. 

The work conducted here has provided an approach to generate a multicomplex-based 

pharmacophore guided 3D-QSAR model based on a set of crystal structures of protein-ligand 

complexes and structurally diverse inhibitors. The multicomplex-based pharmacophore guided  
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3D-QSAR model can be used to further optimize and design more potent TPH1 inhibitors and to 

evaluate the newly engineered compounds in de novo design. The studies suggest that in the 

development of 3D-QSAR models, the multicomplex-based pharmacophore guided alignment could be 

useful for getting the robust predictive models which may provide useful information required for a 

proper understanding of the important structural and physicochemical features for designing novel 

selective kinase inhibitors comprising novel scaffolds leading to the candidate molecules, such as  

anti-osteoporosis agents for drug development. It is expected that the information provided here will be 

helpful for the study toward more accurate pharmacophore- based 3D-QSAR modeling. 
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