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Abstract: We review recent results from extensive simulations of the crystallization of 

athermal polymer packings. It is shown that above a certain packing density, and for 

sufficiently long simulations, all random assemblies of freely-jointed chains of tangent 

hard spheres of uniform size show a spontaneous transition into a crystalline phase. These 

polymer crystals adopt predominantly random hexagonal close packed morphologies. An 

analysis of the local environment around monomers based on the shape and size of the 

Voronoi polyhedra clearly shows that Voronoi cells become more spherical and more 

symmetric as the system transits to the ordered state. The change in the local environment 

leads to an increase in the monomer translational contribution to the entropy of the system, 

which acts as the driving force for the phase transition. A comparison of the crystallization 

of hard-sphere polymers and monomers highlights similarities and differences resulting 

from the constraints imposed by chain connectivity.  

Keywords: polymer; crystallization; entropy; phase transition; Voronoi tesselation; 

simulation; Monte Carlo; hard sphere; random packing; crystal morphology 

 

1. Introduction 

Crystallization and phase transitions in general play a key role in many processes related, among 

others, to material engineering, physics, chemistry and biology. Advances in crystallography, mainly 

through X-ray diffraction measurements, have provided significant information on crystal structures. 

However, how such crystals nucleate and grow and how processing history further affects the 
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corresponding ordered morphologies remain open topics of intense scientific debate. While 

experimental, theoretical and modeling advances constantly enrich our fundamental understanding of 

the phenomenon in a wide range of physical systems [1–7], a plethora of key aspects remain unknown, 

especially with respect to the microscopic origins of crystallization. Computer simulations can greatly 

aid in this direction through systematic studies on ideal atomic and molecular systems under controlled 

conditions, which remain unattainable in conventional approaches. Such an “in silico” modeling 

approach, subject to obvious advantages and disadvantages compared to experiments, has been shown 

to be an invaluable research tool in the analysis of the highly complex process of crystallization.  

Deep in the heart of numerical simulations lays the molecular model, which determines the level of 

detail and the corresponding approximations with respect to the way atoms and molecules are 

represented. Atomistic models incorporate highly detailed force fields to describe interactions between 

atoms, while coarse-grained ones sacrifice detailed information in favor of computational efficiency. 

In one of the simplest possible representations, atoms, either as monomeric entities or as part of 

molecular species, are treated as non-overlapping hard spheres. The hard-sphere model is obviously 

void of any kind of chemical information. However, because of its simplicity it stands as an invaluable 

simulation tool: It is accessible to analytical approaches, requires minimal computational resources and 

time, and can thus be employed under conditions which remain inaccessible to more detailed 

molecular models. Furthermore, the hard-sphere model allows us to discriminate and accurately 

identify the different governing factors (for example density or entropy) that affect various phenomena 

and physical processes. Ideally the knowledge gleaned from such simplified models could shed light 

onto the fundamental role of analogous mechanisms in much more complex physical and biological 

applications. Thus, it is not surprising that during the last decades an ever-growing body of simulations 

has successfully employed the hard-sphere model in studies of systems that range from colloids, 

microgels and granular materials to synthetic and biological polymers.  

The study of how objects of different shapes and sizes arrange in a multidimensional space and of 

the corresponding packing morphologies has been in the spotlight of research since early historical 

times. During the last decades pioneering scientific contributions have been achieved in general 

packing with modeling studies having greatly benefited by the continuous advances in computer 

hardware and software. 

Almost four centuries ago, Kepler conjectured that in three dimensional space the densest  

hard-sphere packing is that of a face centered cubic (fcc) lattice, a long-standing geometrical problem 

that has been addressed only recently in a series of papers by Hales and coworkers [8–10]. Equally 

interesting and perhaps more complex in its mathematical and physical formulation is the analogous 

problem of random packing: What is the maximum achievable density in the absence of order? Which 

are the salient characteristics of this state that could serve as a fingerprint for its identification? Under 

which conditions does an assembly of spheres transit between the amorphous and ordered phases? 

Many key aspects of random close (densest) packing of spheres were revealed by the pioneering 

experimental studies of Bernal and collaborators [11–14] while a rigorous definition of the maximally 

random jammed (MRJ) state has been provided more recently [15–18]. Over the years significant 

advances have provided a wealth of information about the state of jamming in a wide range of model 

physical systems [19–35]. 
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Regarding phase transition in athermal packings, Onsager was the first to predict an  

anisotropic-nematic transition in hard rods as a result of the increase in entropy caused by  

ordering [36]. Crystallization in hard-sphere systems was initially reported by the independent 

simulations of Alder and Wainwright [37] and Wood and Jacobson [38]. Frenkel and collaborators 

studied and analyzed in detail the entropic mechanism behind phase transition in colloidal systems and 

model athermal packings at various conditions [39–51]. For packings of monomeric hard spheres of 

uniform size the calculated phase diagram identifies the freezing and melting points at φF = 0.494 and 

φM = 0.545, respectively [52]. It is now well established that above the melting point and given 

sufficient time an initially random packing of monodisperse hard spheres transits to the  

crystal phase [53–56]. Furthermore, crystallization is strongly affected by, among other factors,  

size polydispersity [39,57–61], microgravity [62,63], shear stress [64,65] and the presence of  

interfaces [66–69]. With respect to the morphology of the crystal phase, free energy calculations have 

shown that the face centered cubic (fcc) is thermodynamically more stable than the hexagonal close 

packed (hcp) lattice [45,70], albeit by a small margin [71]. However, in accordance with Ostwald’s 

rule of stages [72], the formation of a random hexagonal close packing (rhcp) is regularly observed in 

experiments on colloidal systems [63,73–75] and in simulations of monomeric hard spheres [55,56,76] 

since such stacking is configurationally closer to the random arrangement than the pure fcc and hcp 

lattices. The presence of defects in the crystal boundaries, the very small differences in the free energy 

of the competing crystal structures and the very slow dynamics at such high densities hinder the 

formation of a perfect crystallite. From the modeling perspective these kinetic hindrances are 

aggravated by computational limitations in system size and simulation time [56]. 

