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Abstract: The role of mitochondrial DNA (mtDNA) alterations in the pathophysiology of 

systemic lupus erythematosus (SLE) remains unclear. We investigated sequence variations 

in the D310 region and copy number change of mtDNA in 85 SLE patients and 45 normal 

subjects. Leukocyte DNA and RNA were extracted from leukocytes of the peripheral 

venous blood. The D310 sequence variations and copy number of mtDNA, and mRNA 

expression levels of mtDNA-encoded genes in leukocytes were determined by quantitative 

real-time polymerase chain reaction (Q-PCR) and PCR-based direct sequencing, respectively. 
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We found that leukocyte mtDNA in SLE patients exhibited higher frequency of D310 

heteroplasmy (69.4% vs. 48.9%, p = 0.022) and more D310 variants (2.2 vs. 1.7, p = 0.014) 

than those found in controls. Among normal controls and patients with low, medium or 

high SLE disease activity index (SLEDAI), an ever-increasing frequency of D310 

heteroplasmy was observed (p = 0.021). Leukocyte mtDNA copy number tended to be low 

in patients of high SLEDAI group (p = 0.068), especially in those harboring mtDNA with 

D310 heteroplasmy (p = 0.020). Moreover, the mtDNA copy number was positively 

correlated with the mRNA level of mtDNA-encoded ND1 (NADH dehydrogenase  

subunit 1) (p = 0.041) and ATPase 6 (ATP synthase subunit 6) (p = 0.030) genes. Patients 

with more D310 variants were more susceptible to lupus nephritis (p = 0.035). Taken 

together, our findings suggest that decrease in the mtDNA copy number and increase in 

D310 heteroplasmy of mtDNA are related to the development and progression of SLE,  

and that the patients harboring more D310 variants of mtDNA are more susceptible to 

lupus nephritis.  

Keywords: systemic lupus erythematosus; mitochondrial DNA; copy number; D310 

sequence variation; heteroplasmy 

 

1. Introduction 

Systemic lupus erythematosus (SLE) is a prototype of autoimmune disease characterized by the 

dysfunction of immunocompetent cells with the production of protean pathogenic auto-antibodies that 

lead to multiple arrays of major organ injuries [1]. Although the pathogenesis of SLE has been 

attributed to several environmental or genetic factors, the detailed mechanisms remain obscure [2]. 

Previous studies have revealed that mitochondrial dysfunction may participate in the pathogenesis of 

SLE through its implication in causing insufficient ATP production for cell survival and triggering 

apoptosis and autophagy for cell death [3–6]. Furthermore, recent studies showed that genetic 

alterations in mitochondrial DNA (mtDNA) were associated with the susceptibility to SLE [7,8], and 

an increase of mtDNA content in serum was related to a poor outcome of SLE [9]. Thus, a delineation 

of the role of mtDNA alterations in SLE may be of great clinical relevance. 

Human mtDNA is a double-stranded and circular DNA that contains approximately 16,569 

nucleotide base pairs (bp), including the coding and non-coding regions (refer to a human 

mitochondrial genome database) [10,11]. The coding region encodes 13 polypeptides relevant to 

electron transport as well as a set of 22 tRNAs and 2 rRNAs required for protein synthesis in 

mitochondria. All of the 13 polypeptides encoded by mtDNA are essential for the assembly of 

respiratory enzyme complexes (Complexes I, II, III, and IV for electron transport; and Complex V for 

oxidative phosphorylation), including 7 (ND1, ND2, ND3, ND4, ND4L, ND5, and ND6; ND = NADH 

dehydrogenase) in Complex I, 1 (cytochrome b) in Complex III, 3 (COX I, COX II and COX III;  

COX = cytochrome c oxidase) in Complex IV, and 2 (ATPase 6 and ATPase 8; ATPase = ATP synthase) 

in Complex V. Except for the 13 polypeptides, all the other polypeptides composing respiratory chain 

are encoded by nuclear DNA (nDNA) [10,12]. Each human cell contains several hundreds to one 
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thousand of mitochondria, and each mitochondrion harbors 2 to 10 copies of mtDNA. The mtDNA 

copy number in a human tissue is dynamic and may vary widely with cell type and the physiological 

condition [13]. Different from the heterozygotic nature of nDNA, mtDNA is transmitted exclusively 

through the maternal lineage [14,15]. The mtDNA molecules in the post-mitotic tissues of an individual 

are assumed to be identical immediately after birth and such a condition is termed homoplasmy. Any 

damage to mtDNA may disrupt the homoplasmy and result in the coexistence of the wild type and 

mutated mtDNA molecules, which is termed heteroplasmy [14,15].  

