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Abstract: Heat shock proteins (HSPs) play various stress-protective roles in plants. In this 

study, three HSP genes were isolated from a suppression subtractive hybridization (SSH) 

cDNA library of Ginkgo biloba leaves treated with cold stress. Based on the molecular 

weight, the three genes were designated GbHSP16.8, GbHSP17 and GbHSP70. The full 

length of the three genes were predicted to encode three polypeptide chains containing  

149 amino acids (Aa), 152 Aa, and 657 Aa, and their corresponding molecular weights 

were predicted as follows: 16.67 kDa, 17.39 kDa, and 71.81 kDa respectively. The three 

genes exhibited distinctive expression patterns in different organs or development stages. 

GbHSP16.8 and GbHSP70 showed high expression levels in leaves and a low level in 

gynoecia, GbHSP17 showed a higher transcription in stamens and lower level in fruit.  

This result indicates that GbHSP16.8 and GbHSP70 may play important roles in Ginkgo 

leaf development and photosynthesis, and GbHSP17 may play a positive role in pollen 

maturation. All three GbHSPs were up-regulated under cold stress, whereas extreme heat 

stress only caused up-regulation of GbHSP70, UV-B treatment resulted in up-regulation  

of GbHSP16.8 and GbHSP17, wounding treatment resulted in up-regulation of  
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GbHSP16.8 and GbHSP70, and abscisic acid (ABA) treatment caused up-regulation of 

GbHSP70 primarily. 
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1. Introduction 

Heat shock protein (HSP) is a type of specific stress protein produced by living organisms in 

response to high temperatures and other environmental stresses. Abundant HSP expression could 

remarkably improve the survivability and endurance of cells to environmental stress or damage [1]. 

HSPs can be classified into five families based on molecular weight, namely, HSP100, HSP90, HSP70, 

HSP60, and small molecule sHSP [2]. 

Previous studies had shown that the accumulation of HSPs plays a pivotal role in abiotic stress 

responses in plants [3–5]. Most HSPs function as molecular chaperones in maintaining homeostasis of 

protein folding and are thought to be responsible for the acquisition of thermo tolerance [6]. Aside 

from high temperature, low temperature [7], drought stress [8], heavy metal ions [9], high salinity [10], 

anaerobic environments [11], diseases and pests [12], ultraviolet light [13], superoxide ions [14,15], 

mechanical injury, SA [16,17] and abscisic acid (ABA) treatment [5] can all induce HSP generation. 

Moreover, HSPs were shown to be involved in many steps of cell apoptosis [18,19]; the protective 

effects of the chaperone machinery, in which different HSPs or chaperones acted cooperatively [2].  

In the absence of environmental stresses, the expressions of some HSPs were shown to be 

developmentally [20] or tissue-specifically regulated [5]. Transgenic plants overexpressing HSP genes 

exhibited improved tolerance to heat, cold stress and drought stress [21–23]. 

Currently, Ginkgo biloba is one of the most popular functional plants, particularly as a medicinal 

plant. Extracts of G. biloba leaves contained active compounds such as flavonoids and terpene lactones 

(ginkgolides and bilobalide), which may induce an increase in peripheral and cerebral blood flow [24,25]. 

Ginkgo has important economic and medicinal values, and its plantation scope is expanding gradually. 

The extreme temperature in G. biloba’s natural habitat does not exceed 40 °C or fall below 4 °C, 

which affects its regional expansion. G. biloba has survived all kinds of complex climatic 

environments for millions of years; it has shown strong adaptability and has changed little in 

morphology. The survival of G. biloba is more or less related to its strong tolerance to environmental 

stresses [26]. In this study we isolated three novel HSP genes after cold treatment of Ginkgo leaves. 

Expression analysis indicated that the selected Ginkgo biloba heat shock protein genes from low 

temperature seedling could be induced by heat stress and other abiotic stress. A study of the cloning 

and expression of the heat shock protein genes in G. biloba will help reveal the coping mechanism of 

this plant to the environment and the physiological mechanism of resistance. In addition, it can provide 

the theoretical foundation and gene resources for cultivating resilient forests using gene engineering. 
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2. Results and Discussion 

2.1. Results 

2.1.1. Cloning and Sequence Analyses of Three Genes Encoding Heat Shock Protein from  

Ginkgo biloba 

To investigate the molecular events of Ginkgo development and environments, two cDNA libraries 

were constructed using mRNAs isolated from Ginkgo leaves after cold shock treatment or in normal 

growing conditions. Three ESTs (expressed sequence tag) were isolated from the cold-treated cDNA 

library and the full-length cDNA was obtained by RACE. Sequencing revealed that the full length of 

the three HSP genes were 905 bp, 623 bp, and 2408 bp (Figure S1), respectively. According to their 

approximate molecular weight, the three GbHSPs studied in this work were named GbHSP16.8, 

GbHSP17, GbHSP70. The ORFs of the full length GbHSP16.8, GbHSP17, and GbHSP70 were 450, 

459, and 1974 bp, respectively. Three polypeptide chains containing 149 amino acids (Aa), 152 Aa, 

and 657 Aa were respectively encoded and their corresponding molecular weights were predicted as 

follows: 16.67 kDa, 17.39 kDa, and 71.81 kDa. The pIs were predicted as: 6.55, 5.83, 5.12, 

respectively. The three HSPs exhibited a high similarity with the amino acids of other HSPs (Figure 1). 