Random hard-sphere packings are further characterized by short-range order in the form of 

polytetrahedral structures with fivefold symmetry [35,56,77–79]. In crystal phases such structural 

morphologies are strongly correlated with multiply twinned planes at crystallite boundaries [55,56,76]. 

The evolution of fivefold local symmetry during crystal nucleation and growth in dense packings of 

monomeric hard spheres has been studied extensively through event-driven Molecular Dynamics 

(edMD) [56] and Monte Carlo (MC) simulations [1]. Based on these modeling results, a microscopic 

interpretation of hard-sphere crystallization proposes a competition between short-range order and 

crystallization in dense packings, where the formation of long-lived fivefold structures could frustrate 

the growth of crystallites [1,55,56]. 

Recent advances in experimental and simulation techniques have contributed to the detailed 

analysis and characterization of the phase behavior and self-assembly in packings of objects with 

highly complex shapes [32,80–86]. Among these systems lie the athermal polymer packings, 

consisting of chains of hard-sphere monomers. Macromolecules are characterized by a wide spectrum 

of characteristic time and length scales, which render their study very challenging from the modeling 

perspective, especially in atomistic detail. Furthermore, holonomic constraints applied to constituent 

monomers by chain connectivity, and inter-chain topological constraints in the form of entanglements, 

render the dynamical, conformational, mechanical and rheological properties of polymers distinctly 

different than the ones of monomeric analogs. A pertinent question with respect to dense packings of 

athermal polymers is how chain connectivity affects the maximally random jammed (MRJ) state and 

the disorder–order transition (crystallization) of hard spheres at high volume fractions. During the last 
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years a growing body of research work has focused on such open topics related to the intrinsic features 

of athermal polymer packing and to the self-assembled morphologies of associated systems [33,87–97]. 

In the present manuscript we review our latest results from extensive Monte Carlo (MC) 

simulations on the crystallization in dense packings of freely-jointed chains of tangent hard spheres of 

uniform size [98–100]. In particular, we describe in detail the modeling methodology for the creation 

of athermal polymer configurations and the metrics adopted to characterize local order. Particular 

emphasis is placed on identifying the entropic origins of the phase transition and on comparing with 

the corresponding trends in monomeric analogs [55,56]. The paper is organized as follows: Section 2 

describes the systems studied, the MC algorithm and the novel descriptors introduced to quantify local 

environment of each site. Section 3 presents the main results on the disorder-order phase transition, the 

self-assembly of crystallites and the corresponding structural differences with respect to the random 

phase. The manuscript concludes with Section 4, where the key findings are summarized with a 

description of potential applications on the self-assembly of crystals for more complex systems.  

2. Methodology 

2.1. System Studied/Monte Carlo Algorithm 

Athermal polymer packings consist of freely jointed, linear chains of tangent hard spheres. 

Monomers are treated as non-overlapping spheres of diameter σ. Tangency implies that the bond 

length l is equal to the sphere diameter. This condition is numerically imposed within a tolerance in 

bond length. Comparisons carried out by allowing the bond length to fluctuate in the interval 

 [91] and in the interval  showed no difference in the crystal growth 

and nucleation as well as in the self-assembly of the ordered morphologies. The freely-jointed model 

allows for full flexibility in the conformations as there are no constraints in bond bending and torsion 

(dihedral) angles. However, it has been shown that, due to strong excluded-volume interactions, bond 

bending angles and torsion angles tend to adopt specific geometric arrangements, which become 

increasingly more favorable as packing density increases [88,89,91–93]. Such a conformational 

tendency in bonded geometry leads to major changes in the long-range characteristics of chains: Their 

size shrinks significantly once the marginal scaling regime is reached [89,93,94]. As a consequence, in 

the vicinity of the MRJ state (concentrated regime), polymer dimensions become so collapsed that a 

significant fraction of chains form closed loops (cyclic long-range conformations) [88].  

The employed Monte Carlo scheme consisted of the following mix of moves: (i) reptation (10%); 

(ii) end-mer rotation (10%); (iii) configurational bias (20%); (iv) inter-chain reptation (25%);  

(v) internal libration (34.98%); (vi) simplified end-bridging (sEB, 0.1%) and (vii) simplified 

intramolecular end-bridging (sIEB, 0.1%), where the percentages in parenthesis denote the attempt 

probabilities of each move. All local moves (i–v) are executed in a configurational bias  

pattern [101–103], according to which multiple trial positions, whose number increases with volume 

fraction, are attempted for each displaced site. This algorithm significantly increases the average 

computational time per MC step, but, in contrast to the conventional MC, it guarantees short-range 

equilibration of chains even at packing densities well above the melting point [91]. Long-range 

equilibration is achieved by the pair of chain-connectivity altering moves sEB and sIEB [91], which 

4σ,σ 10l    
8σ,σ 10l    
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are based on the original end-bridging (EB) move [104] for atomistic polymer systems. Based on the 

tangency condition, sEB and sIEB proceed by deleting and forming bonds between properly selected 

pairs of spheres instead of displacing trimers [91,105]. Through this rapid re-arrangement long-range 

equilibration is achieved within modest computational time even in the close vicinity of the MRJ state; 

in fact the acceptance rate and accordingly the performance of the chain-connectivity altering moves 

increase with concentration [90,91]. In addition, the sEB and sIEB moves allow for polydispersity in 

chain lengths to be considered, which is controlled by casting the simulations in the natnchVTμ 

ensemble, where nat is the total number of spheres, nch is the number of chains, V is the volume of the 

simulation cell, T is temperature and μ is the spectrum of relative chemical potentials of all chain 

species except two which are singled out as reference species [91,104]. In our simulations two 

different chain length distributions were implemented: A uniform one in the closed interval
, where Nav is the average chain length and Δ is the reduced half width of the 

distribution divided by Nav, and a most probable (Flory) one with the shortest allowed chain length set 

at Nmin.  