Due to the lack of introns and histone protection, insufficient DNA repair system and the location 

near the inner membrane of mitochondria with a milieu of high concentration of reactive oxygen 

species (ROS), mtDNA is far more susceptible to oxidative damage as compared to nDNA [16–18]. 

Although the damages can occur anywhere throughout the entire mtDNA, alterations are frequently 

found in the non-coding region, the displacement loop (D-loop), especially in the D310 region [19].  

D-loop is the regulatory region for replication and transcription of mtDNA and is located between 

nucleotide position (np) 16024 and np 576 with 1.1 kb in size [10,12]. Between np 303 and np 316 of 

the D-loop (revised Cambridge Reference Sequences, L strand sequences; rCRS), there is a poly-cytidine 

(C) tract with a thymidine (T) interrupted at np 310 (-C303CCCCCCT310CCCCCC316- = C7TC6), and a 

constant stretch of 6 C after T310. However, the number of C before T is highly variable with a range 

from 6 to 12 (C6, C7, C8, C9, C10, C11, C12), and 7 or 8 (C7 or C8, wild-type) being the most common 

ones [10]. These variations with a T shifting over np 310 (originated from a deletion or insertion) in 

mtDNA are referred to as D310 polymorphism or D310 sequence variations. Sequence variations in 

the D310 region have been identified in a variety of human diseases, including cancers, degenerative 

diseases and some hereditary diseases [20–24].  

In this study, we examined the differences in the copy number and D310 sequence variations of 

mtDNA in leukocytes of SLE patients and normal subjects. Furthermore, we investigated whether 

these differences are associated with clinical manifestations of SLE. 

2. Results and Discussion 

2.1. Demographic Data of the SLE Patients and Controls  

The demographic data were compared between 85 SLE patients and 45 age- and sex-matched 

normal individuals. As shown in Table 1, the SLEDAI scores of the 85 patients ranged from 2 to  

28 with a median value of 8. Neuropsychiatric disturbance, lupus nephritis, skin rash, alopecia, oral 

ulcer and decreased serum complements were the predominant clinical manifestations. Regarding the 

D310 sequence variations (Figure 1), the percentage of SLE patients harboring C9TC6 as the dominant 

variant in the D310 region is slightly higher than that of controls (24.7% vs. 11.1%, p = 0.079,  

Chi-square test). Interestingly, SLE patients had a higher frequency of D310 heteroplasmy and more 

D310 variants than did controls (69.4% vs. 48.9%, p = 0.022, Chi-square test and 2.2 vs. 1.7,  

p = 0.014, Student t test). The mtDNA copy number in controls and in SLE patients were not 

significantly different (0.193 ± 0.065 vs. 0.214 ± 0.113, p = 0.169, Student t test), although mildly 

elevated in SLE patients. The mRNA expression levels of mtDNA-encoded ND1 and ATPase 6 genes 
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in the controls (n = 26) were significantly higher than those of SLE patients (n = 44) (2.845 ± 2.000 vs. 

1.625 ± 1.029, p = 0.001, ND1; 1.538 ± 1.108 vs. 0.928 ± 0.526, p = 0.003, ATPase 6; Student t test). 

Figure 1. Representative cases to demonstrate the D310 sequence variations. T (thymine) 

is shown in red, A (adenine) in green, C (cytosine) in blue and G (guanine) in black during 

sequencing. The Arabic number above the red arrow denotes the number of C before the 

indicated T peak. (A) In patient S5, leukocyte mtDNA harbored 1 kind of D310 variant, 

C7TC6. As a result, S5 was classified as D310 homoplasmy with C7TC6 being the dominant 

variant; (B) In patient S10, leukocyte mtDNA harbored 2 kinds of D310 variants, C8TC6 

and C9TC6 in order, with C8TC6 being the dominant one. As a result, S10 was classified as 

D310 heteroplasmy with C8TC6 as the dominant variant; (C) In patient S15, leukocyte 

mtDNA harbored 4 kinds of D310 variants, C9TC6, C10TC6, C8TC6 and C11TC6 in order, 

with C9TC6 being the dominant one. As a result, S15 was classified as D310 heteroplasmy 

with C9TC6 as the dominant variant. Clinically, patient S15 developed lupus nephritis. 

