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Abstract: P-glycoprotein (P-gp) is an efflux pump involved in the protection of tissues of 

several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug 

resistance and in the progression of many neurodegenerative diseases. The development of 

new and more effective therapeutics targeting P-gp thus represents an intriguing challenge 

in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug 

bioavailability as well as to overcome drug resistance to many kinds of tumours 

characterized by the over-expression of this protein. This study aims to develop 

classification models from a unique dataset of 59 compounds for which there were 

homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer 

efflux. For each experiment, the dataset was split into a training and a test set comprising 

39 and 20 molecules, respectively. Rational splitting was accomplished using a  

sphere-exclusion type algorithm. After a two-step (internal/external) validation, the  

best-performing classification models were used in a consensus predicting task for the 

identification of compounds named as “true” P-gp inhibitors, i.e., molecules able to inhibit 
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P-gp without being effluxed by P-gp itself and simultaneously unable to activate the 

ATPase function. 

Keywords: P-glicoprotein; decision trees; classification model; consensus model; P-gp 

inhibitors; MDR1 ligands 

 

1. Introduction 

P-glycoprotein (P-gp), also known as MDR1, is an ATP-dependent drug efflux pump of 170 kD. It 

is a member of the ABC superfamily and is abundantly expressed in multidrug resistance (MDR) cells 

and produced by the ABCB1 gene [1]. This efflux pump is involved in the protection of tissues of 

several critical organs. It is highly and normally expressed in the liver, intestine, kidney, brain and 

placenta, thus influencing xenobiotic disposition. Consequently, P-gp appears to be an important target 

for the development of new and more effective therapeutics. P-gp plays an important role in multidrug 

resistance to several cytostatic agents [2–5]; in addition, it seems to be involved not only in limiting 

the penetration of many exogenous agents across the blood brain barrier (BBB), but also in the 

aetiology of some neurological disorders [6–10].  

As P-gp is a significant component of the BBB, it limits or prevents the input of several 

chemotherapeutical agents, small peptides, antibiotics, HIV protease inhibitors and antidepressant 

drugs in the central nervous system (CNS). Its high and homogeneous distribution in the CNS suggests 

that this kind of efflux pump may be essential both for brain detoxification and for protection  

against xenobiotics. 

The unexpected reduced permeability through the BBB of several highly lipophilic xenobiotics 

and/or anticancer drugs such as vincristine and doxorubicin may be attributable to the expression of  

P-gp. P-gp pumps several drugs out of the brain capillary endothelial cells, such as doxorubicin, 

vincristine and cyclosporin A, thus limiting the accumulation of these molecules within the endothelial 

cells. On the one hand, this results in the protection of the brain from toxic substances. However, it 

may represent the main limiting factor in the reduced effectiveness of some therapies in the treatment 

of neurodegenerative diseases (i.e., Parkinson’s and Alzheimer’s). Several drugs generally used for the 

treatment of these disorders include P-gp substrates, and consequently their permeability through the 

BBB could be dramatically reduced.  

P-gp inhibition can thus be considered as a valid approach to improve drug bioavailability in tissues 

where P-gp is highly expressed. One potential strategy to counteract multidrug resistance is the  

co-administration of a chemotherapeutic agent with a P-gp inhibitor. Thus, the modulation of P-gp is 

an important goal in overcoming drug resistance in many kinds of tumours characterized by an  

over-expression of this protein. On the other hand, the co-administration of some drugs with known  

P-gp inhibitors could lead to adverse neurotoxic reactions caused by the increased accumulation of 

drugs in the CNS. This is the case for the first and second generations of P-gp modulators (i.e., 

verapamil, biricodar), which resulted in unacceptable toxicity necessitating a reduction in 

chemotherapy doses in clinical trials [11]. 
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Several assays have been used for the identification of P-gp substrates, inhibitors, or both. 

Inhibition experiments (i.e., calcein-AM (acetomethoxy) assays and [3H]-vinblastine transport 

inhibition assay) and the ATP-ase activation assay are commonly used to identify compounds that 

inhibit the transport of known substrates and to gain info regarding pump activation. In addition, the 

monolayer efflux assay, which enables the ratio of basolateral-to-apical (B→A) permeability versus 

apical-to-basolateral (A→B) permeability to be calculated, can be useful for identifying  

P-gp substrates [12]. 

Our study was carried out using a unique dataset of 59 compounds for which there were data 

referring to inhibition, ATPase activation and monolayer efflux assays. The aim was to develop 

classification models (CMs) to identify “true” P-gp inhibitors. We define them as being “true” in the 

sense that they are compounds that are able to inhibit P-gp, without being effluxed by P-gp itself and 

simultaneously unable to activate the ATPase function. We originally introduced this definition [13] 

based on criteria suggested by Polli et al. [12]. Applying this hypothesis, the simultaneous use of the 

three types of classification models could help to identify new chemical entities according to the 

definitions summarized in Table 1.  

Table 1. Summary of definitions for “true” p-glycoprotein (P-gp) inhibitors, P-gp 

substrates or non-substrates. 

Definition P-gp Inhibition ATPase activation Efflux 

“True” inhibitor Y N N 
Substrate Y Y Y 

Non-substrate N N N 

Inhibition assay, Y: inhibitor; ATPase activation, Y: activator; efflux, Y: effluxed compound. 

A “true” P-gp inhibitor is positive only in the inhibition assay (it is not effluxed, nor does it activate 

the pump); a substrate is positive in all three assays (it activates the pump, it is effluxed, and inhibits 

the transport of a reference substrate, probably with a competitive mechanism); a non-substrate is 

negative in all three assays. 

Regarding the specific assays used to label the compounds, the calcein AM assay was used to assess 

whether or not a compound acts as a P-gp inhibitor. The calcein fluorescence is measured in a relative 

fluorescence unit (RFU). The percentage maximum response is defined by dividing the test 

compound’s RFU response by the elacridar (a potent, specific Pgp inhibitor) RFU response. 