The comparison of BLASTP results in NCBI showed that GbHSP70 had more than 93.1% similarity 

with HSP70 of Populus trichocarpa (EEE71404), 91.9% similarity with Glycine max (XP3521330) 

and 91.4% similarity with Spinacia oleracea (AAB88132); The amino acid sequence of the 

GbHSP16.8 shared 78.5% identity with Picea glauca (AAB01561), 75.8% with Picea sitchensis 

(ACN40780), 75.2% with Arachis hypogaea (ACF74271), 72.3% with Prunus salicina (ACV93250), 

68.9% with Carica papaya (AAP73794), 60.5% with Triticum aestivum (AAK51797), 53.8% with 

Arabidopsis thaliana (CAA61675); The GbHSP17 shared 72.8% homology with Agave tequilana 

(ABF61868), 71.1% with Arabidopsis thaliana (AAM67156) and Medicago truncatula (AES90474), 

70.9% with Picea sitchensis (ABK21289), 68.4% with Capsicum frutescens (AAQ19680) and 

Nicotiana tabacum (ADK36668), 67.8% with Carica papaya (AAR25848), 65.1% with  

Gossypium hirsutum (ABW89468). 

An alignment of the deduced protein sequence of GbHSP16.8 and GbHSP17 with other plant 

cytosolic class I and class II sHSPs are shown in Figure 1a,b. Comparison with other plant sHSPs 

representing the two cytoplasmic subfamilies revealed that GbHSP17 cDNAs coded for cytoplasmic 

class I sHSP subfamily members, GbHSP16.8 for class II. As shown in Figure 2, within each class 

there was more similarity to proteins of other organisms belonging to the same class than to proteins of 

the other class. The sequence of the N-terminal domain of plant cytosolic class II sHSP was divergent, 

which may partially account for their functional multiplicity among different plant species. By contrast, all 

plant cytosolic sHSP share a conserved C-terminal domain of about 90 Aa called ACD or heat shock 

domain, which can be further divided into two subdomains, Consensus I Pro-A(14)-Gly-Val-Leu  

and Consensus II Pro-A(14)-Val/Leu/Ile-Val/Leu/Ile of the carboxyl terminal. A putative nuclear 

localization signal (RKR) and a polyproline motif (PPPEPKKP) are only found at the C-terminal  

of GbHSP16.8. 
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The secondary structure of HSP70 has α-helical segments, immediately followed by a β-sandwich 

subdomain. The C-terminal 10-kDa subdomain is α-helical while the other subdomains are β-sheets. 

Two regions are mutually dependent. The structure of the β-sandwich is consistent with the β-bridge at 

the N-end. A detailed analysis of the ATPase domain (nucleotide binding domain, NBD) and  

polypeptide-binding (substrate binding domain, SBD) [27] demonstrated that the side chains of amino 

acids critical for protein functions have conserved positions (Figure 2c). In particular, within the  

N-terminal NBD, the HLGGED motif in positions 234–239, critical for ATP/ADP binding, is  

conserved [28]. The same holds true for residues V415, M416, L419, I420, A496 and D498 and the 

motif IEKMVHDAEKY (521–531) within the C-terminal SBD, critical for peptide binding [29]. 

Furthermore, within the N-terminal, the EEVD motif in positions 654–657 is the signature cytosolic 

HSP70-specific motif [30]. 

Figure 1. Protein sequence alignment of Ginkgo heat shock protein (HSP) with other HSPs. 

Two consensus regions are underlined and a putative nuclear localization signal is 

indicated by asterisks. A polyproline motif at the carboxyl end of proteins is boxed. 

Following the aligned sequences is the accession numbers and homology percentage.  

(a) HSP 16.8; (b) HSP 17, (c) HSP 70. 

 

(a) 

 

(b) 
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Figure 1. Cont. 

 
(c) 

To classify the three GbHSPs, we generated a phylogenetic tree using Molecular Evolutionary 

Genetics Analysis (MEGA) Version 4.0 by the neighbor-joining method (Figure 2). Phylogenetic analysis 

and amino acid sequence alignment indicated that the Aa sequence of GbHSP16.8 and GbHSP17 has 

high homology with the cytoplasmic II sHSPs of other plants. As shown in Figure 3, based on the amino 

acid sequence homology, the three GbHSPs genes were divided into three classes. GbHSP70 belonged 

to HSP70 family while GbHSP16.8 and GbHSP17 belonged to two cytoplasmic sHSP subfamilies. 
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Figure 2. Gene tree of the three Ginkgo biloba HSPs. Gene trees were constructed using 

the software Molecular Evolutionary Genetics Analysis (MEGA) Version 4.0 by the 

neighbor-joining method with pairwise deletion and the poisson correction model. 