All simulations were executed in cubic cells with periodic boundary conditions applied in all 

dimensions. Three different polymer systems were modeled, each one containing a total of 1200 hard 

spheres: (i) Nav = 12, Δ = 0.5; (ii) Nav = 12, Nmin = 3 and (iii) Nav = 24, Δ = 0.5. Additional simulations 

conducted with simulation cells of 3000 sites to investigate the effect of system size on crystallization 

and on the formation of ordered morphologies showed no appreciable qualitative and quantitative 

differences. Initial configurations were generated at very low volume fractions using fully equilibrated, 

atomistic polyethylene structures [106–110] as templates by performing short equilibration steps to 

ensure the absence of overlaps between hard spheres. These dilute cells, filled with overlap-free 

athermal polymer chains, were then used as initial structures in MC simulations with isotropic 

shrinkages of the cell dimensions being attempted at frequent intervals until a target volume fraction 

was reached. Such cell volume reductions were accompanied by an affine repositioning of chains 

based on the relative position of their end with respect to the box origin and the amplitude of the 

attempted box shrinkage. Configurations of the Nav = 12 system were further generated at selected 

packing densities by splitting all chains of a Nav = 24 configuration in half to guarantee that the 

structural characteristics of the initial random packings and the phase transition were not affected by 

the generation protocol of the modeling procedure. In production simulations system snapshots and 

ensemble statistics were recorded every 2 × 105 MC steps, while the total simulation time exceeded  

1 × 1010 steps at the higher densities. Due to very long runs required to observe crystallization at 

volume fractions in the vicinity of the MRJ state, modeling studies were necessarily limited to packing 
densities of , 0.58, 0.60 and 0.61 above the melting point. More details on the algorithm and 

the procedure to generate and equilibrate random packings of athermal polymer chains can be found  

in [92].  

For comparison purposes parallel sets of simulations for analogous monomeric systems were 

carried out by event-driven Molecular Dynamics (edMD). The edMD algorithm used was a minor 

modification of the conventional edMD technique, which proceeds on a simple collision-by-collision 

basis until a preset number of collisions is reached [111]. Initial configurations of monomeric hard 

spheres were generated by deleting all bonds from random chain packings and by subsequently 

 av av(1 ), (1 )N N  

φ 0.56
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performing an edMD equilibration. Because the observation of crystallization in monomers requires 

much shorter simulations than in chain systems, a larger set of eight statistically uncorrelated MD 

trajectories of monomeric samples was produced at each packing density.  

2.2. Analysis of Local Structure, Voronoi Cell and Characteristic Crystallographic Element Norm 

Once a large number of system configurations (frames) is collected, the analysis proceeds by a 

detailed characterization of the local environment around each site. An accurate and highly 

discriminating descriptor is required to quantitatively describe the degree of randomness as well as the 

appearance and propagation of ordered nuclei corresponding to specific crystal structures. Existing 

descriptors of local structure include the widely used pair radial distribution function, g(r) [111], and a 

set of rotationally invariant measures, which are defined as combinations of spherical harmonics [112]. 

g(r) provides detailed information on the radial characteristics of the atomic or particulate system 

under study while rotationally invariant measures detect orientational deviations with respect to perfect 

local order. 

Recently, we qualitatively and quantitatively analyzed the local structure of athermal packings 

through a novel scheme that consists of two main steps: (i) Identification of the local environment 

around each sphere through a Voronoi tessellation and by measuring the shape and size of the 

corresponding Voronoi cell, and (ii) application of a novel structural descriptor based on the concept of 

the characteristic crystallographic element (CCE), as used in crystallography [113,114].  

In structural characterization via Voronoi tessellation the set of neighbors closer to a reference site 

than to any other sites is identified. This task was performed with the qhull algorithm [115,116], which 

yields full information about the vertices, edges and faces of the Voronoi polyhedron around every 

site. Once the tessellation is completed, the corresponding Voronoi cells are constructed. In the 

simplest approach the local density around each hard sphere is calculated as the inverse of the volume 

of the corresponding Voronoi polyhedron [117]. A more detailed topological analysis can be 

performed with respect to the shape and size of each Voronoi cell through the calculation of the mass 

moment of inertia tensor I with all vertices being treated as equivalent point unit masses 

 (1) 

with nver being the number of vertices of the polyhedron,  is the position vector of vertex i with 

respect to the center of mass of the polyhedron and  is the unit second order tensor. Equation 1 is 

written in dimensionless form. The mass moment of inertia tensor provides a quantitative description 

of the shape of a rigid body and of the spatial distribution of its mass [89,118–120]. The internal,  

co-moving principal axis system of the Voronoi polyhedron is defined by the normalized eigenvectors 
. Once the Voronoi tessellation is completed, the internal principal axes system is 

determined for each Voronoi cell from the coordinates of its vertices. The three real eigenvalues of the 
intertia tensor I1, I2 and I3 ( ) correspond to the principal moments of inertia. The inertia 

tensor provides useful information on the shape and size of the Voronoi cell and accordingly on the 

local environment around each hard sphere. Based on the eigenvalues, a coarse-grained ellipsoid can 

be constructed with the lengths of the semiaxes being calculated as: 
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 (2)

with semiaxis lengths L2 and L3 being calculated in an analogous fashion as in Equation 2 under cyclic 

permutation of the indices. As global shape measures of the coarse-grained ellipsoid the following 

were computed: 

asphericity: 

 (3)

acylindricity: 

 (4)

and relative shape anisotropy: 

 (5)

These measures are defined so that the lower the values of b, c and k2 the closer the resemblance to 

spherical, cylindrical and isotropic shapes, respectively.  

