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Abstract: Enoyl acyl carrier protein (ACP) reductase (FabI) is a potential target for the 

development of antibacterial agents. Three-dimensional quantitative structure-activity 

relationships (3D-QSAR) for substituted formamides series of FabI inhibitors were 

investigated using comparative molecular field analysis (CoMFA) and comparative 

molecular similarity indices analysis (CoMSIA) techniques. Pharmacophore and molecular 

docking methods were used for construction of the molecular alignments. A training set of 

36 compounds was performed to create the 3D-QSAR models and their external 

predictivity was proven using a test set of 11 compounds. Graphical interpretation of the 

results revealed important structural features of the formamides related to the active site of 

FabI. The results may be exploited for further optimization of the design of new potent 

FabI inhibitors.  
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1. Introduction 

The emergence of bacterial resistance to most of the antibiotics currently in clinical use is of 

world-wide concern [1,2]. In particular, methicillin-resistant Staphylococcus aureus (MRSA) [3] and 

penicillin-resistant Streptococcus pneumoniae (PRSP) [4] have become troublesome due to the 

ineffectiveness of remaining therapeutics. Recently, very few novel classes of antibacterial agents have 

been marketed. Thus, it is urgently desired to develop antibacterial agents with novel mechanism of 

action against resistant strains.  

As fatty acid biosynthesis in pathogenic microorganisms is essential for cell viability, the enzymes 

involved in the FAS pathway have recently attracted considerable interest as a genomics-driven target 

for antibacterial drug discovery [5–7]. The NADH-dependent enoyl acyl carrier protein reductase (FabI) 

is a key enzyme in the last step of each cycle of fatty acids elongation [8]. It catalyzes the 

NADH-dependent stereospecific reduction of α,β-unsaturated fatty acids bound to the acyl carrier 

protein [9,10]. FabI has been identified to be essential for bacterial viability [8]. In recent years, a wide 

range of structural classes has been identified as FabI inhibitors [11,12], such as triclosan [13–16], 

diazaborines [17,18], imidazoles [19], indole naphthyridinones [20–22], thiopyridine [23] and 

4-pyridone [24], etc., which demonstrates that FabI is a valid target for antibacterial therapy. Based on 

indole naphthyridinones, further chemical optimization studies and structure activity relationship 

studies led to the identification of spiro-naphthyridinone piperidines [25] and pyridodiazepines [26] 

with improved efficacy and desired physiochemical properties. These inhibitors have shown promising 

results in the preclinical testing in various resistant strains and mouse models. Despite these and other 

known inhibitors, more structurally diverse inhibitors of FabI need to be discovered for improving the 

understanding of the biological function of FabI.  

With a view to identify potential compounds with higher predicted potencies, novel FabI inhibitors 

could be designed by virtual screening and molecular docking based on the available X-ray crystal 

structures of FabI [19,21,22]. However, unlike quantitative structure-activity relationship (QSAR) 

techniques, these methods do not readily yield information regarding the importance of the molecular 

substructures for activity. Comparative molecular field analysis (CoMFA) [27] and comparative 

molecular similarity indices analysis (CoMSIA) [28] are the most popular three-dimensional 

quantitative structure-activity relationship (3D-QSAR) methods. Their graphic results can provide a 

direct way to visualize the structure-activity relationships. To the best of our knowledge, no QSAR 

studies have been reported by now for those FabI inhibitors. In order to gain further insights into the 

structural and chemical features required for FabI inhibitory activity, we performed 3D-QSAR 

analyses of a series of formamides published in the literature [21,22,25,26]. An important challenge for 

the investigated compounds is to deal with their flexibility, since the applications of CoMFA and 

CoMSIA require the optimized 3D conformations of all molecules. Alignments of ligands that are 

known to assume the bioactive conformation were generated by superimposition on pharmacophore 

points and docking into the protein binding site. The 3D-QSAR results provided useful information 

about the structural requirements for FabI inhibitors and are expected to usefully support drug design 

of new FabI inhibitors. 
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2. Material and Methods  

2.1. Data Sets 

A dataset comprising 47 substituted formamides was taken from the literature [21,22,25,26]. The 

biological data were considered comparable and divided into a training set and a test set as shown in 

Table 1. Thirty-six compounds were selected randomly as the training set for model construction and the 

remaining 11 (asterisked in Table 1) were used as test set for model validation, according to biological 

activity range and structural diversity. All further studies were performed using the same training and 

test sets. The IC50 values were converted into pIC50 (−logIC50) for use in 3D-QSAR analysis. 