Bootstrap support values for each node are shown (percentage of bootstrap trees supporting 

the node, out of 1000 trees). Accession numbers for all sequences are as listed here. Hsp16.8 

family: Arabidopsis thaliana CAA61675, Arachis hypogaea ACF74271, Carica papaya 

AAP73794, Citrus unshiu BAK61844, Picea glauca AAB01561, Picea sitchensis 

ACN40780, Picea sitchensis(2) ABK26390, Prunus salicina ACV93250, Triticum aestivum 

AAK51797, Ipomoea nil AAB39335, Vitis vinifera XP 2280485, Agave tequilana 

ABF61870, Funaria hygrometrica CAC81966, Ricinus communis, XP 2516106; HSP17 

family: Agave tequilana ABF61868, Arabidopsis thaliana AAM67156, Capsicum frutescens 

AAQ19680, Carica papaya AAR25848, Gossypium hirsutum ABW89468, Medicago 

truncatula AES90474, Medicago truncatula(2) AES75921, Nicotiana tabacum ADK36668, 

Picea sitchensis ABK21289, Populus trichocarpa EEE89499, Prunus persica AAR99375, 

Prunus salicina, ACV93249 , Pseudotsuga menziesii CAA63570; HSP70 family: 

Brachypodium distachyon XP 3558228, Hordeum vulgare BAJ86014, Populus trichocarpa 

EEE71403, Populus trichocarpa EEE71404, Camellia sinensis ACD93209, Picea sitchensis 

ABR18415, Nicotiana tabacum AAR17080, Vigna radiata AAS57912, Glycine max  

XP 3521330, Petunia hybrida CAA30018, Cyclamen persicum ABP35942, Spinacia oleracea 

AAB88132, Vitis vinifera CAN81694, Cucurbita maxima AAN86274, Gossypium hirsutum 

ACJ11741, Ricinus communis EEF34649. 
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2.1.2. Expression Analysis of Three GbHSPs Genes in Different Tissues 

The expression of the three GbHSPs genes was analyzed using QRT-PCR. The three GbHSPs genes 

exhibited diverse expression in different organs, although expression could be detected in all organs 

we checked (Figure 3). GbHSP16.8 was highly expressed in Ginkgo leaves, stamens, stalk, root, and 

pistil, and was less abundant in the fruit section. GbHSP17 was predominantly expressed in stamens, 

pistil, stalk, leaves, and roots, and moderately expressed in the fruit. GbHSP70 had the highest 

expression level among the three HSP genes with the highest expression level in leaves, followed by 

stalks, fruits, stamens, and roots. The lowest expression level of GbHSP70 was observed in pistil.  

In the current study, GbHSP16.8 and GbHSP17 were predominantly expressed in stamens, and would 

play roles in pollen development and pollen maturation. Usually reproductive organs are much more 

sensitive to heat stress than other organs [5]. GbHSP70 was more highly expressed in leaves and stems 

than other organs, indicating that these genes may play some roles in maintaining the normal leaf 

functions, such as respiration and photosynthesis.  

Figure 3. Analysis of QRT-PCR for tissue-specific transcription of GbHSP accumulation 

after 2 h heat shock. 

 

2.1.3. Expression Profiles of the Three HSPs under Low Temperature or Heat Shock Treatments at 

Seedling Stage 

The changes in expressions levels of the three GbHSP genes from G. biloba were determined in 

response to low and high temperatures (Figure 4, Table S1). Specific primers for the three GbHSPs 

were selected and used in QRT-PCR to measure the dynamic changes in expression. The expressions 

of HSP16.8 and HSP17 were induced by low temperature (4 °C); whereas, the transcription level of 

HSP70 was only slightly affected. The transcription level of HSP16.8 increased sharply to 

approximately 1.48 times higher than the control level (CK on Figure 4) after 30 min at low 

temperature, and to approximately 2.73 times after 60 min. The highest level, 3.11 times that of the 

control, was achieved at 2 h. After 8 h, the transcription level of GbHSP16.8 decreased rapidly until it 

reached the control level. For GbHSP17 at 4 °C, the transcript level rose rapidly to approximately three 

times that of the control after 30 min, reaching a peak of 3.65 times the control level at 2 h. After 8 h, the 

transcription level of GbHSP17 decreased sharply to 1.15 times that of the control. The response of 
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GbHSP70 to low temperature was much slower than the other two HSPs. After 30 min at low 

temperature, the transcription level rose to 1.56 times that of the control and then peaked after 60 min 

to 2.53 times that of the control. The transcription level then decreased rapidly to that of the  

control level. 

Figure 4. Under different stress temperatures, mRNA expression levels of the three 

GbHSPs were analyzed by real-time quantitative RT-PCR, G. biloba GAPDH gene was 

used as the internal control. Relative expression levels are shown for: (a) The relative 

expression levels of GbHSP16.8 at different times after stress induction. (b) The relative 

expression levels of GbHSP17 at different times after stress induction. (c) GbHSP70 genes 

expression levels. 
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High temperatures (36, 40 and 42 °C) had different effects on the expression of the three HSPs in  

G. biloba. At 36 °C, the transcription level of GbHSP16.8 rose to twice that of the control after 30 min 

and reached a peak after 60 min (Figure 4a). The transcription level decreased slowly to a level slightly 

lower than that of the control at 8 h. At 40 °C, the transcription level of GbHSP16.8 showed no 

significant difference after 30 min; however, at 2 h, a slight increase was observed, after which the 

transcription level decreased slowly to a level slightly lower than the control. At 42 °C, the 

GbHSP16.8 transcription level rose to about 1.58 times higher than the control after 30 min, and then 

decreased to about 0.47 times that of the control at 6 h. At 8 h, the transcription level was slightly 

increased; however, the level was still lower than that of the control. It appears that a high temperature 

(42 °C) inhibits the expression of GbHSP16.8 (Table S1).  