The drug-stimulated ATPase activity (nmol/min/mg of protein) is determined as the difference 

between the amounts of inorganic phosphate released from ATP in the absence and presence of 

vanadate. Drug-stimulated Pgp ATPase activity is reported as fold-stimulation in relation to the basal 

Pgp ATPase activity in the absence of drug. 

Regarding the monolayer efflux assay, the ratio of the B→A/A→B apparent permeability (Papp) 

values is calculated. The involvement of a Pgp-mediated efflux mechanism (class Y) is suggested 

when the B→A/A→B ratio is ≥2.1. 

The predictive power of the developed CMs was estimated using a test set selected for each 

experiment from the initial dataset of 59 compounds. The best-performing models evaluated in terms 

of robustness and predictivity, obtained within each experiment, were used as a consensus model for a 
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further predictive task performed on an additional external set of compounds already synthesized by  

us [13–16]. All models were validated through currently accepted criteria for statistical analysis [17]. 

2. Results and Discussion 

2.1. Leave-One-Out cross Validation and Test Set Prediction  

Several classification models were built by using random tree (RT) and C4.5 algorithms and, for 

each model, specific parameters were changed, as previously described.  

Leave-One-Out Cross-Validation (LOO-CV) was used to estimate the classification results on the 

training sets of each experiment: on the basis of the computed statistical parameters mentioned in 

Section 3.3, only CMs with an accuracy ≥ 70%, Matthews Correlation Coefficient (MCC) ≥ 0.40,  

K ≥ 0.40 and Area Under the ROC Curve (AUC) ≥ 0.60 were selected. Tables 2–4 report the statistical 

parameters such as sensitivity (True Positives, TP), specificity (True Negatives, TN), accuracy, MCC, 

K statistic, and AUC obtained from LOO-CV and from the prediction on the test sets for the best 

decision trees developed in the three experiments. At least one model developed with the C4.5 

algorithm was reported for each experiment, even when statistics did not satisfy the requested criteria. 

Table 2. Classification models on P-gp inhibition experiment: leave-one-out (LOO)  

cross-validation statistical parameters and prediction task on the test set.  

Model LOO-cross validation statistics Test set statistics 

TP TN Acc MCC K AUC TP TN Acc 

RT(S9 K10) 62.5 87.0 76.9 0.51 0.51 0.75 90.0 50.0 70.0 
RT(S10 K11) 68.8 82.6 76.9 0.52 0.52 0.76 60.0 80.0 70.0 
RT(S1 K11) 68.8 78.3 74.4 0.47 0.47 0.74 90.0 70.0 80.0 

C4.5 37.5 65.2 53.8 0.19 0.48 0.52 60.0 50.0 55.0 

TP: True positives (sensitivity for inhibitor, class Y); TN: true negatives (specificity for class N);  

Acc: Accuracy; MCC: Matthews correlation coefficient; K: K statistic; AUC: Area Under the ROC Curve;  

S: seed number; K: number of randomly chosen molecular descriptors at each node. 

Table 3. Classification models on ATPase activation experiment: LOO cross-validation 

statistical parameters and prediction task on the test set.  

Model 
LOO-cross validation statistics Test set statistics 

TP TN Acc MCC K AUC TP TN Acc 

RT(S5 K3) 84.2 80 82.1 0.64 0.64 0.82 80.0 60.0 70.0 
RT(S10 K2) 73.7 80 76.9 0.54 0.54 0.77 60.0 80.0 70.0 

RT(S10000 K8) 73.7 70 71.8 0.44 0.44 0.72 70.0 80.0 75.0 
C4.5 89.5 75 82.1 0.65 0.64 0.86 60.0 50.0 55.0 

TP: True positives (sensitivity for ATPase activator, class Y); TN: true negatives (specificity for class N); 

Acc: Accuracy; MCC: Matthews correlation coefficient; K: K statistic; AUC: Area Under the ROC Curve;  

S: seed number; K: number of randomly chosen molecular descriptors at each node. 
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Table 4. Classification models on monolayer efflux experiment: LOO cross-validation 

statistical parameters and prediction task on the test set.  

Model LOO-cross validation statistics Test set statistics 

TP TN Acc MCC K AUC TP TN Acc 

RT(S80 K15) 79.2 60 71.8 0.40 0.40 0.70 80.0 70.0 75.0 
RT(S20 K4) 83.3 66.7 76.9 0.51 0.51 0.75 80.0 60.0 70.0 
RT(S80 K14) 83.3 60 74.4 0.45 0.44 0.72 70.0 60.0 65.0 
RT(S30 K4) 70.3 73.3 71.8 0.44 0.43 0.72 80.0 50.0 65.0 

RT(S1000 K14) 79.2 66.7 74.4 0.46 0.46 0.73 60.0 70.0 65.0 
C4.5 75.0 40.0 61.5 0.16 0.16 0.41 100.0 40.0 70.0 

TP: True positives (sensitivity for effluxed compounds, class Y); TN: true negatives (specificity for class N); 

Acc: Accuracy; MCC: Matthews correlation coefficient; K: K statistic; AUC: Area Under the ROC Curve;  

S: seed number; K: number of randomly chosen molecular descriptors at each node. 

Looking at the statistical parameters (in particular, accuracy, MCC and K statistic) obtained from 

LOO-CV, the models are expected to possess a good predictive power; however, a second validation 

step was carried out on a test set selected for each experiment (see Section 3.1) in order to support this 

result. All compounds of the test set belong to the applicability domains (AD) defined by the training 

set of each experiment (see Section 3.4 for a definition of AD).  

With regard to the inhibition experiment, 19 molecular descriptors were used for developing the 

models. After the two-step validation, three best-performing decision trees (RT method) were selected—

see Figure S1 in Supporting Information for their graphical representation.  

The RT(S10 K11) model produced the best predictions for the classification of the P-gp inhibition 

(Table 2), showing the highest level of similarity between the internal LOO-CV, with a TP of 68.8 and 

TN of 82.6%, and the external test set, with a TP of 60 and TN of 80%. RT(S10 K11) also showed the 

highest MCC, K and AUC compared to the other classification models for P-gp inhibition. On the other 

hand, C4.5 showed the lowest values for each parameter in the internal LOO-CV and external validation 

on the test set, in comparison with the other models referring to the P-gp inhibition experiment. 