Once a system configuration was recorded in the course of MC or edMD simulations, a Voronoi 

tessellation was performed to identify the characteristics of the corresponding polyhedra including a 

shape analysis based on asphericity, acylindicity and relative shape anisotropy. These global shape 

measures for each individual Voronoi cell can be directly compared with the analogous measures for 

the trapezo-rhombic dodecahedron and the rhombic dodecahedron, which are the characteristic 

Voronoi polyhedra arising from tessellation of hcp and fcc lattices, respectively. Thus, a systematic 

analysis of the shape measures of the Voronoi cells at each instance provide a reliable estimate of the 

current state of the athermal packing as well as of possible phase transition (crystallization). In 

addition, a change in the local environment around each sphere, quantified by the Voronoi global 

shape measures, can be directly related to changes in translational entropy, quantified in turn by  

sphere mobility. 

The second descriptor of local structure, the characteristic crystallographic element (CCE) norm for 

a given configuration of point-like atoms around a reference atom j, defined by the corresponding 

position vectors, quantifies both the orientational and radial similarity of this set of sites with respect to 

a specific ordered structure. This reference crystal structure is characterized by a unique, and thus 

distinguishing, set of crystallographic elements each of which, in turn, consists of a set of distinct 

elements of the corresponding point symmetry group. The complete mathematical formulation of the 
CCE norm of site j with respect to a reference crystal structure X, denoted as can be found in 

[89,98,100]. Algorithmically, the method proceeds by identifying the set of orientation axes in the 
internal coordinate system that minimizes the value of . For an ordered site j of perfect X crystal 

structure , any deviation will lead to CCE values greater than zero. By construction and due to 

the highly discriminating nature of the CCE norm, a site with high similarity to a given ordered 

 1 2 3 1

5

2
L I I I  

 1 2 3

1

2
b I I I  

1 2c I I 

 
2 2 3 3 1 1 2

2

1 2 3

4 1 3
I I I I I I

k
I I I

  
  
   

ε X
j

ε X
j

ε 0X
j 



Int. J. Mol. Sci. 2013, 14 339 

 

 

structure X ( ) will necessarily possess a high norm value with respect to any alternative Y 

crystal structure ( ).  

Once the minimum CCE norm is calculated for each site in system, an order parameter with respect 

to perfect order X can be calculated as  

 (6) 

where  is the probability distribution function of CCE norm and is a threshold value 

below which a site is considered to possess X-like order. Trial tests suggest that a value of 

 is adequately small to discriminate between different crystal types but also large enough 

to correctly identify the disorder-order transition in initially random packings and the emergence of 

specific crystal morphologies.  

The hcp and fcc crystals are the two competing structures that arise when dense hard-sphere 

packings crystallize. Thus, the CCE norms ( , ) and the corresponding order parameters  

( , ) for each were calculated with respect to these ordered structures. As the CCE-based 

analysis is highly discriminating between different crystal lattices, the degree of ordering  can be 

estimated as the total number of sites with either hcp or fcc structural similarity ( ). 

Additional measurements were conducted to detect sites with fivefold local symmetry, a structural 

motif which is favored at high packing densities and constitutes an alternative local arrangement to hcp 

and fcc crystals [55,56]. We should note that while the CCE-based descriptor is used here to compare 

with the hcp, fcc and fivefold symmetries, by incorporating the proper distinguishing set of 

crystallographic elements and operations, it can be used to identify any emerging crystal structure. As 

in the case of the Voronoi shape measure characterization, application of the CCE norm allows for an 

accurate description of the local environment around each site and for a precise identification of a 

potential disorder-order phase transition at high volume fractions.  

3. Results and Discussion 

3.1. Phase Transition of Athermal Systems: Effect of Chain Connectivity 

The analysis of local structure based on the concepts of the Voronoi cells and of the CCE-based 

norm was performed at equally spaced frames of the long MC (or edMD) trajectories over all 

computer-generated samples and at all packing densities. Figures 1 and 2 present the CCE norm 
distribution of sites for the N = 12 chain system at and 0.61, respectively. The CCE norm was 

calculated with respect to the hcp, fcc and fivefold symmetries and is presented here for two different 

frames, one very close to the beginning (left panel) and one at the end (right panel) of the MC 

simulation. The vertical dotted lines denote the CCE-based threshold ( ) below which a 

site is assigned to one of the reference structures (hcp, fcc or fivefold). According to  

Equation 2, the fraction of sites with specific X local order corresponds to the part of the CCE-based 
distribution ( ) that lies below the threshold value.  
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Figure 1. Characteristic crystallographic element (CCE)-based distribution with respect to 

hexagonal close packing (hcp), face center cubic (fcc) and fivefold symmetries as obtained 

from Monte Carlo (MC) simulations on the N = 12 system at φ = 0.56: (left panel) at the 

beginning and (right panel) at the end of the simulation. Also shown with vertical dotted 

lines are the threshold values of the CCE analysis (εthres = 0.245). 