Table 1. Structures, activities and experimental pIC50 values of the compounds in the 

training and test sets. The test set compounds are marked by an asterisk *. 

Compounds R1 IC50 (µM) pIC50 

1 16.5 4.78 

2 N
H

N
O

CO2CH3

9.9 5.00 

3 676 3.17 

4 21.2 4.67 

5 * 6.7 5.17 

6 107 3.97 

7 * 16.3 4.79 

8 100 4.00 

9 
N NH2

93.7 4.03 

10 100 4.00 
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Table 1. Cont. 

Compounds R1 IC50 (µM) pIC50 Compounds 

11 * 

  
2.4 5.62 

12 * 

  
2.2 5.66 

13 

  
11.2 4.95 

14 

 
 

14.2 4.85 

15 

  
0.91 6.04 

16 

  
2.3 5.64 

17 

  
0.3 6.52 

18 

  
0.94 6.03 

19 

  
0.05 7.30 

20 N
 

0.13 6.89 

21 
 

0.05 7.30 

22 
 

0.06 7.22 

23 * 
 

0.02 7.70 

24 
 

0.03 7.52 
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Table 1. Cont. 

25 
 

0.026 7.59 

26 
 N N

H
O

NH

0.049 7.31 

27 * 

 
N N

H
O

NH

0.132 6.88 

28 
 

0.048 7.32 

29 
 N N

H
O

NH

0.071 7.15 

30 
 

0.02 7.70 

31 
 

0.014 7.85 

32 S
F  

0.028 7.55 

33 
 

0.026 7.59 

34 S
F  

N N
H

H
N

O

0.031 7.51 

35 

 
N N

H

H
N

O

0.13 6.89 

36 * 

 
N N

H

H
N

O

0.2 6.70 

37 
 N N

H

H
N

O

0.007 8.15 

38 * 
 

0.026 7.59 

39 
 N N

H

H
N

0.067 7.17 
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Table 1. Cont. 

40 * 

 

0.51 6.29 

41 

 

0.13 6.89 

42 
 

0.043 7.37 

43 
 

0.057 7.24 

44 * 
 

0.048 7.32 

45 
 

0.06 7.22 

46 
 

0.061 7.21 

47 * 
 

0.17 6.77 

2.2. Pharmacophore Model Generation  

The crystal structure of E. coli FabI with compound 20 (PDB code: 1MFP) was used as starting 

structure for the generation of the pharmacophore model. The software LigandScout 3.01 [29,30] was 

used for detection and interpretation of crucial interaction patterns between FabI and the ligand. 

LigandScout extracts and interprets ligands and their macromolecular environment from PDB files and 

automatically creates and visualizes an advanced pharmacophore model. Then the pharmacophore 

model was exported as a hypoedit script and converted into Discovery Studio 2.1 [31] format with 

Hypoedit tool. Subsequently, the pharmacophore model was used for mapping all of the molecules.  

2.3. Molecular Docking 

The docking procedure aims to generate and score putative protein-ligand complexes according to 

their calculated binding affinities. Docking studies were carried out using GOLD docking software [32], 

version 3.1, which uses a powerful genetic algorithm (GA) method for conformation search and 

docking, and is widely regarded as one of the best docking programs [33]. Docking experiments were 

performed using the default GOLD fitness function (VDW = 4.0, H-bonding = 2.5) and default 

evolutionary parameters: population size = 100; selection pressure = 1.1; operations = 100,000;  

islands = 5; niche size = 2; migration = 10; mutation = 95; crossover = 95. The ChemScore function 

was used to rank different binding poses. The center of the bound ligand was defined as the binding 

site. Ten docking runs were performed per structure. All poses were output into a single *.sdf file. 
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2.4. Alignment Rule 

In the 3D-QSAR studies, the molecular alignment and conformation determination are very 

important to construct reliable models. Due to the flexibility of the investigated compounds, it is 

difficult to choose a suitable conformation that achieves a meaningful superimposition. In an ideal 

alignment the biologically active conformations should be aligned taking into account the orientations 

that the ligands adopt at the binding site of the protein. Therefore, we applied two different 

receptor-based alignments, with the conformations obtained from structure-based pharmacophore 

(SBP) search and docking.  