RT(S9 K10) was found by randomly choosing a maximum of 10 molecular descriptors (K10) at 

each node; six molecular descriptors were involved in the model (Table 5). RT(S10 K11) and RT(S1 

K11) were found by randomly choosing a maximum of 11 molecular descriptors at each node; both 

models were finally based on five molecular descriptors. 

Table 5. Number and type of molecular descriptors involved in each model developed for 

the inhibition, ATPase activation, and monolayer efflux experiments. 

Inhibition 

Model n° of Molecular Descriptors involved 
RT(S9 K10) 6 

RT(S10 K11) 5 
RT(S1 K11) 5 

Molecular descriptor n° of models in which the descriptor is involved 
XLogP 3  
AMR 3 
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Table 5. Cont. 

Inhibition 
nBondsS3 3 

Ghose-Crippen LogKow 3 
TopoPSA 2 

PubchemFP544 1 
C1SP2 1 

ATPase activation 
Model n° of Molecular Descriptors involved 

RT(S5 K3) 10 
RT(S10 K2) 9 

RT(S10000 K8) 7 
Molecular descriptor n° of models in which the descriptor is involved 

TopoPSA 3 
MLFER_E 3 

n6Ring 3 
nHBDon 3 
nHBAcc 3 
nT6Ring 3 

nRing 2 
PubchemFP256 2 
PubchemFP392 1 
Pubchem FP437 1 
PubchemFP495 1 
PubchemFP592 1 
PubchemFP607 1 

Monolayer efflux 
Model n° of Molecular Descriptors involved 

RT(S30 K4) 10 
RT(S20 K4) 9 

RT(S80 K14) 8 
RT(S80 K15) 7 

RT(S1000 K14) 6 
Molecular descriptor n° of models in which the descriptor is involved 

nBondsS3 5 
MLFER_E 5 

XLogP 4 
C3SP2 4 

MLFER_A 4 
Ghose-Crippen LogKow 4 

AMR 3 
C2SP2 2 

nHBAcc 2 
nRing 2 

Mannhold LogP 1 
C2SP3 1 

PubchemFP299 1 
PubchemFP737 1 

SubFPC275 1 
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Only seven of the initially exploited 19 molecular descriptors were involved in these decision trees: 

XLogP, molar refractivity (AMR), number of single bonds, excluding bonds with hydrogen atoms and 

aromatic bonds (nBondsS3), and Ghose-Crippen LogKow (ALogP) was common to all models  

(Table 5). Topological Polar Surface Area (TopoPSA) was common to models RT(S9 K10) and 

RT(S10 K11). The SMARTS pattern: O:C-C:O (PubchemFP544) and a doubly bound carbon, bound 

to another carbon, = C–C– (C1SP2) were only involved in RT(S1 K11) and RT(S9 K10), respectively. 

XLogP created the highest separation (13/4) of the Y/N compounds; most of the inhibitors had a 

XLogP ≥ 1.6 (13/16 Y compounds, as observed in RT(S9 K10)); a topological polar surface area  

> 23.76 Å2, and a Ghose-Crippen LogKow (ALogP) ≥ −0.76 (12/16 class Y compounds, as observed in 

RT(S9 K10)). Having a high PSA corresponds to a high proportion of electronegative elements  

(i.e., nitrogen and oxygen atoms) and accounts for the poor penetration of molecules in a hydrophobic 

environment (i.e., biological membranes). However, it may account for their easy penetration in 

hydrophilic environments, such as the core of transporter proteins. Generally, molecules with a  

PSA > 140 Å2 are believed to have a low capacity for penetrating cell membranes, while those with 

PSA < 60 Å2 are easily absorbed [18]. Our finding is in agreement with Gadhe et al. [19] who carried 

out a CoMFA and HQSAR study, highlighting the importance of the presence of electronegative 

elements for a compound to be an inhibitor. Of the inhibitors belonging to our training set and 

characterized by a high proportion of electronegative atoms, nitrendipine, nicardipine and nifedipine 

are examples of compounds bearing a nitro group. This aspect also was also observed by Gadhe et al. 

who found that a nitro group (together with methoxy and ether) can lead to a good inhibitory potency. 

For the ATPase activation experiment, 18 molecular descriptors were used for developing the 

models. After LOO-CV and the prediction task on the test set, three best-performing decision tree 

models (RT method) were selected—see Figure S2 in Supporting Information for their schematic 

representation.  

The RT(S5 K3) and RT(S10 K2) models produced the best predictions for the classification of the 

ATPase activation experiment (Table 3). The RT(S5 K3) and RT(S10 K2) models showed the best 

similarity between the internal LOO-CV, with a TP of 84.2 and 73.7% and a TN of 80%, and the 

external test set, with a TP of 80 and 60% and TN of 60 and 80%, respectively. RT(S5 K3) showed the 

highest MCC, K and AUC, compared to the other classification models for the ATPase activation 

experiment. Unlike the models developed with the RT algorithm, C4.5 showed the lowest values for 

each parameter in the external test set.  

RT(S10 K2), RT(S5 K3) and RT(S10000 K8) were found by randomly choosing a maximum of 2, 

3 and 8 molecular descriptors at each node; the models were based on 9, 10, and 7 descriptors, 

respectively (Table 5). 

Finally, of the 18 descriptors exploited in developing the models, only 13 were involved in these 

decision trees and six are common to all the selected decision trees (Table 5): topological polar surface 

area (TopoPSA), excessive molar refraction (MLFER_E), number of six-membered rings (n6Ring), 

number of H-bond donors (nHBDon), number of H-bond acceptors (nHBAcc), and number of six 

membered rings, including the fused ones (nT6Ring). Two molecular descriptors, number of rings 

(nRing) and heteroaromatic rings (PubchemFP256), were common to RT(S5 K3) and RT(S10 K2). 

