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Abstract: The complex nanoliposomes encapsulating both a hydrophilic drug vitamin C 

(vit C) and hydrophobic drug medium-chain fatty acids (MCFAs) was prepared by 

combining double emulsion method with dynamic high pressure microfluidization. The 

complex nanoliposomes was further freeze-dried under −86 °C for 48 h with sucrose at the 

sucrose/lipids ratio of 2:1(w/w) in order to enhance its stability. The freeze-dried complex 

nanoliposomes under the suitable conditions exhibited high entrapment efficiency of 

MCFAs (44.26 ± 3.34)%, relatively high entrapment efficiency of vit C (62.25 ± 3.43)%, 

low average size diameter (110.4 ± 7.28) nm and good storage stability at 4 °C for 60 days 

with slight changes in mean particle diameter and drug entrapment efficiencies. The results 

of transmission electron microscopy of freeze-dried complex nanoliposomes also showed 

that the freeze-dried samples with sucrose were stable without great increase in their 

particle sizes and without destroying their spherical shape. The results indicated that 

sucrose presented well protection effects in MCFAs-vit C complex nanoliposomes, 

suggesting the possibility of further usage in commercial liposomes. 
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1. Introduction 

Hydrophobic drug medium-chain fatty acids (MCFAs) composed of octanoic acid and decanoic 

acid has unique characteristics different from long-chain fatty acids [1]. MCFAs are more rapidly 

hydrolyzed into triglycerides by pancreatic lipase than long chain fatty acids, and transported via portal 

vein to the liver where they are preferentially β-oxidized by carnitine-independent pathway [2]. In 

addition, they can save the amount of protein [1], inhibit the formation of body fat and suppress 

diseases caused by pathogenic bacteria [3,4]. However, the water solubility of MCFAs is relatively 

weak, which often prevents their parenteral and oral administration from being effective. In addition, 

an excess of non-esterified MCFAs may have serious side effects such as stimulation to the secretion 

of cholecystokinin and perhaps other intestinal hormones [5]. As one kind of typical water-soluble 

nutrient, vitamin C (vit C) is essential for humans and other certain animal species [6]. It can reduce 

the damage of free radicals on the skin, delay aging and reduce the formation of melanin [7–9]. 

However, vit C could be easily oxidized under ambient conditions and light exposure. This could cause 

an obvious decrease of its utilization [10]. 

Suitable drug carriers are needed as the delivery system in order to protect them and enhance their 

bioavailability. It is very challenging to entrap the two drugs in a drug carrier, due to their quite 

different properties of drugs. An attractive method for entrapping water-soluble and insoluble drugs is 

the use of liposome [11]. The phospholipids bilayer membrane structure of liposome guarantees that 

hydrophilic and hydrophobic drugs can be efficiently and simultaneously entrapped in it [12]. The liposome 

can prolong the residence time of the drugs in the blood, making the drugs release slowly in vivo [13]. Due to 

better distributions in the organisms, small nanoliposomes with diameters of about 100 nm are 

frequently used as a delivery system for drugs [14]. The bioavailability of encapsulated components is 

higher in nanoliposomes than in conventional liposomes [15,16]. Preparation of complex 

nanoliposomes is very challenging by traditional methods, due to the difficulties in the implementation 

of small particle size and high entrapment efficiency. 

Many methods were used for preparing liposomes, most of which exhibit favorable characteristics 

when entrapping one hydrophobic or hydrophilic drug [17,18]. However, those methods had certain 

disadvantages when preparing complex liposomes that entrap both hydrophobic and hydrophilic drugs. 

The problems limiting the manufacture and development of liposomes had been stability issues, batch 

to batch reproducibility, low drug entrapment and particle size control [19]. Thus, combined methods 

consisting of two or more different methods are investigated for preparation of liposomes that entrap 

both hydrophobic and hydrophilic drugs. Currently, double emulsion was reported to be the most 

appropriate method to encapsulate hydrophilic drugs [20,21]. 

Dynamic high pressure microfluidization (DHPM) is a technology that uses the combined forces of 

shear, cavitation, and ultra-high pressures up to 200 MPa [22]. It can reduce the particle sizes of 

liposomes greatly and could be applied for large-scale production of liposomes in a continuous process 
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without employing toxic solvents [23–26]. In this study, traditional methods and DHPM were 

combined for preparing MCFAs-vit C complex nanoliposomes suspension. However, ordinary 

liposomes exist in liquid form, which leads to several unstable problems, such as particle aggregation 

sedimentation and drug leakage [19]. After liposomes were freeze-dried, these problems could be 

avoided [27]. While fusion of phospholipids membranes may also occur during the freezing, drying 

and rehydration, the addition of lyoprotectants such as sucrose, trehalose, or lactose is necessary for 

preventing leakage or fusion [28–30]. Up to now, no report about freeze-dried MCFA-vit C 

nanoliposomes has been found. In order to enhance the stability of liposomes, strengthen its functional 

effect, the lyophilized liposomes were prepared in this study with an expectation on its application in 

feedstuff or as injection and aerosol after rehydration. 