 

Figure 2. Same as in Figure 1 but at a packing density of . 

 

According to the data reported in Figure 1, at a volume fraction of there exist no 

appreciable differences in norm distributions for all three different reference structures (hcp, fcc and 

fivefold). Furthermore, the fraction of sites with highly ordered local structure, in other words the 

fraction of sites with hcp- or fcc-norms below the threshold value, is very small and does not change 

φ 0.61

φ 0.56



Int. J. Mol. Sci. 2013, 14 341 

 

 

throughout the MC simulation. Thus, it can be safely concluded that the athermal chain packing  

(N = 12) shows no signs of phase transition and remains in the original amorphous (random) state. The 

situation is quite different at the higher density (φ = 0.61). While the shapes of the initial CCE 
distributions are similar to those at for all three structures, the same is not true at later stages. 

A very clear shift of the hcp and fcc CCE distributions to much lower values is evident, with many 

sites possessing CCE norms well below the critical threshold. In parallel, the shape of the 

corresponding CCE distributions is significantly altered. With respect to the fivefold local structure, 

the distribution becomes narrower and the average shifts to higher values, which implies that in the 

final state for the N = 12 polymer system there exist no sites with fivefold local symmetry. In parallel, 

the distributions of the hcp and fcc norms adopt a bidisperse shape with peaks at low and high values 

stemming from the discriminating nature of the CCE norm: By construction, an hcp-like site (low hcp 

CCE norm) is characterized by a high fcc CCE norm and vice versa [56,98,100]. For this specific 

sample ( , φ = 0.61), the fraction of sites with hcp- and fcc-like local structures in the final state 

are very similar. By calculating the corresponding fractions it can be concluded that crystallization 

occurs for the athermal polymer packing at φ = 0.61. 

Information obtained from the CCE-norm distribution also allows the calculation of crystallinity 

(degree of ordering), , as a function of steps (or number of collisions) from MC and edMD 

simulations on athermal chains and on hard-sphere monomers, respectively. Panels (a) and (b) in 

Figure 3 present the evolution of crystallinity as a function of MC steps (number of collisions for 

edMD). We should note that while one could transform both measures (steps and collisions) into a 

common reference framework of CPU time, such mapping would only provide technical information 

about the computational cost of each method. The application of stochastic, non-physical (but highly 

efficient) MC algorithms for polymer chains prevents the extraction of any kind of dynamical 

information related to chain motion and to the kinetics of phase transition. While crystallinity results 

are presented here for the N = 12 system with uniform distribution of lengths the phase behavior of 

athermal polymer chains remains the same also for the other two systems (N = 24 with uniform 

distribution and N = 12 with Flory distribution of chain lengths). As seen in Figure 3 (left panel) at the 

volume fraction of φ = 0.56, which lies just above the melting point (φM = 0.545), hard sphere 

monomers of uniform size show a clear disorder-order transition while the corresponding athermal 

chains remain in the original amorphous state throughout the simulation. Evidently, at this packing 

density, chain connectivity suppresses crystallization. However, as concentration increases, polymer 

packings spontaneously evolve into a stable crystal phase. This trend is clearly shown in Figure 3 

(right panel): Initially the degree of crystallinity, as quantified by the CCE norm, remains low  

(τc = 0.05) for both chains and monomers as expected for random (amorphous) packings. However, as 

MC (MD) simulations evolve, a sharp ordering transition occurs as crystallinity adopts high values  

(τc = 0.83), which are very similar for chain and monomeric packings. In the final stable crystal phase, 

the majority of sites adopt a highly ordered structure of either hcp or fcc character.  

φ 0.56

12N 

cτ
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Figure 3. Crystallinity, , as a function of MC steps and Molecular Dynamics (MD) 

collisions as obtained from simulations of freely-jointed chains of tangent hard spheres.  

(Nav = 12, uniform chain length distribution) and on monomeric hard spheres, respectively 
through application of the CCE norm, at (left) a packing density of  where Run1, 

Run2 and Run3 denote MD trajectories starting from Frames 0, 1010 and 19 × 1010, 

respectively, of the corresponding MC trajectory by deleting all existing bonds, (right)  

φ = 0.61, where in Run1 monomeric MD simulation is initiated from Frame 109 of the 

corresponding MC trajectory.  

 

Figure 4 shows the dependence of crystallinity on packing density for hard-sphere chains and 

monomers. At a range of volume fraction near and above the melting point hard sphere monomers of 

uniform size crystallize while the corresponding polymer systems remain amorphous. As packing 

density increases, the difference in crystallinity between chains and monomers progressively gets 

smaller. At the highest studied concentration (φ = 0.61) CCE-based crystallinity is, within statistical 

error, the same between athermal chains and monomers. Thus, it can be safely concluded that at high 

volume fractions chain connectivity has no appreciable effect on the ability of hard spheres to 

crystallize given adequate simulation time. However, according to the present simulations near the 

melting point, connectivity frustrates phase transition of chain packings, which, in sharp contrast to 

monomeric analogs, remain predominantly amorphous.  

Figure 4. Crystallinity (degree of ordering), τc, as a function of packing density, , for 

freely-jointed chains of tangent hard spheres (N = 12) and for hard sphere monomers. 

Vertical green and blue dotted lines indicate the freezing (φF) and melting points (φM), 

respectively, for hard sphere monomers of uniform size.  