All the molecules in the training and test sets were mapped simultaneously onto the pharmacophore 

model using the “flexible” fitting method and “best mapping only” option in the Ligand 

Pharmacophore Mapping protocol in Discovery Studio 2.1. The conformation selected for each 

compound, which was assumed to be the bioactive conformation, corresponded to the conformation 

which best fit the pharmacophore model. The final aligned molecules were exported to SYBYL6.9 [34] 

for CoMFA and CoMSIA analysis. 

For the docking, all the molecules were docked into the FabI active site using the GOLD program. 

The conformation with the highest ChemScore of each molecule and their alignment were used 

directly in CoMFA and CoMSIA to explore 3D-QSAR models.  

2.5. CoMFA and CoMSIA Model  

CoMFA was performed using the QSAR option of SYBYL 6.9. The steric and electrostatic field 

energies were calculated using the Lennard-Jones and the Coulomb potentials, respectively, with a 1/r 

distance-dependent dielectric constant in all intersections of a regularly spaced (0.2 nm) grid. The 

electrostatic fields were computed using Gasteiger-Huckel charge calculation methods. A sp3 

hybridized carbon atom with a radius of 1.53 Å and a charge of +1.0 was used as a probe to calculate 

the steric and electrostatic energies between the probe and the molecules using the Tripos force field. 

The standard parameters implemented in SYBYL 6.9 were used. The truncation for both the steric and 

the electrostatic energies were set to 30 kcal/mol.  

The CoMSIA method involves a common probe atom and similarity indices calculated at regularly 

spaced grid intervals for the pre-aligned molecules. The similarity indices descriptors were derived 

with the same lattice box used in CoMFA. CoMSIA calculates hydrophobic, H-bond donor and 

acceptor fields in addition to steric and electrostatic fields. The distance dependence between the grid 

point and each atom of molecule was determined by the Gaussian function through the similarity 

indices calculated at all grid points, and a default value of 0.3 was used as an attenuation factor. 

2.6. Partial Least Square Analysis  

Partial least squares (PLS) [35] methodology was used for all the 3D-QSAR analyses. The 

cross-validation [36,37] analysis was performed using the leave one out (LOO) method in which one 

compound is removed from the dataset and its activity is predicted using the model derived from the 

rest of the dataset. The cross validated r2 that resulted in the optimum number of components and lowest 

standard error of prediction were considered for further analysis. To speed up the analysis and reduce 
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noise, a minimum filter value σ of 2.00 kcal/mol was used. Final analysis was performed to calculate 

conventional r2 using the optimum number of components obtained from the cross-validation analysis. 

The predictive power of the 3D-QSAR models was determined from a set of eight molecules that 

were excluded during model development. The optimization, alignment and all other steps of these test 

set molecules were the same as those of the training set molecules described above, and their activities 

were predicted using the model produced by the training set. The predictive correlation (rpred
2) based 

on the test set molecules, is computed using 

rpred
2 = (SD − PRESS)/SD 

where, SD is defined as the sum of the squared deviations between the biological activities of the test 

set and mean activity of the training set molecules and PRESS is the sum of the squared deviation 

between the predicted and actual activity values for each molecule in the test set. 

3. Results and Discussion 

3.1. Pharmacophore-based CoMFA and CoMSIA  

3.1.1. Pharmacophore Elucidation  

As shown in Figure 1a, the pharmacophore model automatically generated by the LigandScout 3.01 

program includes five features: three hydrogen bond acceptors (HBA), one hydrogen bond donor 

(HBD) and one hydrophobic group. Besides, the program automatically generated a series of excluded 

volumes in the model. Two HBA features characterize the carbonyl group of the ligand, which forms 

two hydrogen bonds with Tyr156 and the 2'-hydroxyl group of the nicotinamide ribose of the 

nucleotide (Figure 1b). The other HBA and the HBD features are involved in H-bond interactions 

between alanine 95 and the pyridylamine and N-acyl hydrogen of the naphthyridinone functionality, 

respectively. The hydrophobic feature is located on the indole portion.  