GbHSP17 was quite sensitive to high temperature. At 36 °C, the transcription level was about  

1.58 times that of the control within the first 60 min; after which it dropped to the control level and 

reached equilibrium. At 40 °C, the transcription level reached a peak after 30 min at 2.94 times that of 

the control (Figure 4b). The transcription level then decreased slowly after 2 h. At 42 °C, the 

transcription level rose to 1.52 times that of the control after 30 min and then decreased to 0.77 times 

that of the control after 8 h (Table S2).  

GbHSP70 was also quite sensitive to high temperatures (Figure 4c). In particular, a high 

temperature of 42 °C induced a rapid increase in GbHSP70 transcription. After 30 min, the 

transcription level rose to 4.21 times that of the control and reached a peak of 4.37 that of the control at 

60 min. By 8 h, the transcription level had decreased to a level slightly lower than that of the control. 

At 40 °C, GbHSP70 exhibited a slow and constant induction. After 30 min, the transcription level 

started to increase and reached a peak of 4.26 times that of the control at 4 h. Thereafter, the 

transcription level decreased slowly and maintained a high transcription level (about 2.96 times that of 

the control) at 8 h. However, 36 °C had no apparent inductive effect on GbHSP70. The transcription 

level rose slightly at the 30 min time point; however, at 4 h and subsequent time points, the expression 

level of GbHSP70 was similar to the control level (Table S3).  

Based on these results, GbHSP16.8 and GbHSP17 might be induced by low temperature signals.  

In addition, the two genes might play a key role in the adaptation of Ginkgo leaves to low temperatures. 

GbHSP70 might also participate in the response to low temperature signals; however, it may have a 

more important role in the heat stress resistance of Ginkgo. 

2.1.4. Expression Patterns of the Three GbHSPs under Abiotic Stresses 

Numerous abiotic stresses are known to trigger alteration in the transcription of HSP genes. 

Therefore, we determined the expression profiles of the three HSP genes under diverse abiotic stress 

treatments, using QRT-PCR.  

Irradiation with UV-B upregulated the transcription of the smaller HSPs (Figure 5b). The 

transcription level of GbHSP16.8 under ultraviolet treatment varied only slightly after rapidly 

increasing to 3.51 times that of the control at 30 min. GbHSP16.8 reached a peak of 4.65 times that of 

the control level after 90 min, and then slowly decreased. GbHSP17 was also induced by UV-B, but 

less efficiently. It reached a peak of 2.98 times higher than the control level after 90 min of treatment. 
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UV-B did not appear to induce the expression of GbHSP70. Its expression increased slightly during 

the early period of treatment and thereafter maintained a similar level to the control (Table S4). 

Figure 5. Real-time PCR analysis of the relative expression levels of the GbHSP genes in 

Ginkgo biloba under abiotic stress treatment. The G. biloba GAPDH gene was used as an 

internal control. The bars are means of the relative fold change of three biological and two 

technical replicates obtained by real-time RT-PCR. The standard errors of the biological 

replicates are shown as error bars. Relative expression levels are shown for (a) UV-B 

treatment, (b) wounding treatment and (c) ABA treatment. 

 

Plants are often injured by environmental factors during their growth and development, and these 

injuries stimulate plant responses. GbHSP16.8 and GbHSP70 were apparently induced by mechanical 

injuries (Figure 5c). The transcription level of GbHSP16.8 in leaves rose rapidly 2 h after being cut 

and reached a peak after 60 min of 2.82 times higher than the control level. The expression level then 

decreased to 1.44 times lower than the control level, and this level was maintained throughout the 

remaining experimental period. Injury also plays a key role in the induction of GbHSP70. The 
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transcription level rose to 1.64 times higher than the control at 30 min and reached a peak of 3.08 times 

that of the control after 60 min, after which the expression level slowly decreased. Injury treatment had 

no apparent role on the induction of GbHSP17; the expression level at several time points after 

treatment did not increase significantly (Table S5).  

ABA is one of the five major plant hormones that facilitates the maturity and abscission of fruits 

and suppresses plant growth. The expression level of the three HSPs increased after ABA treatment 

(Figure 5a), particularly GbHSP70. After 1 h, the transcription level of GbHSP70 slowly increased to 

1.3 times higher than the control level. It further increased to 2.18 times higher than the control level 

after 90 min and reached a peak of 3.47 times that of the control after 2 h. The expression level then 

decreased slowly to 3.10 times lower than the control level after 4 h (Table S6). Treatment with ABA 

had no apparent role in the induction of GbHSP16.8 (Table S6). The transcription level after about 30 

min of treatment was not significantly different to the control level. The transcription level increased 

slightly after 1 h to 1.33 times higher than the control level, after which it decreased to the control level. 