 

cτ

φ 0.56

φ



Int. J. Mol. Sci. 2013, 14 343 

 

 

3.2. Crystal Morphologies in Ordered Packings of Athermal Chains 

From the simulation results presented in Section 3.1 it is evident that once a critical volume fraction 

is reached, which lies at higher concentrations compared to monomers, athermal packings of  

freely-jointed chains of hard spheres transit from the initial amorphous (random) to the final crystal 

(ordered) phase. In the present section, we study in detail the structural features of the characteristic 

ordered morphologies that arise during athermal polymer crystallization. Figure 5 shows some 

representative snapshots as obtained for the N = 12 system with uniform distribution of chain lengths 

at φ = 0.56 (upper panel) and 0.61 (lower panel) at the start (left side) and at the end (right side) of the 

MC simulations. In the system snapshots of Figure 5, spheres are colored according to the index of the 

chain to which they belong. While no significant ordering is observed in the structures at φ = 0.56, a 

visual inspection at φ = 0.61 confirms the ordering of the spheres and the formation of layers, as is 

clearly visible in the final configuration at φ = 0.61.  

Figure 5. System configurations of the hard-sphere chain packing (N = 12) as obtained 

from MC simulations at packing densities of φ = 0.56 (upper panels) and φ = 0.61  

(lower panels). Snapshots at the beginning and at the end of the simulation appear in the 

left and right panels, respectively. Spheres are color-coded according to the parent chain 

molecule. Image created with the VMD software [121].  

 

The loss of positional and radial randomness and the formation of well-ordered morphologies 

during crystallization are depicted more vividly once we adopt a visualization scheme based on the 

information obtained by the CCE analysis. In Figure 6, spheres are color-coded according to the 

corresponding CCE-norm for hcp, fcc and fivefold symmetries for the same chain configurations as in 

Figure 5. At φ = 0.56 no particular change is observed in the population of the ordered sites (hcp or fcc 
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symmetry), which remains at low levels: At φ = 0.56 packings of freely-jointed chains of tangent hard 

spheres remain amorphous. At φ = 0.61, as expected, the initial fraction of sites with ordered local 

environment in the random phase is significantly higher than at φ = 0.56, and the same conclusion can 

be drawn regarding the sites with fivefold symmetry. The latter finding is in full agreement with 

corresponding results on random packings of monomeric hard spheres above the freezing transition, 

where the fraction of fivefold sites increases linearly with packing density [55,56]. In the final stable 

crystal phase at φ = 0.61, alternating layers of almost exclusive hcp- or fcc- type are formed. These 

stack-faulted ordered morphologies possess a unique stacking direction and are further accompanied 

by an absence of fivefold sites.  

Figure 6. Same as in Figure 5, but following a different visualization pattern. Sites are 

color-coded according to the following scheme: Spheres with hexagonal close packing 

(hcp), face center cubic (fcc) and fivefold similarities are shown in blue, red and green 

colors, respectively; for visualization purposes all remaining spheres are omitted. Image 

created using the VMD software [121].  

 

Analogous snapshots of the final crystal phases as obtained from MC simulations on the N = 12 

polymer system, where chain lengths obey the Flory (most probable) distribution, are shown in  

Figure 7 at packing densities of φ = 0.58, 0.60 and 0.61. As in the case of the polymer packing 

characterized by the same average chain length but by a uniform chain-length distribution, stable 

crystal structures correspond to layered morphologies of alternating hcp and fcc character with a 

unique stacking direction. Furthermore, sites with fivefold local symmetry are absent in the  

ordered state.  
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Figure 7. System configurations corresponding to the final crystal morphologies as 

obtained from MC simulations on N = 12 athermal polymer packing where chain lengths 

follow the Flory (most probable) distribution at volume fractions: (left) φ = 0.58, (middle) 

φ = 0.60 and (right) φ = 0.61. Spheres with high hcp and fcc similarities, according to the 

CCE norm, are depicted in blue and red colors, respectively. Image created using the VMD 

software [121]. 

 

According to the results presented here, crystal morphologies of dense assemblies of athermal 

polymers correspond to randomly stacked hexagonal close packings (rhcp), and no ordered structures 

were found of exclusive fcc (or hcp) character. As mentioned in the introduction, this trend is in 

accordance with the Ostwald rule of stages [72], as the rhcp morphology is structurally and 

thermodynamically closer to the random phase than the pure fcc crystal. Accordingly, in a second step, 

a transition is expected from the (metastable) rhcp to the (stable) fcc phase. However, in all present 

MC simulations on athermal polymer packings, no such transition occurs even if the total simulation 

time at cases exceeds by orders of magnitude the time required for crystallization (disorder-order 

transition), which is not unexpected in view of the tiny entropic difference between rhcp and fcc 

structures. Similar conclusions have been drawn for corresponding packings of monodisperse  

hard-sphere monomers as the rhcp structure is shown to be the prevailing morphology [55,56]. In 

parallel, crystallization processes of athermal packings consisting of chains and monomers show 

appreciable differences. For chains, crystal morphologies are free of defects such as twinning which 

appear in ordered phases of monomeric hard spheres. Furthermore, while even for monomers the rchp 

is the prevailing crystal structure in the majority of samples, ordered morphologies still exist, which 

are characterized by a clear prevalence of fcc (or hcp) sites. Studies are in progress to investigate in a 

systematic fashion the effect of chain connectivity on the established crystal morphologies and on the 

short-range order in the form of fivefold local symmetry.  