 



Int. J. Mol. Sci. 2012, 13 8857 

 

 

Table 1. Demographic data and mtDNA characteristics of normal controls and systemic 

lupus erythematosus (SLE) patients. 

Demographic data/mtDNA characteristics Controls SLE patients p-value 

Case number (%) 45 (100.0) 85 (100.0) - 
Gender - - 0.825 * 

Male (%) 7 (15.6) 12 (14.1) - 
Female (%) 38 (84.4) 73 (85.9) - 

Age (mean ± SD) years 42.6 ± 9.0 44.6 ± 12.0 0.335 § 
SLEDAI - - - 

Min~Max, Median - 2~28, 8 - 
Mitochondrial DNA 

D310 sequence variation, predominant variant - - 0.079 * 
C5TC6 (%) 1 (2.2) 0 (0.0) - 
C7TC6 (%) 19 (42.2) 27 (31.8) - 
C8TC6 (%) 18 (40.0) 36 (42.4) - 
C9TC6 (%) 5 (11.1) 21 (24.7) - 
C10TC6 (%) 2 (4.4) 0 (0.0) - 
C11TC6 (%) 0 (0.0) 1 (1.2) - 

D310 patterns - - 0.022 * 
Heteroplasmy (%) 22 (48.9) 59 (69.4) - 
Homoplasmy (%) 23 (51.1) 26 (30.6) - 

Number of D310 variants (mean ± SD) 1.7 ± 0.8 2.2 ± 1.1 0.014 § 
mtDNA copy number (mean ± SD) 0.193 ± 0.065 0.214 ± 0.113 0.169 § 

Case number (%) † 26 (100.0) 44 (100.0) - 
mtDNA encoded mRNA expression 

ND1 (mean ± SD) 2.845 ± 2.000 1.625 ± 1.029 0.001 § 
ATPase 6 (mean ± SD) 1.538 ± 1.108 0.928 ± 0.526 0.003 § 
p value was calculated by * Chi-square test, or § Student t test. ND1 = NADH dehydrogenase subunit 1. 

ATPase 6 = ATP synthase subunit 6. † Randomly selected from original patients and controls. 

2.2. Correlation between SLEDAI and Leukocyte mtDNA in SLE Patients  

As shown in Table 2, SLE patients were divided into 3 groups based on the 25 percentile and  

75 percentile of SLEDAI scores, including SLEDAI ≤ 4 (low SLEDAI group, ≤25%, n = 26),  

4 < SLEDAI ≤ 14 (medium SLEDAI group, 26%~75%, n = 42) and SLEDAI > 14 (high SLEDAI 

group, >75%, n = 17). Among controls and SLE patients with low, medium and high SLEDAI scores, 

the frequency of D310 heteroplasmy was steadily increased (48.9%, 65.4%, 69.0% & 76.5%,  

p = 0.021, Chi-square test for trend, Table 2). With regard to the mtDNA copy number in leukocytes, 

there were no significant differences between controls and SLE patients with low, medium and high 

SLEDAI scores (p = 0.119, ANOVA). However, the mean mtDNA copy number of patients with low 

SLEDAI score was higher than that of controls (0.243 vs. 0.193, p = 0.049, Student t test) and patients 

with high SLEDAI scores (0.243 vs. 0.179, p = 0.068, Student t test; Table 2 and Figure 2A). An  

ever-decreasing mtDNA copy numbers in the leukocytes of patients from low, medium and high 

SLEDAI groups (mean = 0.243, 0.211 and 0.179, Figure 2A) were observed. Such a trend of decrease 

was more pronounced in patients harboring D310 heteroplasmy (n = 59), whose mtDNA copy 
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numbers were inversely correlated with the SLEDAI scores (p = 0.020, Pearson correlation coefficient 

rpcc= −0.268, Figure 2B). 

Figure 2. (A) The distribution of mean mtDNA copy number in the leukocytes of normal 

controls and SLE patients with low, medium and high SLE Disease Activity Index (DAI) 

scores. The mean mtDNA copy number in the leukocytes of the group with low SLEDAI 

score (0.243 ± 0.147) was higher than that of controls (0.193 ± 0.065) (p = 0.049) and the 

group with a high SLEDAI score (0.179 ± 0.077, p = 0.068); (B) In SLE patients (n = 59) 

with D310 heteroplasmy in mtDNA of the leukocytes, we found a negative correlation 

between the mtDNA copy number and SLEDAI score (p = 0.020, Pearson’s correlation 

coefficient γpcc = −0.268); (C) Among the 44 analyzed SLE patients, a positive correlation 

was found between mtDNA copy numbers and the mRNA expression levels of  

mtDNA-encoded ND1 gene; (D) Among the 44 analyzed SLE patients, a positive correlation 

was found between mtDNA copy numbers and the mRNA expression levels of  

mtDNA-encoded ATPase 6 gene. 