Figure 1. (a) LigandScout pharmacophore model generated from FabI-compound 20 

crystal structure (red arrows, HBA; green arrow, HBD; yellow spheres, hydrophobic sites; 

gray spheres, excluded volumes); (b) Schematic 2D molecular interactions plot of 

compound 20 with residues of the FabI binding site. 

 

(a) (b) 
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To verify whether the pharmacophore model finds the correct bioactive conformation, we applied 

the method to two structurally similar compounds 20 and 9, whose bioactive conformations are known 

from E. coli X-ray structures of the ligand-enzyme complex. Their bound conformations were mapped 

onto the pharmacophore model using the “flexible” fitting method and “best mapping only” option in 

the Ligand Pharmacophore Mapping protocol and then superimposed on the best mapping 

conformations (Figure 2). From the results, it is important to note that the best mapping conformations 

of the ligands are in agreement with their bioactive conformations. Hence, the results showed that the 

pharmacophore model is capable of reproducing the bioactive conformation from the Protein Data 

Bank and is reliable enough to retrieve compounds that fit all the features of the query from chemical 

databases. The final aligned molecules are shown in Figure 3a.  

Figure 2. The best pharmacophore mapping conformation (purple stick) and the docking 

conformation with the highest ChemScore (cyan stick) are superimposed on the bound 

conformation in the crystal structure (blue stick). (a) For compound 20; (b) for compound 9. 

 

(a) (b) 

Figure 3. (a) Alignment of the training and test set molecules based on the pharmacophore 

model; (b) docking-based alignment of the training and test set molecules.  

(a) (b) 

3.1.2. CoMFA and CoMSIA Results 

The stepwise development of CoMFA and CoMSIA models using different fields is presented in 

Table 2. The CoMFA model leads to a rcv
2 value of 0.668 using four components and non-cross 

validated r2 = 0.980 with SEE = 0.213 and F = 371.89. These values indicate that the CoMFA model 

has a good conventional statistical correlation and it allows good predictions of the biological activity 

data of formamides also for the test set. The CoMSIA was performed using steric, electrostatic, 
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hydrophobic and hydrogen-bond donor and acceptor descriptors. As shown in Table 2, a combination 

of steric, electrostatic, hydrophobic and hydrogen-bond donor resulted in a CoMSIA model with a 

higher rcv
2 value of 0.742, a good r2 value of 0.973, compared to the other CoMSIA model. Therefore, 

it was selected as the best model to generate contour maps and explain the SAR.  

Table 2. Results of CoMFA and CoMSIA analyses with pharmacophore-based alignments. 

Parameter 
CoMFA CoMSIA 

S,E S E H D A S,E H,D,A S,E,H,D ALL 
rcv

2 0.668 0.478 0.580 0.554 0.382 0.565 0.700 0.665 0.742 0.721 
N 4 4 2 3 2 5 4 6 3 4 
r2 0.980 0.895 0.856 0.944 0.727 0.910 0.973 0.996 0.973 0.988 
SEE 0.213 0.481 0.547 0.345 0.754 0.454 0.243 0.093 0.240 0.162 
F-value 371.89 66.39 98.12 181.23 43.92 60.62 282.57 1313.59 386.54 649.64
Contributions 
Steric 0.490      0.374  0.152 0.122 
Electrostatic 0.510      0.636  0.277 0.217 
Hydrophobic        0.341 0.253 0.208 
Donor        0.358 0.318 0.267 
Acceptor        0.301  0.187 
rpred

2 0.574        0.702 0.693 

rcv
2 = cross-validated correlation coefficient; N = No. of components; r2 = conventional correlation coefficient;  

SEE = standard error of estimate; F-value = F-test value; S = steric field; E = electrostatic field; H = hydrophobic 

field; D = hydrogen bond donor field; A = hydrogen bond acceptor field; rpred
2 = predicted correlation coefficient 

for test set of compounds. 