3.3. Evolution of the Voronoi Cell during Hard-Sphere Crystallization 

In the introduction we proposed a second method to identify crystallization by analyzing the 

changes in the local environment through a systematic study of the shape and size of the Voronoi cell 

around each sphere site. This approach is presented through a series of illustrations starting in Figure 8 

with the parent hard-sphere configuration where all nearest neighbors of a reference site are identified 

through the Voronoi tessellation (Figure 8a,b). The enclosing Voronoi cell of the reference site is 

shown in Figure 8c. Once the Voronoi cell is constructed, the moment of inertia tensor I is calculated 

according to Equation 2. In the next step the Voronoi cell is mapped to a coarse-grained ellipsoid with 
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semiaxes given by Equation 3. Finally, global shape measures of the simplified representation can be 

readily calculated through Equations 4–6.  

Figure 8. Illustration of the procedure adopted for the construction of the Voronoi 

polyhedron around a reference site. In the specific example a sphere site is randomly 

selected from a system configuration obtained from MC simulations on N = 12 chain 

system at φ = 0.56. (a) Reference sphere and corresponding nearest neighbors, as 

calculated from Voronoi tessellation, are shown in red and blue colors, respectively; sphere 

coordinates are subjected to periodic boundary conditions. All remaining spheres are 

transparent for visualization purposes. (b) Reference sphere and nearest Voronoi neighbors 

with coordinates fully unwrapped in space and sphere radii reduced for clarity.  

(c) Voronoi polyhedron enclosing the reference sphere. Image created with the VMD 

software [121]. 

 

An estimate of the local density around each sphere site can be obtained as the reciprocal of the 

volume of the enclosing Voronoi polyhedron. Since the volume of the simulation cell remains constant 

during the simulation and the Voronoi tessellation is a space-filling geometrical procedure, the average 

local density of the system does not change during the whole simulation time and consequently during 

the phase transition. However, significant qualitative and quantitative changes occur in the shape of the 

Voronoi cells as the chain assembly crystallizes spontaneously and ordered morphologies are formed. 

Figures 9–11 show the parent sphere configuration along with the corresponding Voronoi cell for sites, 

which possess amorphous and well-ordered hcp-like and fcc-like local structures, respectively.  

Figure 9. System visualizations showing: (a) a reference hard sphere and the nearest 

Voronoi neighbors; (b) the corresponding Voronoi polyhedron. The local environment of 

the reference sphere is predominantly amorphous ( , ). Global 

shape measures for the Voronoi cell: asphericity , acylindricity and 

relative shape anisotropy . 

 

hcpε 0.6730 fccε 0.7207
2.52b  1.42c 

2 0.0472k 
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Figure 10. Same as in Figure 9 but for a reference hard sphere with well-ordered hcp-like 

local structure ( ). Global shape measures for the Voronoi cell: asphericity 

, acylindricity and relative shape anisotropy . 

 

Figure 11. Same as in Figure 9 but for a reference hard sphere with well-ordered fcc-like 

local structure ( ). Global shape measures for the Voronoi cell: asphericity 

, acylindricity and relative shape anisotropy . 

 

Visual comparison of the shapes of the Voronoi cells depicted in Figures 9–11 clearly shows that 

the local environment around each site undergoes significant changes as the packing evolves from the 

amorphous to the crystal phase. The Voronoi polyhedra corresponding to well-ordered crystal 

structures have more symmetrical and more spherical shapes. Thus, while there is no appreciable 

difference in the average local density, as quantified by the Voronoi volume, between the amorphous 

and crystal phases, the shape of the local environment around each site is profoundly altered during the 

phase transition [98,99]. Such structural changes during the phase transition can be made quantitative 

by plotting the global shape measures (asphericity, acylindricity and relative shape anisotropy) as a 

function of MC steps (Figure 12).  

hcpε 0.0675
1.34b  0.262c  2 0.0146k 

fccε 0.0845
0.620b  0.621c  2 0.00508k 
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Figure 12. Average asphericity, b, acylindricity, c, and relative shape anisotropy, k2, as a 

function of MC steps from simulations of freely-jointed chains of tangent hard spheres  
(N = 12 with uniform distribution of chain lengths) at . Global shape measures  

are averaged over all 1200 coarse-grained ellipsoids, each one having semi-axes as 

obtained from the eigenvalues of the moment of inertia tensor of the corresponding  

Voronoi polyhedron.  

 

All shape measures of deviation from isotropy, averaged over all Voronoi cells for each system 

configuration, decrease monotonically as the MC simulation advances. According to the data shown in 

Figure 3, for the N = 12 system (uniform chain length distribution) a sharp phase transition 

(crystallization) occurs at around 20 × 1010 MC steps. It is exactly the same regime where the values of 

asphericity, acylindricity and relative shape anisotropy of the Voronoi polyhedra show a precipitous 

decline. In the final stable crystal phase all values of shape measures are significantly lower than the 

initial ones of the random phase. Based on the above, it can be safely concluded that during 

crystallization of athermal polymer packings, on average, the local environment around each sphere 

site becomes more symmetric and more spherical. Thus, a detailed geometrical analysis of the Voronoi 

polyhedra can shed light on the structural changes that occur during the phase transition. Such a 

methodological approach could be complementary to more refined structural descriptors like the  

CCE-based norm. In addition, such shape transformations of the local environment around each sphere 

site can be directly connected with local dynamics and consequently with translational entropy.  

The present analysis based on the Voronoi polyhedra can further serve as the basis for a descriptor, 

which would potentially identify shape similarities with respect to specific Voronoi cells of reference 

crystal structures.  

3.4. Entropic Origins of Crystallization in Hard-Sphere Chain Packings 

In isolated athermal systems, a phase transition can only be driven by an increase in entropy. 

Accordingly, in athermal packings of chain molecules, entropy is the driving force for crystal 

nucleation and growth. The conformational contribution entropy is actually reduced as a result of 

sphere arrangements adopting specific conformations both in bonded and non-bonded terms. This 

φ 0.61
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trend is easily identified by comparing the pair radial distribution function, , in the initial random 

and final ordered phases as seen in Figure 13.  