 

(A) 

 

(B) 
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Figure 2. Cont.  

 

(C) 

 

(D) 

Table 2. Correlation between SLEDAI scores and mtDNA alterations in SLE patients. 

 Control 
SLE 

p-value 
SLEDAI ≤ 4.0@ 4.0@ < SLEDAI ≤ 14.0@ SLEDAI > 14.0@

Case number (%) 45 (100.0) 26 (100.0) 42 (100.0) 17 (100.0) - 

Mitochondrial DNA 

D310 pattern - - - - 0.021 * 

Heteroplasmy (%) 22 (48.9) 17 (65.4) 29 (69.0) 13 (76.5) - 

Homoplasmy (%) 23 (51.1) 9 (34.6) 13 (31.0) 4 (23.5) - 

mtDNA copy number (mean ± 

SD) 

0.193 ± 0.065 0.243 ± 0.147 0.211 ± 0.098 0.179 ± 0.077 0.119 ** 

0.193 ± 0.065 0.243 ± 0.147 - - 0.049 a 

- 0.243 ± 0.147 - 0.179 ± 0.077 0.068 b 

@ 4.0 was at 25 percentile and 14.0 was at 75 percentile. * Comparison was made among the 4 groups by Chi-square test 

for trend. ** Comparison was made among the 4 groups by ANOVA. a Compared between controls and those with 

SLEDAI ≤ 4.0 by Student t test. b Compared between those with SLEDAI ≤ 4.0 and those with SLEDAI > 14.0 by 

Student t test. 
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2.3. The mtDNA Copy Number and mRNA Levels of mtDNA-Encoded Genes in SLE Patients  

As shown in Figure 2C,D, among the 44 SLE patients, the mean mtDNA copy number of 

leukocytes was positively correlated with the mRNA level of mtDNA-encoded ND1 (p = 0.041, 

Pearson correlation coefficient rpcc= 0.309) and ATPase 6 (p = 0.030, Pearson correlation coefficient 

rpcc= 0.328) genes, respectively. 

We demonstrated that the frequency of leukocyte D310 heteroplasmy was increased and the copy 

number of leukocyte mtDNA was decreased in SLE patients as their disease worsened (Table 2,  

Figure 2A). The decrease in leukocyte mtDNA copy number was more pronounced in SLE patients 

that harbored mtDNA with D310 heteroplasmy in leukocytes (Figure 2B). Furthermore, the decrease in 

mtDNA copy number was proportionally correlated to the decrease in the mRNA expression levels of 

mtDNA-encoded genes, including the ND1 that participates in the electron transport (Figure 2C) and 

ATPase 6 that participates in the oxidative phosphorylation (Figure 2D). In addition, pyruvate 

dehydrogenase (PDH) plays a pivotal role in regulating the Krebs cycle to guarantee the execution of 

electron transport and ATP production. Based on our unpublished data, the mean mRNA expression 

level of PDH in controls was much higher than in SLE patients (0.434 ± 0.497 vs. 0.264 ± 0.118,  

p = 0.032, Student t test). Moreover, the PDH mRNA expression was positively correlated with the 

mRNA expression of ND1 (p < 0.001, Pearson correlation coefficient rpcc= 0.553) and ATPase 6  

(p < 0.001, Pearson correlation coefficient rpcc= 0.561), respectively (data not shown). As a result, the 

decrease in the mRNA expression levels of ND1 and ATPase 6 denotes the possibility of leukocyte 

mitochondrial dysfunction. Similarly, by using cDNA microarray of peripheral blood in a cohort of  

26 SLE patients, Lee et al. [24] disclosed a decrease in the expression of 6 mtDNA-encoded genes that 

are responsible for ATP synthesis, including ND1 and ATPase 6 examined in this study. They 

concluded that the ATP synthesis is impaired in SLE patients. As we know, mitochondria play a dual 

role in cell survival and cell death due to their roles in ATP production and in triggering apoptosis [6]. 