The expression profile of GbHSP17 was similar to that of GbHSP16.8. 

2.2. Discussion 

Like other long-lived woody species native to subtropical zone regions, G. biloba exhibits a 

remarkable abiotic stress tolerance. In this study, we cloned three HSP genes, particularly GbHSP16.8, 

GbHSP17, and GbHSP70, from G. biloba using SSH cDNA library of Ginkgo leaves treated with cold 

stress and the full sequence was isolated by 5' and 3'-RACE according to the user manual.  

Small heat shock proteins are chaperones that play an important role in stress tolerance [31]. 

According to their Aa sequence, all cytoplasmic sHSPs in plants described so far belong to two 

different classes: class I and class II [32]. GbHSP17 and GbHSP16.8 belong to cytosolic class I and 

class II sHSPs and this was validated by the results of alignment and phylogenetic analysis with sHSP 

sequences of other plants. sHSPs share an evolutionarily conserved sequence of 80–100 amino acids, 

located in the C-terminal region, and called α-crystallin domain or heat shock domain contributing to 

subunits interactions [33]. The small heat shock domain can be further subdivided into two regions, 

consensus region I and II separated by a hydrophilic region of variable length. The type of sHSP 

related with α-crystalline is extremely abundant in higher plants. Though the middle and N-terminal 

amino acids of GbHSP17 and GbHSP16.8 were very different from others, this difference may 

partially explain why the two small HSPs could increase resistance to a broader array of stressors than 

other sHSPs that have been reported.  

Ginkgo HSP16.8 and HSP17 show more homology in the ACD domain, which has two conserved 

regions. This domain within HSPs is very highly conserved and, as a molecule chaperone, can help to 

stabilize unfolding proteins because of its propensity to associate with denaturing proteins [34,35]. The 

conservative sequence (Pro-X-Gly-Val-Leu) is the typical structural feature of most HSPs. The structural 

domain of GbHSP70 is mainly divided into two parts: the 40 kDa region at the N-terminus acts as 

ATPase and the 30 kDa region at the C-terminus functions in the formation of non-foldable polypeptide 

into protein conformation. Based on HSP16.5 [36] crystal structure of Methanococcus jannaschii, we 

infer that the dimer of HSP is formed by the folding of a large amount of beta sub-units, which are 

basic structures formed by oligomers. After heat shock, HSP17 (I) and HSP17 (II) will form a particle 
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complex with high molecular weight and a size of 40 nm. These compounds can store housekeeping 

genes and some degraded protein, e.g., luciferase [37]. HSP70 has a calmodulin binding domain, 

which contains the important conditioning signal during a living organism’s adaptation to stress [38]. 

2.2.1. GbHSPs Are Expressed under Normal Conditions with Tissue Preference 

Most studies have shown that HSPs are needed for basic plant growth and development. However, 

some previous studies revealed that HSPs may only be expressed in a specific tissue under normal 

growth conditions, partially because of the lesser sensitivity of the Northern blot for very low 

expression [39]. In the present study, transcripts of the three GbHSPs genes were observed in every 

tissue under general high temperature, although they were only slightly detected in some tissues. The 

three GbHSP genes exhibited diverse expression in different organs, although the expression could be 

detected in almost all organs we studied. Tissue-specific expression patterns differed from gene to 

gene even though they belong to the same family as observed in the current study. 

In Arabidopsis, HSP70b transcripts were not detected in any organ; transcripts of HSP70 were 

abundant in roots but hardly detectable in other organs; and expression of HSP70-1 and HSP70-2 were 

more abundant in leaves than other organs [40]. Different HSP members of the same family can have 

diverse preferred tissue-specific expression patterns. In rice, OsHSP80.2 transcripts were detected 

more abundantly in roots, suggesting a specific role of OsHSP80.2 in root growth or function. The 

other two OsHSP90 genes and OsHSP70 genes were highly expressed in leaves and sheaths than the 

other organs [5]. The expression patterns of the three HSPs genes in Ginkgo were also different. 

GbHSP70 and HSP16.8 were expressed at higher levels in the leaves, which may contribute to 

maintaining normal leaf functions including respiration and photosynthesis [5]. The other gene was 

mainly expressed in gynoecia and stamens. GbHSP70 and GbHSP16.8 were also expressed at higher 

levels in stamens, which indicated that they played certain roles in G. biloba stamen development. 

2.2.2. GbHSPs Expression Is Generally Enhanced under Cold or Heat Stress 

Expression of HSP genes has been shown to be enhanced by elevated temperatures in many plant 

species [5,40,41]. In Arabidopsis, the expression of some HSP70s was elevated 2- to 20-fold by  

30 min heat stress at 40 °C [40]. In rice, transcripts of some sHSP-Cl genes were detected as early as  

5 min after exposure to 41 °C treatment. The transcripts of all nine sHSP-Cl genes were detected 

within 15 min [42]. In our present study, transcripts of all three GbHSPs genes were increased under 

heat shock treatment, although they exhibited different response patterns. The transcripts of GbHSP70 

were increased rapidly and kept at constantly high levels during the 40 °C and 42 °C heat stress. The 

expression of GbHSP17 was increased 30 min after the 40 °C heat treatment but was reduced after 1 h. 