2. Results and Discussion 

2.1. Characteristics of Freeze-Dried MCFAs-Vit C Complex Nanoliposomes 

The changes of particle size and drug entrapment efficiencies of the liposomes before and after 

lyophilization are important for evaluating the effects of freeze-drying process on liposomes. The 

characteristics of the freeze-dried complex nanoliposomes in the presence or absence of sucrose 

compared with liposomes suspension before lyophilization were shown in Table 1. The results showed 

that the qualities of MCFAs-vit C complex nanoliposomes improved after the addition of sucrose, 

which made freeze-dried liposomes with relative small size increase and high drug entrapment 

efficiencies compared with liposomes suspension before lyophilization. The freeze-dried complex 

nanoliposomes without any cryoprotectant (the control group) exhibited a larger mean particle 

diameter of (151.4 ± 10.76) nm, and drugs entrapment efficiencies could not be detected because of the 

damages caused by lyophilization. Similar results were found in our previous report [31], which 

indicated that the freezing-drying process has a small effect on the liposome size, resulting in a slight 

increase in average diameter from 250.1 to 263.3 nm. On the other hand, formulations prepared 

without saccharose as cryoprotectant presented an increase in vesicle size after lyophilization. It can be 

concluded that sucrose succeeded in avoiding size increase and preventing drug leakages. 

Table 1. The effects of freeze-drying and sucrose on the characters of the complex 

medium-chain fatty acids (MCFAs)-vit C nanoliposomes. 

Samples 
Particle size 

(nm) 
Polydispersity 

index 
EEvit C  
(%) 

EEMCFAs 
(%) 

Sample before lyophilization 115.3 ± 9.37 0.257 61.37 ± 3.17 46.23 ± 1.25 
Lyophilized nanoliposomes with sucrose 110.4 ± 7.28 0.232 62.25 ± 3.43 44.26 ± 3.34 

Lyophilized nanoliposomes without sucrose 151.4 ± 10.76 0.384 - - 

“-” in the table represents “the value can’t be detected”. 

2.2. Transmission Electron Microscopy of Complex Nanoliposomes 

The morphology of the complex nanoliposomes under the optimum conditions was evaluated by 

transmission electron microscopy (TEM) experiments. The typical micrographs of the freshly prepared 

liposome suspension and the freeze-dried liposomes with sucrose as the suitable cytoprotectant are 
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shown respectively in Figure 1 A,B. It was found that both freshly prepared liposomes and freeze-dried 

liposomes were unilamellar in nature. These liposomes could easily be identified as discrete particles 

that were predominantly spherical or elliptic in shape. Microscopic observations of liposomes 

suspension revealed few aggregated or semifused vesicles, and majority of lipoplexes are in the form 

of individual vesicles. While, freeze-dried complex liposomes presented partly aggregated or 

semifused vesicles, which may be concerned with the complex process of the lyophilization or the 

shrinking during drying on the EM grid. The sizes of liposomes observed in the typical micrographs 

were smaller than the results obtained by particle size measurements. This is probably due to hydration 

and swelling of the particles in aqueous buffer [32]. The dissimilarities between the TEM and the 

particle size measurements of the liposomes could be explained by considering that the samples in the 

TEM investigations were prepared by allowing the solvent to evaporate [33]. The results of TEM 

indicated that the freeze-dried samples were stable without great increase in their particle sizes and 

without destroying their spherical shape. These all suggested that the cytoprotectant sucrose was 

successful in protecting the complex nanoliposomes. 

Figure 1. TEM profile of liposomes. (A) Profile of complex liposomes suspension;  

(B) Profile of freeze-dried complex liposomes. The bar in the figures represents 400 nm. 

The amplification time was 25 × 103. 

 

2.3. Storage Stability 

The stability of freshly prepared and freeze-dried MCFAs-vit C complex liposomes by DE-DHPM 

stored from light at 4 °C is shown in Table 2. The particle size of freshly prepared liposomes had 

minor changes within 60 days, from (99.5 ± 2.08) nm to (132.3 ± 5.26) nm. The increment of a 33% in 

size after 60 days was possibly due to the partial aggregation brought by the minimization of high 

surface-to-volume ratios. And just the increment of a 36% in size after 60 days was observed for 

freeze-dried complex liposomes. In our previous studies, the stability of MCFAs liposomes prepared 

by DHPM at 4 °C for 3 months was investigated, which presented good stability with relative bigger 

changes in particle size from (86.8 ± 1.01) nm to (172.6 ± 5.51) nm [34]. In addition, freeze-dried 

MCFAs-vit C complex nanoliposomes experienced little loss of entrapped MCFAs and vit C during  

60 days. These results showed that the MCFAs-vit C complex liposomes prepared had a favorable 
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stability during storage, suggesting that freeze-drying with certain amount of sucrose had excellent 

effects for long-term storage of liposomal formulation. 

Table 2. Characteristics of MCFAs-vit C complex nanoliposomes during storage at 4 °C. 