Thus, the consequence of mitochondrial dysfunction in SLE deserves further appraisal. Perl et al. [25] 

reported that mitochondrial dysfunction with ATP depletion that elicit necrosis in the T cells of SLE 

patients. Decreased copy number of mtDNA, mitochondrial dysfunction and the resulting apoptosis or 

necrosis in immunocompetent cells might help sustain the vicious cycle and further worsen the  

SLE course. 

Due to the homoplasmic nature of mtDNA, the existence of D310 heteroplasmy may result in 

mtDNA instability. Because D-loop is the regulatory region for mtDNA replication and D310 is close 

to the replication origin of mtDNA, the heteroplasmic D310 pattern may interfere with the replication 

of mtDNA and augment the decrease in mtDNA copy number [13,25]. Taken together, alterations in 

mtDNA, either the mtDNA D310 sequence variations or fluctuations in mtDNA copy number, might 

be a good biomarker to reflect the progression of SLE. Although it is difficult to investigate the  

time-dependent heteroplasmic change of mtDNA as the disease progresses in SLE patients, the results 

in the present investigation suggest that mtDNA damage may be parallel to disease flares or indicates 

an active disease status.  

In the gene expression study, we found that the mRNA transcripts of the mtDNA-encoded ND1 and 

ATPase 6 genes in the leukocytes of controls were significantly higher than those of the SLE patients 

(Table 1) and had a positive correlation with mtDNA copy numbers. However, we observed an 
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increase in leukocyte mtDNA copy number in SLE patients with low SLEDAI as compared to the 

controls, though this trend was reversed in patients with high SLEDAI (Table 2 and Figure 2A). This 

paradoxical biphasic alteration is difficult to interpret but it is possible that a feed-back up-regulation 

of mtDNA replication may take place to compensate for the oxidative damage on mtDNA during the 

progression of the disease [26–28]. Once it goes too far beyond the capacity of compensation, a 

decrease in mtDNA copy number follows. This bizarre phenomenon of mtDNA copy number alteration 

has also been reported in the human lung tissues of light smokers relative to non-smokers and heavy 

smokers as well as in cell lines challenged by different concentrations of H2O2 [27,28]. Recently, it 

was pointed out that an increase in the copy number of circulating mtDNA, which is assumed to be 

released by the leukocytes bearing dysfunctional mitochondria, is related to a poor outcome in SLE 

patients [9].  

2.4. Correlation between D310 Heteroplasmy and Clinical Manifestations of SLE  

We used the number of D310 variants to represent the degree of D310 heteroplasmy in leukocyte 

mtDNA of the patients. As shown in Tables 1 and 2, there was a higher frequency of D310 heteroplasmy 

in SLE patients with a higher SLEDAI score. To verify the significance of D310 heteroplasmy in SLE, 

we analyzed the degree of D310 heteroplasmy and its relationship to the clinical manifestations of 

SLE. As shown in Table 3, the frequency of D310 heteroplasmy did not differ among patients with or 

without CNS involvement, skin rash, alopecia, oral ulcer or decreased complement. However, patients 

with lupus nephritis had more D310 variants than those without lupus nephritis (2.5 vs. 2.0, p = 0.035, 

Student t test).  

Table 3. D310 heteroplasmy in SLE patients with different clinical manifestations. 

Case number 

D310 pattern 

p-value *

Number of D310 variants 

p-value **Heteroplasmic No. 

(%) 

Homoplasmic No. 

(%) 
(Mean ± SD) 

CNS involvement 

No (n = 42) (100%) 29 (69.0) 13 (31.0) 
0.943 

2.1 ± 1.0 
0.860 

Yes (n = 43) (100%) 30 (69.8) 13 (30.2) 2.2 ± 1.2 

Nephritis 

No (n = 52) (100%) 35 (67.3) 17 (32.7) 
0.597 

2.0 ± 0.9 
0.035 

Yes (n = 33) (100%) 24 (72.7) 9 (27.3) 2.5 ± 1.3 

Skin rash 

No (n = 65) (100%) 45 (69.2) 20 (30.8) 
0.948 

2.2 ± 1.1 
0.604 

Yes (n = 20) (100%) 14 (70.0) 6 (30.0) 2.1 ± 1.1 

Alopecia      

No (n = 59) (100%) 39 (66.1) 20 (33.9) 
0.318 

2.1 ± 1.1 
0.325 

Yes (n = 26) (100%) 20 (76.9) 6 (23.1) 2.3 ± 1.2 

Oral ulcer      

No (n = 72) (100%) 52 (72.2) 20 (27.8) 
0.186 

2.2 ± 1.1 
0.268 

Yes (n = 13) (100%) 7 (53.8) 6 (46.2) 1.8 ± 1.1 
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Table 3. Cont. 