The detailed atom neighbourhood pattern C(–C)(–N)(=C) (PubchemFP437) and the simple SMARTS 

pattern N–C–C–C–C (PubchemFP592) were involved in RT(S5 K3). The simple SMARTS patterns  
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C–N–C:C and N–C–C–C:C) (Pubchem FP495 and PubchemFP607) were involved in RT(S10 K2). 

Finally, the simple atom nearest neighbour pattern N(~C) (~C) (~H) (PubchemFP392) was only 

present in RT(S10000 K8).  

Looking at RT(S10 K2) (Figure S2 in Supporting Information), we observe that all the considered 

ATPase activators have a polar surface area higher than 29.77 Å2. This is in agreement with Fernandes 

and Gattass, who analyzed the chemical properties of some known P-gp substrates and their results 

supported the hypothesis that P-gp pumps out substrates with a high TopoPSA [20]. 

Looking at the decision trees for the ATPase activation experiment (Figure 2 in Supporting 

Information), highlights that although the trees do not indicate a clear separation between activators 

and non-activators: in general, most of the ATPase activators have a number of H-bond donors 

(nHBDon) < 3 and a number of H-bond acceptors (nHBAcc) < 9, an excessive molar refraction 

(MLFER_E) ranging between 1.92 and 3.64 and they have at least one the N–C–C–C:C pattern  

(where “:” refers to an aromatic bond) (PubchemFP607). Furthermore, most of the non-activators have 

more than two six-membered rings (n6Ring).  

For the monolayer efflux experiment, 22 molecular descriptors were used to develop the models. 

After the two-step statistical validation, five best-performing decision tree models (RT method) were 

selected—see Figure S3 in Supporting Information for their graphical representation. 

The RT(S20 K4) model produced the best predictions for the classification of the monolayer efflux 

experiment (Table 4). This model also showed the highest level of similarity between the internal 

LOO-CV, with a TP of 83.3 and a TN of 66.7%, and the external test set, with a TP of 80 and TN of 

60%. Moreover, RT(S20 K4) showed the highest MCC, K and AUC, compared to the other 

classification models for the monolayer efflux experiment. On the other hand, C4.5 showed the lowest 

values for each parameter in the internal LOO-CV and external test set, compared to each model in the 

monolayer efflux experiment. 

RT(S20 K4) and RT(S30 K4) were constructed by randomly choosing a maximum of four 

molecular descriptors at each node. RT(S80 K14) and RT(S1000 K14) were obtained by choosing the 

optimal descriptors from the 14 descriptors available, and RT(S80 K15) was constructed by randomly 

choosing a maximum of 15 molecular descriptors at each node. The final models were based on 9, 10, 

8, 6, and 7 descriptors, respectively (Table 5). 

Lastly, only 14 of the exploited 22 molecular descriptors were involved in these decision trees: the 

number of single bonds, excluding bonds with hydrogen atoms and aromatic bonds (nBondsS3) and 

excessive molar refraction (MLFER_E), were common to all five decision trees (Table 5). XLogP, a 

double bond C atom bound to three other C atoms (C3SP2), the overall summation solute H-bond 

acidity (MLFER_A), and Ghose-Crippen LogKow (ALogP), were common to four out of five models. 

Molar refractivity (AMR) was involved in RT(S80 K15), RT(S20 K4), and RT(S80 K14); double 

bond C atom bound to two other C atoms (C2SP2), number of H-bond acceptors (nHBAcc), and 

number of rings (nRing) were common to two out of five decision trees. Finally, Mannhold LogP 

(MLogP) and simple atom pair N-H (PubchemFP299), count of heterocycles (SubFPC275), single 

bound C atom bound to two other C atoms (C2SP3) and complex SMARTS pattern Cc1cc(N)ccc1 

(PubchemFP737) were only involved in RT(S20 K4), RT(S80 K15), and RT(S30 K4), respectively. 

The graphical representation of the decision trees (Figure S3 in Supporting Information) highlights 

that 21 out of 24 of the effluxed compounds have at least 12 single bonds (excluding bonds with 



Int. J. Mol. Sci. 2012, 13 6932 

 

 

hydrogens and aromatic bonds) (nBondsS3), nBondsS3 molecular descriptor also marks the highest 

separation (22/6) among effluxed(Y)/non-effluxed(N) compounds. A total of 23 out of 24 effluxed 

compounds have a MLFER_E ≥ 1.52, and less than six double bound C atoms bound to three other C 

atoms (C3SP2). At least 20 of the 24 effluxed compounds have a Mannhold LogP (MLogP) ≥ 2.51, 

and almost 17/24 have almost 3 single bound C atom bound to two other C atoms (C2SP3), almost a 

simple atom pair N-H (PubchemFP299), less than five heterocycles (SubFPC275) and less than five 

rings (nRing). 

In summary, the molecular descriptors characterizing the best-performing classification models 

appear to be involved (within each experiment) in different trees showing comparable performances. 

This can be considered as a proof of the stability and reliability of the models, and suggests that the 

performance depends on the sets of molecular descriptors chosen for each experiment (the selection of 

descriptors is described in Section 3.1). 

Furthermore, detailed analysis of the decision trees in the three experiments suggested a pool of 

molecular features that can help in the development of new chemical entities potentially endowed with 

a profile typical of a “true” inhibitor. Some of them, (e.g., polar surface area and LogP for the 

inhibition experiment and nBondsS3 for the efflux experiment), gave quite a clear separation between 

Y/N compounds. 

2.2. Consensus Modelling and Prediction Task on an Additional External Set  

Since all the models were reasonably accurate with regard to the prediction on the test set 

compounds, a consensus model was built for each experiment, by considering the predictions and 

taking into account the applicability domain of each individual model. The statistical parameters for 

LOO-cross validation and for the predictive task on the test sets were calculated using a majority 

voting criteria (i.e., when the majority of models constituting the consensus model classify a 

compound as Y (or N), the prediction output of the consensus model is Y (or N)); results are reported 

in Table 6. 

Table 6. Consensus models for inhibition, ATP-ase activation and monolayer  

efflux experiments.  