Figure 13. Total pair radial distribution function, , as a function of radial distance, r, 

in the initial amorphous and the final crystal phases as obtained from MC simulations on 

the N = 12 chain system with uniform length distribution at φ = 0.61.  

 

Characteristic peaks appear in the ordered phase, especially near contact. At the same time,  

long-range correlations features in the pair distribution unambiguously point towards the emergence of 

the ordered phase. Even if a more refined measure of pair correlation would be required to capture the 

anisotropic features of layered crystals, g(r) points to a clear loss of conformational entropy during 

crystallization. Similar conclusions can be drawn for the orientational contribution of entire chains to 

entropy. While the population of oriented chains is quite limited, so that the change in the average 

orientation vector is very small, orientational entropy is nevertheless reduced in polymer crystals 

compared to random chain packings [98]. 

The two previous sources of entropy loss must be more than compensated for by an independent 

mechanism of entropy gain. In Section 3.3 we have reported that the local environment around each 

hard sphere becomes more isotropic as the crystal phase appears. In order to establish a connection 

between shape transformation of local structure and entropy increase, we first studied local sphere 

dynamics. In this direction, and given that MC simulation provide no dynamical information, we resort 

to the concept of “flipper” originally employed to identify the jamming transition in polymer  

packings [92,94]. “Flipper” is a term used to denote a sphere, which can perform a flip-like move, 

which obeys the holonomic chain constraints and does not lead to overlaps with any other sphere of the 

system. Here, we employ the concept of flipper to study how the ability of hard spheres to move 

locally is affected by the shape transformations of the local environment, which take place during 

crystallization. Figure 14 shows the fraction of sites (flippers), which can perform a flip-like move of 

specific amplitude, dϕ in both directions (clockwise and counter-clockwise) as a function of MC steps 

corresponding to the same simulation trajectory of Figures 3 and 12. As simulation progresses, the 

population of sites which can move freely in their local vicinity increases. This trend is especially 

apparent around 20 × 1010 MC steps, a regime which marks the disorder-order transition. Thus, as the 

local environment becomes more spherical and more symmetric monomers are able to explore more 

efficiently the free volume that surrounds them. Consequently, the translational entropy of the athermal 

( )g r

( )g r



Int. J. Mol. Sci. 2013, 14 350 

 

 

polymer system increases during crystallization. This increase in translational entropy is large enough 

to compensate for the losses in conformational and orientational entropy, and is thus responsible  

for crystallization. 

Figure 14. Fraction of sites (flippers), which can perform a flip-like move clockwise and 

counter-clockwise of amplitudes dϕ = 0.01, 0.10 and 1.00° as a function of MC steps from 

simulations on the N = 12 chain system with uniform chain length distribution at φ = 0.61. 

Reproduced from [98] with permission from The Royal Society of Chemistry.  

 

In order to better understand the strong correlation between the shape transformation of the local 

environment and the increase in translational entropy during crystallization, Figure 15 summarizes the 

evolution of asphericity (averaged over all Voronoi polyhedra), fraction of flippers (of amplitude  

dϕ = 1.00°) and crystallinity as a function of MC steps. The data shown confirm that during phase 

transition (indicated by the sharp increase of crystallinity), as the local environment becomes more 

spherical (indicated by the sharp decline of asphericity), translational entropy increases (indicated by 

the sharp increase of the flipper population). The large increase in translational entropy is thus the 

driving force for the athermal polymer crystallization as in the case of monomeric analogs.  

Figure 15. Asphericity, b, averaged over all Voronoi polyhedra, degree of crystallinity, τc, 

and fraction of flippers (dϕ = 1.00°) as a function of MC steps from simulations on  

the N = 12 chain system with uniform chain length distribution at φ = 0.61. 
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4. Conclusions  

We have reviewed recent studies on the phase transition and self-assembly of crystal morphologies 

from extensive simulations of packings of freely-jointed chains of tangent hard spheres of uniform 

size. The key finding is that once a critical packing density is reached, athermal polymer chains 

crystallize, just as monomers do, in spite of the additional constraint set by chain connectivity. 

However, at volume fractions very close to the melting point, chain connectivity does indeed frustrate 

crystallization; for the systems studied at φ = 0.61, polymer packings remain amorphous while 

monomeric analogs show a clear phase transition. The exact origins of the frustration along with the 

extent of the effect of connectivity on crystallization are under investigation.  

Above a critical packing density, which is higher than for monomeric systems, and given sufficient 

simulation time, polymer configurations self-assemble into well characterized ordered morphologies of 

predominately rhcp character. Such crystals consist of stack-faulted alternating layers of hcp or fcc 

type with a single stacking direction and never show twinning. For all chain systems studied so far no 

transition to a pure fcc (or hcp) crystal was observed during the allowed simulation time. A detailed 

comparison between the crystal morphologies of polymers and of monomeric hard spheres is currently 

in progress. 

We have also described in detail two new descriptors of local structure, the characteristic 

crystallographic element norm and a geometric analysis based on the Voronoi cells. It is established 

that during crystallization the local environment around each site becomes more spherical and more 

symmetric. In turn, this shape transformation allows the sphere sites more freedom to move locally. 

Thus, the entropy of the system increases and it is the driving force for the crystallization of  

chain packings.  

Present efforts include the modeling study of phase transition in athermal polymer packings under 

varied conditions of confinement, mainly through the presence of a hard wall. The proposed simulation 

approach is further generalized to treat polymer packings with a finite degree of chain stiffness.  
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