Case number 

D310 pattern 

p-value *

Number of D310 variants 

p-value **Heteroplasmic No. 

(%) 

Homoplasmic No. 

(%) 
(Mean ± SD) 

Decreased complement 

No (n = 54) (100%) 36 (66.7) 18 (33.3) 
0.469 

2.2 ± 1.2 
0.413 

Yes *** (n = 31) (100%) 23 (74.2) 8 (25.8) 2.0 ± 0.9 

* Calculated by Chi-square test. ** Calculated by Student t test. *** Decreased complement means serum 

complement components C3 and C4 were both below the cutoff level of the normal range. 

2.5. D310 Sequence Variation and Susceptibility to Clinical Manifestations of SLE  

The association between D310 sequence variations and the susceptibility to various clinical 

manifestations, including CNS involvement, nephritis, skin rash, alopecia, oral ulcer and decreased 

complement are listed in Table 4. Compared to those harboring other dominant D310 variants, SLE 

patients with C9TC6 as the dominant variant had a higher tendency to develop lupus nephritis (52.4% 

for C9TC6, 33.3% for C7TC6 and C8TC6, p = 0.084, Chi-square test).  

Table 4. Association of the D310 sequence variations of mtDNA with different clinical 

manifestations in SLE patients. 

 

D310 sequence variation, predominant variant (Case number, %) 

C7TC6 C8TC6 C9TC6 C12TC6 
p-value * n = 27 (100) n = 36 (100) n = 21 (100) n = 1 (100) 

CNS involvement      
No (n = 42) 14 (51.9) 16 (44.4) 12 (57.1) 0 (0.0) 

0.594 
Yes (n = 43) 13 (48.1) 20 (55.6) 9 (42.9) 1 (100.0) 

Nephritis      
No (n = 52) 18 (66.7) 24 (66.7) 10 (47.6) 0 (0.0) 

0.084 
Yes (n = 33) 9 (33.3) 12 (33.3) 11 (52.4) 1 (100.0) 

Skin rash      
No (n = 65) 21 (77.8) 24 (66.7) 19 (90.5) 1 (100.0) 

0.208 
Yes (n = 20) 6 (22.2) 12 (33.3) 2 (9.5) 0 (0.0) 

Alopecia      
No (n = 59) 22 (81.5) 22 (61.1) 14 (66.7) 1 (100.0) 

0.316 
Yes (n = 26) 5 (18.5) 14 (38.9) 7 (33.3) 0 (0.0) 

Oral ulcer      
No (n = 72) 21 (77.8) 31 (86.1) 19 (90.5) 1 (100.0) 

0.620 
Yes (n = 13) 6 (22.2) 5 (13.9) 2 (9.5) 0 (0.0) 

Decreased complement      
No (n = 54) 19 (70.4) 19 (52.8) 15 (71.4) 1 (100.0) 

0.323 
Yes (n = 31) 8 (29.6) 17 (47.2) 6 (28.6) 0 (0.0) 

* Calculated by Chi-square test. 

It is noteworthy that the D310 polymorphism was related to lupus nephritis, which is the most 

important complication among the lupus related organ injuries [29,30]. The degree of D310 

heteroplasmy in nephritis patients was higher than those without nephritis, but not higher than those 
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with other clinical manifestations (Table 3). Most importantly, we demonstrated that the frequency of 

occurrence of C9TC6 as the dominant variant in SLE patients was higher than that of controls (Table 1). 

Reciprocally, SLE patients harboring C9TC6 as the dominant variant tended to develop nephritis more 

frequently than patients harboring mtDNA with other D310 variants (Table 4). Therefore, the D310 

heteroplasmy of mtDNA is not only a good biomarker to reflect the progression of SLE but also 

predicts the susceptibility to lupus nephritis, especially in those harboring more D310 variants. 