The expression of GbHSP16.8 was increased 30 to 60 min later but was reduced after 4 h. Based on 

these variations, the different HSPs are regulated in different patterns or by different signals. In 

addition, they may have different assigned functions in response to heat stress. The accumulation of 

HSPs was believed to play a major role in the heat stress response and in acquired thermotolerance in 

plants [2,43]. The protective effects of HSPs/chaperones can be attributed to the network of the 

chaperone machinery, in which different HSPs/chaperones acted cooperatively [2]. 
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Although heat shock and cold shock trigger different adaptive responses and induce the production 

of unique stress proteins, several studies proved that low temperatures could induce HSPs involved in 

the resistance of cells against extreme temperatures [44]. Some HSP genes were observed to be induced by 

low temperature in spinach [45], Arabidopsis [40], Sweet chestnut [46], and Brassica napus [47]. The 

study of Soto [48] showed that treatment with low temperature could induce the expression of 

CsHSP17.5 in Class I gene in the chestnut cytoplasm, and it could be expressed in both roots and 

stalks. The expression of HSP genes under cold temperature conditions further proved the important 

role of HSP in boosting plant resistance to cold injury [47], Excessive expression of sHSPs in the 

chloroplasts of tomato showed that the symptoms of cold injury in tomato were lesser than the tomato 

with unexpressed sHSPs. The resistance of tomato against cold temperature has improved [49]. 

However, the specific mechanism of HSPs in inducing resistance of plants to low temperature remains 

unclear. Guo [22,50] found that the cytoplasmic sHSP18 gene could be expressed in sweet pepper 

leaves by subjecting the plant to low temperature, but chloroplast sHSP26 gene could not be induced 

by cold stress; Zhu [51] found that CaHsp24 could be induced by heat stress and also weakly 

expressed by cold stress. In our study, we found that GbHSP16.8 and GbHSP17 could be induced by 

cold stress, but the HSP70 gene could not be induced by cold stress. One of the possible reasons may 

be that only some members of the sHSP family respond to low temperature and this does not include in 

HSP70. HSP or other compounds containing HSPs of different molecular weights may be involved in 

transporting the polypeptide synthesized under cold-induced stress to the plasma membrane, nucleus, 

and other organelles. Moreover, physiological changes induced by low temperature could denature 

some functional proteins like the proteins related with membrane fluidity. HSP could induce refolding 

and restoring the functions of a denatured protein caused by low temperatures [32]. Morimoto [52] 

proposed the regulating pattern in the expression of HSP gene (autoregulation) involving three key 

steps: HSF’s activity is altered by changing internal and external elements; activated HSF identifies 

and binds with HSE in the promoter region of the HSP gene; and the transcriptionally active region of 

the HSP gene opens and facilitates the transcription.  

2.2.3. GbHSPs Can Also Be Induced by Stresses Other than Temperature Stress 

The three HSPs genes isolated from low temperature seedling could be induced by other abiotic 

stress. Stress induced by UV-B will cause easy accumulation of free radicals and other oxygen 

derivatives inside the plants. Reactive oxygen-induced stress is an important type of plant stress. In 

rice seedlings, resistance to UV-B irradiation in rice improved greatly after heat stress treatment. 

Moreover, rice seedlings with genetically modified HSP17.7 could improve its resistance to UV-B 

irradiation, which was related with the transcription level of HSP17.7 [13]. High temperature and  

UV-B stress readily cause the formation and accumulation of free oxygen species inside the plants, and 

further result in oxidation of liposomes, proteins, and other large molecules thereby damaging the 

plants [53,54]. The expression of sHSPs in cytoplasm and mitochondria as induced by active oxygen 

has been reported [43,55]. When living organisms were subjected to salt tolerance test, sHSPs in the 

mitochondria could protect the electron transport complex I and prevent its damage by free oxygen. Its 

role was similar to glutathione, APX, SOD, CAT, and other enzymes [56]. 
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The induction of HSPs by mechanical injury in plants has also been studied, although it has not 

been fully elucidated. In rice, Oshsp18.0-CII was induced by mechanical injury and SA to a much 

lower level compared with heat shock. However, mechanical injury and SA did not induce OsHSP 

18.0-CII protein accumulation. Mechanical injury could induce the synthesis of enzymes related with 

the metabolism of phenolic compounds and the production of abundant HSPs in plants. Meanwhile, 

HSPs could suppress the synthesis of enzymes for phenolic metabolism and prevent the local browning 

of tissues [57]. In plant roots, sHSPs may contribute to managing periapical lesions, including their 

influence on the migration of epithelial cell rests and their role in increasing the resistance against 

necrotic and apoptotic cell death [58]. In Ginkgo, damage could induce the synthesis of high amounts 

of HSP70 and HSP17, indicating that HSPs could be induced solely by mechanical injury without  

heat stress. 