The external validation is important to establish a reliable 3D-QSAR model. To validate the 

stability and predictivity of the 3D-QSAR models, 11 compounds that were not included in the 

construction of the 3D-QSAR models were selected as the test set. The CoMSIA-SEHD model showed 

the best reasonable external predictivity, yielding a rpred
2 of 0.702 (Table 2). The predicted values of 

training and test sets are presented in Table 3. The correlations between the predicted and experimental 

values of all compounds are shown in Figure 4a.  

Figure 4. Graph of experimental values versus predicted values for training and test set 

compounds from CoMSIA-SEHD model. (a) For pharmacophore-based alignment, (b) for 

docking-based alignment.  

Pharmacophore-based
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Table 3. Experimental, predicted and residuals of pIC50 values of investigated compounds 

in the training and test sets from the best selected three-dimensional quantitative 

structure-activity relationship (3D-QSAR) models. 

Compounds 

Experimental 

Activity 

Pharmacophore-Based 

Alignment 
Docking-Based Alignment 

(pIC50) 
CoMFA (SE) CoMSIA (SEHD) CoMFA (SE) CoMSIA (SEHD) 

PA a Δ b PA a Δ b PA a Δ b PA a Δ b 

1 4.78 4.73 0.05 4.77 0.01 4.72 0.06 4.91 −0.13 

2 5.00 5.17 −0.17 4.77 0.23 4.91 0.09 4.95 0.05 

3 3.17 3.15 0.02 3.46 −0.29 3.26 −0.09 3.37 −0.20 

4 4.67 4.45 0.22 4.59 0.08 4.79 −0.12 4.50 0.17 

5 * 5.17 5.95 −0.78 4.78 0.39 4.32 0.85 4.71 0.46 

6 3.97 3.94 0.03 4.04 −0.07 4.01 −0.04 3.81 0.16 

7 * 4.79 4.76 0.03 4.41 0.38 4.91 −0.12 4.56 0.20 

8 4.00 4.18 −0.18 4.00 0.00 3.99 0.01 3.95 0.05 

9 4.03 4.13 −0.10 3.79 0.24 4.09 −0.06 4.04 −0.01 

10 4.00 3.94 0.06 4.04 −0.04 3.87 0.13 4.02 −0.02 

11 * 5.62 5.48 0.14 6.12 −0.50 5.01 0.61 5.28 0.34 

12 * 5.66 5.70 −0.04 5.58 0.08 5.39 0.31 5.28 0.38 

13 4.95 5.00 −0.05 5.28 −0.33 4.87 0.08 5.09 −0.14 

14 4.85 4.68 0.17 4.88 −0.03 4.89 −0.04 4.99 −0.14 

15 6.04 6.01 0.03 5.90 0.14 5.83 0.21 6.02 0.02 

16 5.64 6.24 −0.60 6.35 −0.71 5.84 −0.20 5.45 0.19 

17 6.52 6.48 0.04 6.24 0.28 6.44 0.08 6.50 0.02 

18 6.03 6.03 0.00 6.02 0.01 6.04 −0.01 5.95 0.08 

19 7.30 7.04 0.26 6.92 0.38 7.18 0.12 7.34 −0.04 

20 6.89 6.94 −0.05 6.73 0.16 6.97 −0.08 6.94 −0.05 

21 7.30 7.22 0.08 7.04 0.26 7.30 0.00 7.27 0.03 

22 7.22 7.27 −0.05 7.22 0.00 7.22 0.00 6.96 0.26 

23 * 7.70 7.10 0.60 6.80 0.90 6.77 0.93 7.07 0.63 

24 7.52 7.23 0.29 7.20 0.32 7.54 −0.02 7.59 −0.07 

25 7.59 7.60 −0.01 7.60 −0.01 7.54 0.05 7.62 −0.03 

26 7.31 7.30 0.01 7.37 −0.06 7.21 0.10 7.23 0.08 

27 * 6.88 6.90 −0.02 7.07 −0.17 7.14 −0.26 6.80 0.08 

28 7.32 7.42 −0.10 7.56 −0.24 7.52 −0.20 7.31 0.01 

29 7.15 7.01 0.14 7.11 0.04 7.16 −0.01 7.15 0.00 

30 7.70 7.91 −0.21 7.48 0.22 7.82 −0.12 7.74 −0.04 

31 7.85 7.75 0.10 7.70 0.15 7.74 0.11 7.83 0.02 

32 7.55 7.61 −0.06 7.49 0.06 7.57 −0.02 7.58 −0.03 