3. Experimental Section  

3.1. Patient Recruitment, Blood Sample Collection, and Leukocyte DNA and RNA Extraction  

According to the American College of Rheumatology criteria for the classification of SLE [31,32], 

a total of 85 SLE patients (73 females) with a mean age of 44.6 ± 12.0 years from the Outpatient Clinic 

of the Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital and  

45 matched healthy controls (38 females) with a mean age of 42.6 ± 9.0 years were recruited for this 

study. Their demographic data, including gender, age, organ involvement and laboratory profiles, were 

recorded in detail. Disease activity was evaluated by the SLE Disease Activity Index (SLEDAI) 

scoring system [33,34]. Approval from the Institutional Review Board of Taipei Veterans General 

Hospital had been obtained before this study was conducted. 

Approximately 10 mL of the venous blood was drawn and kept in specific tubes (VACUETTE®, 

Greiner Bio-one) rinsed with ethylenediaminetetraacetic acid (EDTA). After centrifugation at 3000 g 

for 10 min at 4 °C, the leukocyte-enriched buffy coat was obtained. Following lysis of erythrocytes 

with 0.83N (NH4)2SO4, the leukocytes were mixed with the TE buffer (10 mM Tris-HCl and 1 mM 

EDTA , pH 8.0) containing 10% sodium dodecyl sulfate (SDS) (TE:SDS = 10:1) and proteinase K  

(20 mg/mL) and incubated at 56 °C for 16 h. The leukocyte DNA was then purified through standard 

phenol-chloroform extraction and isopropanol precipitation procedure as described previously [35]. 

The DNA samples were dissolved in nuclease-free distilled water and kept at −20 °C until use.  

Among the 85 SLE patients and 45 healthy controls, leukocytes from 44 patients and 26 controls 

were also randomly selected for RNA extraction. As described previously [36], the leukocytes were 

mixed with 500 μL of TRITM reagent (Sigma-Aldrich Chemical Co.) and 100 μL of chloroform to 

centrifuge at 12,000 g at 4 °C for 15 min. The supernatant containing RNA was precipitated by 250 μL 

of isopropanol and centrifuged at 12,000 g at 4 °C for additional 10 min to get the RNA pellet. After 

rinse with 75% alcohol for 2 times, the RNA pellet was kept dry at 4 °C for 30 min and dissolved in 

distilled water containing 0.1% diethylpyrocarbonate (DEPC). A total of 5 μg RNA was further 

purified in a reaction buffer containing DNase to remove the residual DNA. Finally, a total of 2 μg of 

purified DNA-free RNA was reverse-transcribed to cDNA with the Ready-To-Go RT-PCR kit (GE 

Healthcare UK) by using oligo-dT primers. 

3.2. Sequencing of the D310 Region of mtDNA 

The D310 region of mtDNA was amplified by polymerase chain reaction (PCR) and then subjected 

to direct sequencing [21]. Each 50-μL PCR reaction contained 25 μL of RBC SensiZyme® Hotstart 

Taq Premix (RBC Bioscience), 22 μL of PCR-grade H2O, 1 μL of each primer (H76-1:  
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5′-CACGCGATAGCATTGCGA-3′ and L335: 5′-TAAGTGCTGTGGCCAGAAGC-3′), and 1 μL of 

sample DNA (10 ng/μL). The PCR procedures included a hot start at 95 °C for 10 min, 40 cycles of  

95 °C, 15 s; 58 °C, 15 s; and 72 °C, 30 s; and final extension at 72 °C for 7 min. After confirmation by 

3% agarose electrophoresis, the PCR products were subjected to direct sequencing (MB Mission 

Biotech, Taipei, Taiwan). The D310 sequence variations, including the patterns of homoplasmy or 

heteroplasmy, number of D310 variants, and the dominant D310 variant were compared to the revised 

Cambridge Reference Sequence’s (rCRS), L strand sequence (MITOMAP; A human mitochondrial 

genome database) [10,11], and determined as previously described [21,22].  

3.3. Standard Curves for DNA and RNA Quantification  

Quantitative real-time PCR (Q-PCR) using SYBR Green I (Roche Applied Science, Mannheim, 

Germany) to determine the threshold cycle (Ct) was applied for quantification of DNA and mRNA [37]. 