 LOO-cross validation statistics Test set statistics 

Model TP (Y) TN (N) Acc MCC K AUC TP (Y) TN (N) Acc 
Inhibition 68.8 95.7 84.6 0.67 0.67 0.82 90.0 70.0 80.0 

ATPase activation 78.9 75 76.9 0.54 0.54 0.84 70.0 80.0 75.0 
Monolayer efflux 83.3 66.7 76.9 0.44 0.51 0.75 80.0 70.0 75.0 

TP: True positives; TN: true negatives; Acc: Accuracy; MCC: Matthews correlation coefficient; K: K 

statistic; AUC: Area Under the ROC Curve; S: seed number; K: number of randomly chosen molecular 

descriptors at each node. 

The results showed that the prediction accuracies of the consensus models, considering the 

statistical parameters obtained for both the LOO-CV and for the prediction task on test sets, were 

generally better than those of any individual model. This is highlighted in the inhibition experiment 

where the best models (RT(S9 K10) and RT(S10 K11)) showed an accuracy of 76.9% and a  
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MCC = 0.51–0.52 on LOO-CV and an accuracy on the test set of 70%. The consensus model shows an 

improved accuracy for both LOO-CV and the test set prediction (84.6 and 80%, respectively) and a 

MCC = 0.67. 

The consensus models were tested on the external set constituted by compounds that we had 

previously synthesized and tested in order to further evaluate the power of the consensus prediction. 

All the external set compounds belong to the applicability domain defined by each training set 

constituting the consensus models. Results of the prediction task are reported in Table 7.  

Table 7. Consensus models statistics for the prediction task on the additional external set.  

 External set statistics 

Model TP (Y) TN (N) Accuracy 

Inhibition 77.1 83.3 77.8 
ATPase activation 75.0 71.4 72.3 
Monolayer efflux 74.4 100.0 76.6 

TP: True positives; TN: true negatives; Acc: Accuracy; Y: inhibitor, ATPase activator, or  

effluxed compound. 

The overall accuracy is similar to that observed on the test sets and comparable to that found by 

other studies on P-gp substrates [21,22]. 

As observed in Section 2.1, only two compounds of this additional external set, II_14a and II_15a, 

are considered effective “true” inhibitors; since they inhibit P-gp with a higher power than elacridar, 

they do not activate ATPase, nor are they effluxed by P-gp. The consensus models correctly predict 

these two compounds and the descriptor nBondsS3 appear to be determinant in identifying them, in 

particular among the compounds of series “III”: II_14a and II_15a have less than 12 single bonds 

(excluding bonds with H atoms and aromatic bonds). In addition, II_11b, II_13a, II_13b, II_16a, 

II_17a, II_17b and II-23 have nBondsS3 < 12, however, they are discarded by the consensus models as 

“true” inhibitors probably because of their polar surface area which is not in the ideal range (23.76–

29.77 Å2) for a compound that can inhibit P-gp without activating ATP-ase. 

3. Experimental Section  

3.1. Dataset and Molecular Descriptors 

The classification models were developed and validated using biological data referring to 59 

compounds taken from Polli et al. [12] belonging to heterogeneous chemical classes and for which 

homogeneous biological data referring to inhibition, ATPase activation and monolayer efflux assays 

were available (Table 8). 

Table 8. Dataset of 59 compounds, with their IAE profile. 

Compound Inhibitor ATPase 
activator 

Efflux Compound Inhibitor ATPase 
activator 

Efflux 

Amantadine N N N Testosterone Y N N 
Chlorpheniramine N N N Chlorpromazine Y Y N 

Doxorubicin N N N Ketoconazole Y Y N 
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Table 8. Cont. 

Compound Inhibitor ATPase 
activator 

Efflux Compound Inhibitor ATPase 
activator 

Efflux 

Itraconazole N N N Mebendazole Y Y N 
Lidocaine N N N Midazolam Y Y N 
Mannitol N N N Nicardipine Y Y N 

Methotrexate N N N Nifedipine Y Y N 
Practolol N N N Nitrendipine Y Y N 

Propranolol N N N Verapamil Y Y N 
Pyridostigmine N N N Chloroquine N N Y 

Ranitidine N N N Cimetidine N N Y 
Sumatriptan N N N Colchicine N N Y 
Triamterene N N N Daunorubicin N N Y 
Yohimbine N N N Dexamethasone N N Y 
Amprenavir Y Y Y Etoposide N N Y 
Diltiazem Y Y Y Hoechst 33342 N N Y 

Dipyridamole Y Y Y Mitoxantrone N N Y 
Loperamide Y Y Y Neostigmine N N Y 
Loratadine Y Y Y Puromycin N N Y 
Monensin Y Y Y Vincristine N N Y 
Nelfinavir Y Y Y Vinorelbine N N Y 
Prazosin Y Y Y Clarythromycin N Y Y 

Quinidine Y Y Y Eletriptan N Y Y 
Reserpine Y Y Y Emetine N Y Y 
Ritonavir Y Y Y Erythromycin N Y Y 

Saquinavir Y Y Y Indinavir N Y Y 
Terfenadine Y Y Y Taxol N Y Y 
Vinblastine Y Y Y Trimethoprim N Y Y 
Elacridar Y N N Cyclosporin A Y N Y 

GW420867 Y N N     

Of the 59 selected compounds, 26 act as inhibitors (class Y) and 33 do not (class N); 29 compounds 

stimulate ATPase activity (class Y) and 30 are not ATPase activators (class N); 34 compounds are 

effluxed (B→A/A→B ratio > 2.1) and 25 do not undergo efflux. Of these, only elacridar, GW420867, 

and testosterone are considered to be “true”-inhibitors (YNN profile), with elacridar being the most 

potent. This binary classification was performed according to thresholds defined for each assay [12].  

For the P-gp inhibition experiment, in the calcein AM assay the percentage maximum response is 

defined by dividing the test compound’s RFU response by the elacridar RFU response. All compounds 

with a response < 10% of the maximum were labelled as negative in the assay (class N). Vinorelbine, 

vincristine, and propranolol had a maximum response between 6% and 12%, thus belonging to the 

non-confident zone, a region where it is difficult to classify a compound as “Y” or “N”. However, 

since these three compounds had a response <10% of maximum, they were labelled as “N” [12].  