33 7.59 7.57 0.02 7.54 0.05 7.55 0.04 7.59 0.00 

34 7.51 7.64 −0.13 7.64 −0.13 7.48 0.03 7.52 −0.01 

35 6.89 7.03 −0.14 7.26 −0.37 7.05 −0.16 7.08 −0.19 

36 * 6.70 6.78 −0.08 7.20 −0.50 7.49 −0.79 7.37 −0.59 

37 8.15 7.63 0.52 8.23 −0.08 7.93 0.22 8.07 0.08 

38 * 7.59 6.57 1.02 6.94 0.65 6.63 0.96 7.42 0.17 

39 7.17 7.30 −0.13 7.36 −0.19 6.96 0.21 7.09 0.08 
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Table 3. Cont. 

40 * 6.29 7.50 −1.21 6.90 −0.61 6.84 −0.55 6.50 −0.21 

41 6.89 7.14 −0.25 6.93 −0.04 6.96 −0.07 6.88 0.01 

42 7.37 7.58 −0.21 7.71 −0.34 7.46 −0.09 7.44 −0.07 

43 7.24 6.81 0.43 7.03 0.21 7.14 0.10 7.21 0.03 

44 * 7.32 6.53 0.79 6.73 0.59 7.16 0.16 6.79 0.53 

45 7.22 7.32 −0.10 7.39 −0.17 7.42 −0.20 7.36 −0.14 

46 7.21 7.15 0.06 6.95 0.26 7.31 −0.10 7.23 −0.02 

47 * 6.77 7.02 −0.25 7.47 −0.70 7.10 −0.33 7.10 −0.33 

* Test set molecules; a Predicted activity; b Residual of experimental and predicted activities. 

3.2. Molecular Docking-Based CoMFA and CoMSIA 

3.2.1. Docking Analysis 

To test whether the GOLD program is feasible for ligand binding to FabI, two X-ray crystal 

structures (PDB code, 1FMP [22] and 1LXC [21]) were initially chosen and the docked conformation 

of ligands was compared with their crystallographic conformation. The proteins were prepared by 

removing the small ligands and adding hydrogens using SYBYL 6.9. The active site for docking was 

defined as all atoms within 8 Å radius of the co-crystallized ligand. The resulting docked conformation 

with highest ChemScore value and that of crystallographic conformation were very similar (Figure 2). 

This result demonstrates that GOLD analysis is suitable for the identification of the binding mode 

between inhibitors and FabI. The resulting alignment of all compounds is shown in Figure 3b. This 

molecular alignment is more realistic and more suitable for molecular field analyses. 

3.2.2. CoMFA and CoMSIA Results 

The CoMFA and CoMSIA results generated from docked conformations are presented in Table 4. 

The CoMFA models showed rcv
2 of 0.664 with six components, r2 of 0.993 and F value of 730.83. For 

CoMSIA, differing from the pharmacophore alignment, the best rcv
2 was obtained using only steric and 

electrostatic descriptor variables. The high value of rcv
2 appears to be a necessary but not the sufficient 

condition for the model to have a high predictive power. A CoMSIA-SEHD model with a rcv
2 of 0.711 

with six components, a r2 of 0.995 and a best external predictivity rpred
2 of 0.864 was obtained. These 

data demonstrate that a more statistically robust model was obtained from the CoMSIA study. The 

experimental versus predicted activities (Table 4) using CoMSIA-SEHD models of all compounds are 

shown in Figure 4b.  

Table 4. Results of CoMFA and CoMSIA analyses with docking-based alignments. 