For DNA, genomic DNA at different concentrations from the 143B osteosarcoma cells, which was 

serially diluted by 4-fold from 320 to 0.078125 ng/μL, were subjected to Q-PCR for determination of 

the Ct values. The sequences of primers used for amplification of mtDNA (ND1 region) and nDNA 

(18S rRNA region) were mtF3212: 5′-CACCCAAGAACAGGGTTTGT-3′ and mtR3319: 5′-TGGCC 

ATGGGATTGTTGTTAA-3′ and 18SF1546: 5′-TAGAGGGACAAGTGGCGTTC-3′ and 18SR1650: 

5′-CGCTGAGCCAGTCAGTGT-3′, respectively [21]. The squared regression coefficient (R2) for 

mtDNA was 0.9995, and that for nDNA was 0.9996. For quantification of mRNA transcripts, the 

cDNA transcribed from 2 μg of purified DNA-free RNA of the 143B osteosarcoma cells was serially 

diluted by 4-fold from 0.25 (1/4) fold to 0.0009765 (1/1024) and then subjected to Q-PCR for 

determination of the Ct value. The sequences of primers used for quantification of mtDNA-encoded 

ND1 (reflecting electron transport) and ATPase 6 (reflecting oxidative phosphorylation) mRNA, and 

nDNA encoded β-actin mRNA (positive control) were ND1F: 5′-TGGGTACAATGAGGAGTAGG-3′and 

ND1R: 5′-GGAGTAATCCAGGTCGGT-3′; and ATPase 6F: 5′-TTTATTGCCACAACTAACCTCCT-3′ 

and ATPase 6R: 5′-TTGGGTGGTTGGTGTAAATG-3′ and BAF: 5′-ATTGGCAATGAGCGGTTC-3′ 

and BAR: 5′-GGATGCCACAGGACTCCAT-3′, respectively. The squared regression coefficients (R2) 

were 0.9999 for ND1, 0.9997for ATPase 6, and 0.9985 for β-actin, respectively [38,39]. 

3.4. Determination of mtDNA Copy Number and the Expression of mtDNA-Encoded Genes  

The mtDNA copy number was defined as total mtDNA copies divided by total nDNA copies. The 

mtDNA-encoded mRNA expression was defined as total ND1 or ATPase 6 copies divided by total  

β-actin copies. For each reaction, 1 μL of sample DNA (10 ng/μL)/1 μL of cDNA (16 × dilution) was 

amplified in a 10-μL reaction buffer containing 0.25 μL (20 μM) of each primer (mtF and mtR  

for mtDNA, 18SF and 18SR for nDNA; ND1F and ND1R and ATPase 6F and ATPase 6R for 

mtDNA-encoded mRNA, BAF and BAR for nDNA-encoded mRNA), 1.2 μL of 3 mM MgCl2, 1 μL of 

LightCycler SYBR Green I mixed reagent (Roche Applied Science, Mannheim, Germany) and 6.3 μL 

of PCR grade H2O. Simultaneously, 1 μL of DNA (1 ng/μL)/cDNA (16 × dilution) from 143B cells 

and PCR grade H2O were included as the positive and negative controls, respectively. The PCR 

procedures included a hot start at 95 °C, 10 min and 40 cycles of 95 °C, 20 s; 62 °C, 20 s; and 72 °C, 

20 s. The fluorescence intensity was measured at the end of primer extension at 72 °C for Ct 
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calculation. The mtDNA copy number (total mtDNA copies/total nDNA copies) and mRNA levels of  

mtDNA-encoded ND1 or ATPase 6 genes (total ND1 copies/total β-actin copies or total ATPase 6 

copies/total β-actin copies) of each clinical sample was calculated, by adjusting the 143B cell mtDNA 

copy number and the mRNA level of mtDNA-encoded genes as 1. Each reaction was done in duplicate 

and the mean value was used for data presentation [21].  

3.5. Statistical Analysis  

All the statistical analyses were performed using Statistical Package for the Social Sciences (SPSS), 

version 15.0, software (SPSS Inc., Chicago, IL, USA, 2006). The continuous variables were compared 

using the Student’s t test/Mann-Whitney U test between two groups or ANOVA/Kruskal-Wallis H test 

among three or more groups when appropriate. Categorical variables between groups were compared 

using the Chi-square test/Fisher’s exact test or Chi-square test for trend when appropriate. The 

difference between groups was considered significant when the p value was less than 0.05. 

4. Conclusions  

In conclusion, the results in this study showed a decrease in mtDNA copy number and greater 

heteroplasmic change in the D310 region of mtDNA in leukocytes of SLE patients. We suggest that 

leukocyte mtDNA alterations might be relevant to the development and progression of SLE. 

Furthermore, the SLE patients harboring higher D310 heteroplasmy in leukocytes may be more 

susceptible to lupus nephritis. 
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