Drug-stimulated Pgp ATPase activity was reported as fold-stimulation in relation to the basal Pgp 

ATPase activity in the absence of drugs (DMSO control). A compound was classified as an ATPase 

activator (class Y) if the fold-stimulation was > 2 over the DMSO control. Daunorubicin fell into the 
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non-confident range of ATPase stimulation (between 1.5 and 2.0); however, because the stimulation 

ratio was below 2-fold, the compound was labelled as “N” [12].  

Regarding the monolayer efflux assay, a Pgp-mediated efflux mechanism (class Y) is involved if 

the B→A/A→B ratio is ≥ 2.1. For compounds with B→A/A→B ratios between 1.5 and 2.0, a follow-up 

experiment with 2 μM elacridar was completed to confirm that the compound was effluxed [12].  

In this study, aimed at developing classification models for the identification of “true” P-gp 

inhibitors, a unique dataset was exploited for which homogeneous biological data of inhibition, 

ATPase activation and efflux assays were available. We used an initial dataset containing biological 

data characterized by the required homogeneity but, at the same time, characterized by low variability. 

In fact, the data came from the same research group and were acquired by using the same experimental 

protocol, which ensures that reliable models are obtained. Although the limited size of the dataset may 

lead to the development of models characterized by a limited applicability domain, the creation of a 

consensus model for each type of experiment should help to overcome this problem. The overall 

coverage of chemical space afforded by the consensus model is expected to be high, because it is rare 

to have an unknown compound outside of the defined applicability domain of all available models that 

constitute the consensus model. 

Looking at the number of compounds for each class, it can be noted that the three datasets are quite 

well balanced, which is a critical requirement for the development of a classification model [23].  

The predictive power of the classification models was also tested on an external set made up of 47 

derivatives which we had already synthesized and tested (Table 9) [13–16]. 

Table 9. External set of 47 synthesized compounds. Suffix I, II, and III refer to  

references [13–15] respectively; MV181 is taken from ref [16]. Inhibitors with a potency 

similar to or higher than elacridar are reported in bold in the second column. 

Compound Inhibitor ATPase 
activator 

Efflux Compound Inhibitor ATPase 
activator 

Efflux 

I_8b Y N Y III_7c Y Y Y 
II_11a Y N N III_7d Y Y Y 
II_11b Y N Y III_8a Y Y Y 
II_13a Y N Y III_8b Y Y Y 
II_13b Y N Y III_8c Y Y Y 
II_14a Y N N III_8d Y Y Y 
II_14b Y Y Y III_9a Y N Y 
II_15a Y N N III_9b Y N Y 
II_15b Y N Y III_9c Y N Y 
II_16a Y N Y III_9d Y N Y 
II_16b Y N Y III_10a Y N Y 
II_17b Y Y N III_10b Y N Y 
II_23 Y N Y III_10c Y N Y 
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Table 9. Cont. 

Compound Inhibitor ATPase 
activator 

Efflux Compound Inhibitor ATPase 
activator 

Efflux 

II_25 Y N Y III_10d Y N Y 
II_26 Y N Y III_11a Y N Y 
II_27 Y N Y III_11b Y N Y 
III_5a Y N Y III_11c Y N Y 
III_5b Y N Y III_11d Y N Y 
III_5c Y N Y III_12a Y Y Y 
III_5d Y N Y III_12b Y N Y 
III_6b Y N Y III_12c Y N Y 
III_6c Y N Y III_12d Y Y Y 
III_7a N Y Y MV181 N N Y 
III_7b Y Y Y     

Inhibition assay, Y: inhibitor; ATPase activation, Y: activator; efflux, Y: effluxed compound. 

All 47 selected compounds were tested for inhibition, ATPase activation and monolayer efflux, and 

were labelled as Y/N. In terms of the inhibition assay, since almost all the synthesized compounds 

(except III_7a and MV181) are labelled as inhibitors with a potency higher than verapamil, seven  

non-inhibitors (I_5a–b, I_6a–b, I_7a–b, and I_8a) from reference [14] were added in order to increase 

the N class, and to better assess the classification power of the models on our synthesized compounds. 

A total of 26 out of 45 inhibitors were stronger than elacridar, of which only two (II_14a, II_15a) are 

considered as “true” inhibitors, since they do not activate ATPase and are not effluxed by P-gp. 

Molecular descriptors were calculated by PaDEL, a software that enables the computation of 2D 

and 3D descriptors and several types of fingerprints [24]. A total of 696 molecular descriptors and 

Pubchem fingerprints and substructure fingerprints [25] were calculated for compounds of both the 

modelling and the external set (Table 10). 

Table 10. Molecular descriptors calculated by PaDEL. 

Descriptor Type Descriptor ID Class 

AcidicGroupCount nAcid 2D 
ALOGP ALogP, ALogP2, AMR 2D 
APol apol 2D 
Aromatic atoms count naAromAtom 2D 
Aromatic bonds count nAromBond 2D 
Atom count nAtom, nHeavyAtom, nH, nB, nC, nN, nO, nS, nP, nF, 

nCl, nBr, nI 
2D 

BasicGroupCount nBase 2D 
BondCount nBonds, nBonds2, nBondsS, nBondsS2, nBondsS3, 

nBondsD, nBondsD2, nBondsT, nBondsQ 
2D 

BPol bpol 2D 
Carbon types C1SP1, C2SP1, C1SP2, C2SP2, C3SP2, C1SP3, C2SP3, 

C3SP3, C4SP3 
2D 
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Table 10. Cont. 