Parameter 
CoMFA CoMSIA 

S,E S E H D A S,E H,D,A S,E,H,D ALL 

rcv
2 0.664 0.486 0.740 0.708 0.128 0.540 0.777 0.548 0.711 0.713 

N 6 5 6 5 2 2 6 4 6 6 

r2 0.993 0.877 0.975 0.974 0.595 0.798 0.987 0.957 0.995 0.995 

SEE 0.125 0.531 0.244 0.246 0.919 0.649 0.172 0.309 0.112 0.109 
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Table 4. Cont. 

F-value 730.83 42.77 186.96 183.83 24.20 65.07 380.31 171.60 913.60 966.44 

Contributions 

Steric 0.381      0.270  0.142 0.105 

Electrostatic 0.619      0.730  0.383 0.279 

Hydrophobic        0.290 0.230 0.177 

Donor        0.312 0.245 0.205 

Acceptor        0.398  0.235 

rpred
2 0.695        0.864 0.797 

3.3. CoMSIA Models Interpretation  

Steric, electrostatic, hydrophobic and hydrogen bond donor contour plots obtained using CoMSIA 

analysis from pharmacophore and docking based alignment are useful to explore the protein-ligand 

interactions, presented in Figures 5 and 6, respectively. For simplicity, the interactions between only 

compound 20 and the contour plots are shown.  

Figure 5. CoMSIA contour maps from the pharmacophore-based alignment. (a) CoMSIA 

steric and electrostatic contour map. Green and yellow represent sterically favored and 

disfavored regions, respectively. (b) CoMSIA electrostatic contour map. Blue and red 

represent electrically favored and disfavored regions, respectively. (c) CoMSIA 

hydrophobic field contour map. Yellow regions indicate where hydrophobic groups 

increased activity and white regions indicate areas where hydrophilic groups increased 

activity. (d) CoMSIA H-bond donor contour map. Cyan contour indicates regions where 

hydrogen bond donor groups increased activity. Purple is disfavored. Compound 20 is 

shown inside the fields. 

(a) (b) 

 

(c) (d) 
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Figure 6. CoMSIA contour maps from docking-based alignment. (a) CoMSIA steric and 

electrostatic contour map. Green and yellow represent sterically favored and disfavored 

regions, respectively. (b) CoMSIA electrostatic contour map. Blue and red represent 

electrically favored and disfavored regions, respectively. (c) CoMSIA hydrophobic field 

contour map. Yellow regions indicate where hydrophobic groups increased activity and 

white regions indicate areas where hydrophilic groups increased activity. (d) CoMSIA 

H-bond donor contour map. Cyan contour indicates regions where hydrogen bond donor 

groups increased activity. Purple is disfavored. Compound 20 is shown inside the fields. 

 

(a) (b) 

(c) (d) 

3.3.1. Pharmacophore-Based Alignment  

As shown in Figure 5a, the green contour observed above the naphthyridinone ring indicated that 

some bulky substitutions at this region would be favorable for the activity, which was known to be 

exposed to solvent. This can explain the fact that compounds 26–33 with spiropiperidine substitutions 

and compounds 34–47 with seven- and eight-membered heterocyclic rings exhibited potent FabI 

inhibitory activity. A large yellow contour found around the ene-amide of compound 20 suggested that 

any bulky substitution at this position would be likely to decrease activity. The orientation of the 

linking amide may be very important for activity.  

The electrostatic contour map is shown as red and blue contours in Figure 5b. The small blue 

contour near the naphthyridinone ring suggested that the presence of positively charged groups in this 

region was favorable for activity. Besides, a large positively charged blue contour was found near 

ene-amide too. Two carbonyls of compound 20 were oriented towards two red contours, thereby 

indicating favorable interactions with negatively charged groups.  

The hydrophobic contour map of CoMSIA is presented in Figure 5c. The hydrophilic favored white 

contour around the naphthyridinone ring implied that any hydrophilic substitution was favored there. 
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This was in accordance with compounds 25–33, where incorporating hydrophilic morpholine or 

piperidine proved to improve the activity. The yellow contour indicated that any hydrophobic group 

substituent here was favored. This region supported the observation that compounds 29 and 33, with 

OPr substitution, were among the compounds with a high FabI inhibitory activity.  