ABA could regulate the adaptation of many plants to environmental stress. The function of ABA in 

regulating the expression of HSP genes in many plants has been widely studied [5,59,60]. In response 

to drought and temperature stress, ABA levels in plants changed remarkably [61]. When ABA  

receptor-deficient mutants of maize were subjected to drought, high temperature or both, ABA could 

improve the endurance of plants by regulating the level of HSP70 synthesis [60]. The transcription 

level of HSP70 rose remarkably in response to extreme heat stress. In this study, GbHSP70 was  

up-regulated by ABA. The expression of the other two sHSP was not affected by ABA, which implied 

that ABA may improve plant tolerance to extreme heat stress by increasing HSP70 expression. In rice 

exposed to heat stress, the promoter structure of all nine OsHSP genes has a ABRELATERD1  

cis-acting element. The adaptation of plants to heat stress was possibly related with the regulation of 

ABA level [62]. These observations may indicate that both ABA-dependent and independent stress 

signal transduction pathways were involved in HSP70, HSP16.8 and HSP17 expression regulation. 

When Ginkgo was under extreme high temperature conditions, the transcription levels of HSP70s were 

related with the regulation of endogenous ABA. HSP16.8 and HSP17 transcription in Ginkgo could be 

induced by high temperatures (36 °C and 40 °C); however, ABA cannot induce the same effect, which 

implied that HSP16.8 and HSP17 genes involved in response to high temperature has no direct 

relationship with the mechanism involved in regulating ABA. 

3. Experimental Section  

3.1. Plant Materials and Treatments 

Two-year old grafted G. biloba seedlings, growing in a greenhouse in Huanggang  

(E, 114°54'–116°8', N, 29°45'–31°35', Hubei province, central of China), were sampled as cDNA 

library construction materials. For tissue expression analysis, diverse tissues, including young leaves, 

mature leaves, ovules, stamens, albumen, gynoecia, stems and roots were collected for RNA extraction 

as described by Xu [63]. Tissues were immediately frozen in liquid nitrogen and kept at −80 °C prior 

to total RNA extraction. 

Two-year old cuttings from the same genotypic strain of G. biloba were subjected to treatments 

with UV-B, heat-shock, ABA (abscisic acid) and wounding treatment. For UV-B treatment, seedlings 

were exposed to 1500 μJ/m
2
 UV-B irradiation in a closed chamber, and the control cuttings were 
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placed in a dark closed chamber. The ABA (10 mM) was dissolved in 0.01% Tween 20 and sprayed 

onto young leaves. The control leaves were sprayed with an equivalent volume of 0.01% (v/v) Tween 20. 

The edges of the Ginkgo leaves were cut by about 0.6 cm with scissors for wounding treatment, the 

intact leaves of Ginkgo were as control. For cold and heat shock treatments, seedlings were exposed to 

4 °C and 36 °C, 40 °C, 42 °C. Leaves were collected after exposure for 30 min, 60 min, 90 min, 2 h,  

4 h, 6 h, 8 h. 

3.2. Subtractive Hybridization 

Total RNA was isolated from Ginkgo seedling leaves of cold treated (4 °C, 1 h, designed as S1) and 

normal growing conditions (25 °C, designed as S2) using Xu’s method [63]. mRNA was isolated from 

total RNA with an mRNA Isolation kit (Tiandz, Beijing, China) according to the manufacturer’s 

instructions. cDNA synthesis, digestion with Rsa I, hybridization, and PCR amplification were carried 

out using the PCR-Select cDNA subtraction Kit (Clontech, Mountain View, CA, USA) according to 

the manufacturer’s instructions. Forward subtraction was performed using S2 cDNA as a tester and S1 

cDNA as a driver. Reverse subtraction was performed using S1 cDNA as a tester and S2 as a driver. 

PCR products were ligated into pMD18-T vectors (TaKaRa, Dalian, China) to obtain forward and 

reverse subtraction libraries. About 2300 colonies each were obtained using a portion of PCR products 

by SSH in both directions and these ESTs fragments were sequenced by Sangon (Sangon Biotech, 

Shanghai, China). 

3.3. Molecular Cloning of the GbHSPs cDNA 

Through EST analysis, a 274 bp fragment of GbHSPs16.8, 363 bp fragment of GbHSPs17 and  

522 bp fragment of GbHSP70 were obtained from the heat-treated cDNA library. Based on the 

sequence, the specific primer pairs (H70R5, H17R5, H16R5 and H70R3, H17R3, H16R3) and the 

nested primer pairs (H70N5, H17N5, H16N5 and H70N3, H17N3, H16N3) were designed to amplify 

the 5' and 3' end of GbHSPs using the SMART™ RACE cDNA Amplification Kit (Clontech, 

Mountain View, CA, USA). Table 1 lists the primer sequence for each gene. The PCR products were 

purified and cloned into the pMD18-T vector for sequencing. After comparing and aligning the 

sequence of 5'RACE, 3'RACE, and the internal fragment, the full-length cDNA sequence of GbHSPs 

were obtained. The full-length cDNA of GbHSP16.8, GbHSP17 and GbHSP70 were obtained when 

the 5' and 3' fragments were assembled by Vector NTI 10.0 software. 