Descriptor Type Descriptor ID Class 

HBondAcceptorCount nHBAcc, nHBAcc2, nHBAcc3, nHBAcc_Lipinski 2D 
HBondDonorCount nHBDon, nHBDon_Lipinski 2D 
LargestChain nAtomLC 2D 
LargestPiSystem nAtomP 2D 
LongestAliphaticChain nAtomLAC 2D 
MannholdLogP MLogP 2D 
McGowanVolume McGowan_Volume 2D 
MLFER MLFER_A, MLFER_BH, MLFER_BO, MLFER_S, 

MLFER_E, MLFER_L 
2D 

Ring count nRing, n3Ring, n4Ring, n5Ring, n6Ring, n7Ring, n8Ring, 
n9Ring, n10Ring, n11Ring, n12Ring, nG12Ring,  
nFRing, nF4Ring, nF5Ring, nF6Ring, nF7Ring, nF8Ring, 
nF9Ring, nF10Ring, nF11Ring, nF12Ring, nFG12Ring,  
nTRing, nT4Ring, nT5Ring, nT6Ring, nT7Ring, nT8Ring, 
nT9Ring, nT10Ring, nT11Ring, nT12Ring, nTG12Ring 

2D 

Rotatable bonds count nRotB 2D 
Rule of five LipinskiFailures 2D 
Topological polar surface 
area 

TopoPSA 2D 

van der Waals volume VABC 2D 
Weight MW 2D 
XLogP XLogP 2D 
Charged partial surface area PPSA-1, PPSA-2, PPSA-3,  

PNSA-1, PNSA-2, PNSA-3,  
DPSA-1, DPSA-2, DPSA-3,  
FPSA-1, FPSA-2, FPSA-3,  
FNSA-1, FNSA-2, FNSA-3,  
WPSA-1, WPSA-2, WPSA-3,  
WNSA-1, WNSA-2, WNSA-3,  
RPCG, RNCG, RPCS, RNCS, THSA, TPSA, RHSA, RPSA 

3D 

Moment of inertia MOMI-X, MOMI-Y, MOMI-Z, MOMI-XY, MOMI-XZ, 
MOMI-YZ, MOMI-R 

3D 

Pubchem fingerprint Hierarchal element counts 
Rings in a canonic Extended Smallest Set of Smallest Rings 
(ESSSR) ring set 
Simple atom pairs 
Simple atom nearest neighbours 
Detailed atom neighbourhoods 
Simple SMARTS patterns 
Complex SMARTS patterns 

fingerprint 

Substructure fingerprint - fingerprint 
Substructure fingerprint 
count 

-  
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For each experiment, the dataset was split into a training set of 39 molecules and a test set of 20. 

Test sets were rationally selected using the calculated molecular descriptors. Each molecule of the 

initial dataset was represented as a point in a multi-dimensional space defined by all the descriptors. 

The dataset was thus split into a training/test set pair for each experiment, so that points representing 

both training and test sets were distributed within the whole descriptor space occupied by the entire 

dataset, and each point of the test set was close to at least one point of the training set. This ensures 

that the similarity principle is followed when activity is predicted on the test set. Rational splitting was 

accomplished using a Sphere-Exclusion type algorithm [26], which we had subsequently optimized [27]. 

However, the selection was “driven” so that the two classes of each experiment were equally 

represented in the test set (10 compounds for each class Y/N) as commonly suggested for binary 

classification models [23]. The compounds selected for each test set are shown in Table 11. 

Table 11. Selected test sets for inhibition, ATPase activation and monolayer efflux experiments. 

Inhibition ATPase activation Monolayer efflux 

Vinblastine Dipyridamole Vinblastine 
Terfenadine Vinblastine Taxol 

Ritonavir Taxol Ritonavir 
Loratadine Ritonavir Clarythromycin 
Monensin Clarithromycin Indinavir 
Reserpine Monensin Emetine 
Nelfinavir Amprenavir Dipyridamole 

Dipyridamole Reserpine Monensin 
Ketoconazole Trimethoprim Reserpine 
Loperamide Prazosin Colchicine 
Vincristine Doxorubicin Itraconazole 

Taxol Vincristine Verapamil 
Vinorelbine Mitoxantrone Nicardipine 

Clarithromycin Etoposide Yohimbine 
Itraconazole Methotrexate Chlorpromazine 
Etoposide Puromycin Midazolam 

Daunorubicin Vinorelbine Nifedipine 
Mitoxantrone Triamterene Methotrexate 

Hoechst 33342 Mannitol Testosterone 
Emetine Cimetidine Practolol 

For each experiment, the initial high number of descriptors was pre-selected, which enabled us to 

leave out of the subsequent modelling process any descriptors that do not change significantly across 

the molecules of the dataset or those that were too strictly correlated (i.e., that do not contain the 

desired degree of information). Descriptors with constant values and those showing an inter-correlation 

higher than 0.95 were thus discarded. 

After that, in order to determine the right combination of molecular descriptors to be used in the 

search for good models, the CfsSubsetEval attribute evaluator [28] within the WEKA software [29], 

was applied and a genetic algorithm was chosen as the search method. This method evaluates the 

worth of a subset of attributes by considering the individual predictive ability of each feature along 



Int. J. Mol. Sci. 2012, 13 6939 

 

 

with the degree of redundancy between them. Subsets of features that are highly correlated with the 

class of compound while having low inter-correlation are preferred. Using a Leave-One-Out (LOO) 

cross-validation on each training set, and performing 10 runs with different seed numbers to obtain 

averaged results, subsets of molecular descriptors were selected according to the average percentage of 

a ranking value. Following this method, the molecular descriptors were reduced to three subsets of 19, 

18, and 22 descriptors which were used to develop classification models for the inhibition, ATPase 

activation and monolayer efflux experiments, respectively. 

3.2. Classification Methods  

Decision trees are one of the most widely used forms of machine learning enabling data mining for 

predictive purposes. In this study, Random tree and C4.5 [30] algorithms available in WEKA were 

used to develop predictive CMs. 

The Random Tree algorithm builds a tree that considers K randomly chosen attributes at each node. 

Models were developed by changing this parameter between 1 and the maximum number of molecular 

descriptors used for model development (19, 18, and 22 descriptors for the inhibition, ATPase 

activation, and monolayer efflux experiments, respectively). Thus, no more than 10 descriptors (with a 

minimum number of 5) were involved in the best-performing decision trees (Table 5). This number of 

descriptors appears to be suitable for the size of the dataset exploited when using classifications 

approaches. No maximum depth for the tree was fixed. The minimum total weight of the instances in a 

leaf was set to 1 and 20 different random seeds were used. 