The hydrogen bond donor contour plot is displayed in Figure 5d. The cyan contours represent the 

region favoring hydrogen bond donor substituents. The purple contours indicate that hydrogen bond 

acceptor groups in these regions are required for higher activity. It can be explained by the fact that the 

hydrogen bonds were involved in the naphthyridinone functionality and enzyme FabI. That was why 

compounds 1–16 without naphthyridinone were less potent compared to compounds 19–24, etc. For 

compounds 17 and 18, acylated amino pyridine was less favored compared to the hydrogen bond of 

naphthyridinone. 

3.3.2. Molecular Docking-Based Alignment 

The CoMSIA contour plots from the docking-based alignment are shown in Figure 6. The steric, 

electrostatic and hydrophobic contour maps of CoMSIA were similar to those of CoMSIA from the 

pharmacophore-based alignment in explaining the effect of substitution on the biological activity 

(Figure 6a–c). One difference was that a yellow region around the pyridine ring represented an area 

where no substitution was favored.  

For the hydrogen bond donor contour map, the two small cycan contours around the 

N-acylhydrogen indicated that hydrogen bond donor substituents would improve the activity. This can 

be explained by the fact that compounds 17–47, which possessed N-acylhydrogen, showed better 

potencies than compounds 1–16. The other cycan contour above the naphthyridinone revealed that 

hydrogen bond donor substituents might be favored. This may be the reason why a series of seven- and 

eight-membered heterocyclic derivatives 34–39 and 41–47 bearing a free NH atom showed improved 

potencies compared to compound 40 with nitrogen methylation. A small purple contour at the nitrogen 

position of pyridine suggested that a hydrogen bond acceptor substituent at this position might be 

favored. Most of the active derivatives (11, 12, 14–47) possessed hydrogen bond acceptor groups such 

as a nitrogen atom at this position. Compounds 7–10 and 13 without a hydrogen bond acceptor 

substituent at this position exhibited significantly decreased potencies. Another purple contour around 

the naphthyridinone also revealed that a hydrogen bond acceptor group would improve the activity. 

This was consistent with the fact that compounds 45 and 46 bearing the carbonyl group at this position 

exhibited a higher activity than compound 47.  

Despite the different alignments, their 3D-QSAR models are comparable to those presented there. 

However, this docking-based study provides significantly better predicted statistical coefficients  

(rpred
2 = 0.864) and additional information about the hydrogen bond interactions of the naphthyridinone 

moiety, which emphasizes the benefit of combining docking for the selection of the alignment 

followed by 3D-QSAR for formamides-based FabI inhibitors.  

3.4. Summary of Structure-Activity Relationships 

Comparing the 3D-QSAR models, the improved performance of the CoMSIA is obvious, while the 

differences in the case of CoMFA are negligible. The results of 3D-QSAR CoMSIA obtained from 
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both alignments are complimentary to each other. The detailed contour analysis of both CoMSIA 

models enabled us to point out several structural requirements as mentioned in the above discussion 

for the observed inhibitory activities (Figure 7). In detail, the bulky and hydrophilic groups at the S1 

region are favorable, while the hydrophobic groups at the S2 region are favorable. The hydrogen bond 

acceptor group at the H1 and H3 position may benefit the potency. The hydrogen bond donor group at 

the H2 position increases the activity. The ene-formamide skeleton was essential for high activity.  

Figure 7. Structural requirements for formamides based FabI inhibitors. 

 

4. Conclusions 

In this study, the conformations of all compounds obtained from the pharmacophore-based 

alignment and docking into the active site of FabI were used for the CoMFA and CoMSIA analyses. 

Both alignment procedures led to statistically robust and predictive 3D-QSAR models. Despite the 

different alignments, the contour maps from both models are similar in explaining the influence of 

substitution on activity. The predictive ability of the models was confirmed by predicting the activity 

of 11 compounds used as external test sets. The robust 3D-QSAR model and its three-dimensional contour 

map provide guidelines to design compounds with new scaffolds and optimize known molecules.  
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