3.4. Relative Quantification by QRT-PCR 

The transcription levels of GbHSPs were determined in different G. biloba tissues, as well as in 

young seedling leaf samples collected at different time points after stress and hormone treatments. 

QRT-PCR was carried out using an ABI PRISM 7500 Sequence Detection System (Applied 

Biosystems, Foster City, CA, USA) with SYBR Green PCR Master Mix (Applied Biosystems, Foster 

City, CA, USA) according to the manufacturer’s protocol. The G. biloba glyceraldehydes-3-phosphate 

dehydrogenase gene (GbGAPDH, L26924) [64] was used as the reference gene as described by Xu [63]. 
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The gene-specific primers (H70T1, H70T2, H17T1, H17T2, H16T1, H16T2) and reference primers 

(GAPU, GAPD) for QRT-PCR are listed in Table 1. The QRT-PCR conditions were: 10 min at 95 °C, 

and 40 cycles (95 °C for 15 s, 60 °C for 1 min). Before performing QRT-PCR, primer efficiency was 

evaluated using both GbHSP70 and GbGAPDH at 100 nM, 150 nM, 200 nM, 250 nM and 300 nM 

combinations. A 150 nM concentration was chosen as the most suitable combination for both genes. 

For each plant sample, aliquots of 150 ng total RNA was analyzed for each gene and the four genes 

(GbHSP16.8, GbHSP17, GbHSP70 and GbGAPDH) were always analyzed simultaneously. Each 

sample was amplified 3 times and all reactions were performed on an ABI PRISM 7500 Sequence 

Detection System. With a housekeeping gene GbGAPDH, the relative amount of the three GbHSP 

transcriptsw is presented as 2(-ddCt) according to the CT method (dCt = Ctsample-Ctcontrol) 

described in the QRT-PCR Application Guide (Applied Biosystems). When comparing the expression 

of GbHSPs in different tissues, the relative expression of GbHSPs was achieved by calibrating its 

transcription level to that of the reference gene, GbGAPDH. 

Table 1. Primers used in the present study. 

Primer Sequence (5'–3') Description 

H70R5 TGTTCCGCATGTTGTAGGCATAGTT Reverse primer for 5'RACE, outer 

H70R3 CTATTCCCACAAAGAAAGAGCAGGTT Forward primer for 3'RACE, outer 

H17R5 GGTTTAGGTTCAGGTTGTTTAGGCAC Reverse primer for 5'RACE, outer 

H17R3 CCAGGTTTGAAGAAAGAGGAGGTTA Forward primer for 3'RACE, outer 

H16R5 TGCCGACTCTTCGCTCCATTCTTAT Reverse primer for 5'RACE, outer 

H16R3 TAAGAATGGAGCGAAGAGTCGGCAAAT Forward primer for 3'RACE, outer 

H70N5 CTTTGTGGGAATAGTAGTGTTT Reverse primer for 5'RACE, nested 

H70N3 ATGGCATCCTTAATGTCTCA Forward primer for 3'RACE, nested 

H17N5 CGATGCCATTTGTCATTCTT Reverse primer for 5'RACE, nested 

H17N3 CCTGAGAATGCCAAGGTAGA Forward primer for 3'RACE, nested 

H16N5 GCTTTCTCATCTCGCTTTCG Reverse primer for 5'RACE, nested 

H16N3 CGTTACGGTTCCCAAGATTC Forward primer for 3'RACE, nested 

H70T1 ACCAATGACAAGGGTAGG Primer for QRT-PCR, forward 

H70T2 TGTAGGCATAGTTCTCCAAT Primer for QRT-PCR, reverse 

H17T1 CTCACATCTTCAAGGCTGATC Primer for QRT-PCR, forward 

H17T2 CTTCTTCTTTGCTGCGTTCT Primer for QRT-PCR, reverse 

H16T1 GAGCGAAGAGTCGGCAAATT Primer for QRT-PCR, forward 

H16T2 TAGCACGCCATCGTAACACG Primer for QRT-PCR, reverse 

GAPU TGTCACGGTTTTCGGTTGTAG Control Primer for QRT-PCR, forward 

GAPD ACCTTTTTGGCACCTCCCTTA Control Primer for QRT-PCR, reverse 

3.5. Statistics 

Similarity search of the three GbHSP proteins were performed with the Blastx or Blastp program [65]. 

Multiple sequence alignment of the deduced GbHSPs with other congeneric HSPs was conducted 

using the clustlx program. The phylogenetic tree was constructed by a neighbor-joining (NJ) method and 

measured by bootstrap analysis with 1000 replicates. Phylogenetic tree analysis of GbHSPs and known 

HSPs from other plant species retrieved from GenBank were aligned with Mega 4.0 [66]. Vector NTI 
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Suite 10 was used for sequence alignment and analysis. SPSS 17 was used for statistical analysis  

and graphing. 

4. Conclusions  

In summary, the analysis of the tissue and environment stress expression profiles of the three HSP 

genes has improved the functional dissection of Ginkgo HSP genes. It is possible that appropriate  

low-temperature treatment will improve the adaptation of Ginkgo to other abiotic stresses. Elucidation 

of the precise role of each GbHSP gene, however, requires other experimental approaches including 

overexpression or RNAi strategies. 
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