In C4.5, pruning was used by setting the confidence factor to 0.25 (default value). The minimum 

number of instances (compounds) per leaf varied from 1 to 5. The amount of data (NumFolds) for 

reduced-error pruning was also varied. 

In all cases, we tried to obtain statistically validated decision tree models that were as small as 

possible and that had large leaf nodes. This would then lead to models that were probably easier to 

interpret and that had a better predictive power (e.g., a leaf with 100 compounds in it will have more 

predictive power than one with just one or two compounds).  

3.3. Statistical Validation 

Parameters needed for model validation were computed and analyzed for the validation step for 

both the training (internal validation) and the selected test set (external validation). 

Leave-one-out cross validation on the training sets was employed for the internal validation and to 

assess the robustness of the model. Models were estimated on the basis of true positives (TP), or 

sensitivity (fraction of “class Y” molecules correctly classified), true negatives (TN) or specificity, 

(fraction of “class N” molecules correctly classified), and accuracy (fraction of molecules correctly 

classified) on the Training set. Other statistics were considered, such as the Matthews Correlation 

Coefficient (MCC) [31], the K statistic [32], and the area under the Receiver Operating Characteristic 

(ROC) curve (AUC) [33]. 

The MCC is a measure of the quality of classification. It is expressed by values ranging between −1 

and +1, where +1 represents a perfect prediction, 0 an average random prediction, and −1 means an 

inverse prediction. The MCC is considered one of the best parameters to estimate what is reported in 
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the so-called confusion matrix with regard to true and false positives and negatives. The equation used 

for computing MCC values is the following: 

( ) ( )
( )( )( ) )( FNTNFPTNFNTPFPTP

FNFPTNTP
MCC

++++
×−×=  

where TP is the number of true positives, TN the number of true negatives, FP the number of false 

positives (“class N” compounds predicted as “class Y”), and FN the number of false negatives (“class 

Y” compounds predicted as “class N”). The advantage of the MCC is that it can be used to evaluate the 

quality of classification models even when developed on an unbalanced dataset. 

K is the chance-corrected proportional agreement: it is an index that compares the agreement found 

versus the agreement that might be expected by chance. K = 1 corresponds to a perfect agreement, K = 0 

means an agreement equal to what expected by chance, and K = −1 means complete disagreement. 

The ROC curve can be represented by plotting the fraction of TP (or sensitivity) versus the fraction 

of FP (or 1-specificity). The ROC analysis helps to select optimal classification models and to discard 

the suboptimal ones. The ROC curve provides a criterion based on the so-called AUC (Area Under the 

ROC curve), which is an index of goodness of the classification model: a perfect CM shows AUC = 1. 

When evaluating the results of a classification model, the reference status is generally considered as 

the one where all of the objects are assigned to the class that is most represented. This reference 

condition corresponds to the absence of a model, and is therefore called a No-model condition. 

Statistical parameters similar to those obtained for the No-model status provide evidence of poor 

results from the classification model, as the No-model value is unique and does not depend on the 

classification method used. 

3.4. Applicability Domain 

Several methods to define the Applicability Domain of a QSAR model have been reported in the 

literature; in this work, we exploited a distance-based method [34]. In this approach, the applicability 

domain (AD) where the model is expected to give reliable predictions is defined through a  

similarity-based criterion. This enables us to leave out from the prediction task those compounds 

whose structural features were poorly sampled in the training set and whose predictions are not reliable.  

In order to estimate structural similarity, each compound was represented by a point in the  

N-dimensional descriptor space (where N is the total number of descriptors); its coordinates (X1, X2, …, XN, 

where Xi) take the values of each individual descriptor. The molecular similarity between all the pairs of 

molecules was measured in terms of the Euclidean distance between their representative points. 

Compounds with the smallest distance between them have the highest similarity.  

In addition, we needed to define a centroid of the training set: this was calculated as a point in the 

N-dimensional descriptors space with coordinates 1X , 2X , …, NX , where iX  is the average value of 

the i descriptor within the training set. The Euclidean distances between the centroid and each of the 

molecules of the training set were then computed, so that the minimum and maximum distances from 

the centroid were used to define the AD (allowed range). Test set and external set compounds that 

have to be subjected to the prediction task must fall within the AD of the model: the distances between 

each molecule and the centroid must be included within the allowed range. 



Int. J. Mol. Sci. 2012, 13 6941 

 

 

The consensus model obtained from each experiment was constructed by averaging all available 

predicted values by taking into account the applicability domain of each individual model.  

Since each model had its unique way of defining the AD, each compound of the test set and the 

external set could be found within the AD of one or more models constituting the consensus model, so 

only models “covering” the compound were used for averaging. The advantage of this method is that 

the overall coverage of the prediction is still high since it is rare to have an unknown compound 

outside of the defined ADs of all available models [23]. 

4. Conclusions  

P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to 

overcome the drug resistance to many kind of tumours characterized by an over-expression of this 

protein. The development of predictive models for identifying “true” P-gp inhibitors could be valuable 

in selecting new chemical entities that inhibit P-gp without affecting ATPase activity and that are not 

actively effluxed by P-gp. 

Three experiments to develop classification models aimed at identifying “true” P-gp inhibitors were 

thus performed. The study was carried out using decision tree algorithms on a unique dataset of  

59 compounds for which data referring to inhibition, ATPase activation and monolayer efflux assays 

were available. The predictive power of the models was assessed using a LOO-CV for internal 

validation and a selected test set for the external validation. This two-step validation led to a pool of  

best-performing models for each experiment, which were used as a consensus model that showed a 

better performance than any single model. Furthermore, the consensus models correctly identified the 

“true” inhibitors from the additional external set of compounds that we had synthesized. The molecular 

descriptors characterizing the best-performing classification models appeared to be involved (within 

each experiment) in different trees, thus confirming the stability and reliability of the models. The 

analysis of the decision trees suggested a pool of molecular features that could help in the development 

of new chemical entities potentially endowed with the typical profile of a “true”-inhibitor. 
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