Days 
Mean diameter (nm) 

Polydispersity 

index 
EEMCFAs (%) EEvit C (%) 

FPL FDL FPL FDL FPL FDL FPL FDL 

1 99.5 ± 2.08 110.4 ± 7.28 0.232 0.257 46.83 ± 2.98 44.26 ± 3.34 65.32 ± 3.42 62.25 ± 3.43 

4 98.8 ± 4.68 112.8 ± 6.62 0.267 0.273 45.54 ± 3.14 43.32 ± 5.24 64.82 ± 2.68 63.72 ± 3.57 

7 108 ± 3.87 118 ± 5.23 0.343 0.316 42.63 ± 2.55 42.27 ± 4.23 63.77 ± 2.42 61.25 ± 4.42 

10 112 ± 2.38 125 ± 4.25 0.310 0.328 44.01 ± 3.25 41.01 ± 4.55 61.57 ± 1.88 59.27 ± 3.82 

13 118 ± 4.98 130 ± 4.36 0.384 0.354 40.75 ± 2.28 38.24 ± 5.16 62.76 ± 1.75 57.24 ± 4.36 

16 126 ± 3.96 138 ± 5.22 0.331 0.315 40.91 ± 3.68 37.15 ± 6.53 61.43 ± 2.04 55.32 ± 3.75 

30 129 ± 5.17 140 ± 4.13 0.375 0.363 42.75 ± 2.87 37.52 ± 5.32 60.23 ± 2.68 55.15 ± 4.59 

45 130 ± 4.21 143 ± 5.15 0.325 0.343 42.06 ± 1.86 36.21 ± 3.15 59.75 ± 4.52 53.25 ± 4.23 

60 132.3 ± 5.26 150.2 ± 4.26 0.370 0.389 40.39 ± 3.17 38.27 ± 4.65 58.98 ± 3.08 52.98 ± 5.05 

Note: “FPL” in the table refers to “Freshly prepared liposome”; “FDL” in the table refers to “Freeze-dried liposome”. 

3. Experimental Section 

3.1. Materials 

Medium-chain fatty acids were kindly provided by a USA company (UPMC, Pittsburgh, PA, USA). 

Octanoic acid methyl ester and decanoic acid methyl ester were purchased from AccuStandard  

(New Haven, CT, USA). Vitamin C was purchased from Sinopharm Chemical Reagent Co. Ltd. 

(Shanghai, China). Soybean phosphatidylcholine (SPC) was provided by Merya’s Lecithin Co. Ltd. 

(Beijing, China). Cholesterol (CHO) was obtained from Tianjin Damao Chemical Reagent Co. Ltd. 

(Tianjin, China). N-hexane and methanol were of chromatographic grade. Acetic acid, EDTA, fast blue 

salt B, sucrose and other reagent chemicals were all of analytical grade. 

3.2. Preparation of MCFAs-Vit C Complex Nanoliposomes by DE-DHPM 

MCFAs-vit C complex liposomes were prepared by double emulsion (DE) [35] under the optimum 

conditions as follows. A 100:25:4 mass ratio of soybean phosphatidylcholine (1200 mg),  

cholesterol (300 mg) and vitamin E (48 mg) were dissolved in 15 mL absolute ethanol containing 

MCFAs (300 mg), followed by injection of 2 mL twice-distilled water under vigorous stirring at a 

temperature of 50 °C. The primary emulsion was placed in a rotary evaporator (RE52-02, Yarong 

Instrument Co., Shanghai, China) to remove part of the solvent under reduced pressure of 0.08 MPa 

for 10 min. 25 mL twice-distilled water containing 450 mg surfactant tween-80 (Tianjin Damao Chemical 

Reagent Co. Ltd, Tianjin, China) and 60 mg vit C (Sinopharm Chemical Reagent Co. Ltd, Shanghai, 

China) was added. The resulting emulsion was constantly agitated for about 20 min at 50 °C, and any 

traces of the solvent were removed by rotary evaporation under reduced pressure at 50 °C for about 1 h 

until it formed a milk-like liquid, resulting in the formation of crude complex liposomes. To prepare 

MCFAs-vit C complex nanoliposomes, the crude liposomes were further treated by a microfluidizer 
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(M-110EH30, Microfluidic Corporation, Newton, MA, USA) under optimum treatment  

condition (120 MPa, three passes) at room temperature. 

3.3. Preparation of Freeze-Dried MCFAs-Vit C Complex Nanoliposomes 

The complex nanoliposomes suspensions prepared by DE-DHPM under the optimal conditions 

were filtered by the 0.45 μm Millipore filter, and then various amounts of sucrose was added to the 

liposomes suspensions to provide the desired mass ratios of saccharide and lipids with total soybean 

phosphatidylcholine at the concentration of 2% (w/v). Mean particle size and drug entrapment 

efficiencies of the complex nanoliposomes after rehydration were adopted as the main indexes. 

Sucrose was used in the complex nanoliposomes with cryoprotectant and phosphatidylcholine at the 

mass ratio of 2:1 (w/w). 

In deep-freeze equipment, the nanoliposomes suspensions were pre-freezed for 6 h to a terminal 

temperature of −80 °C, and then dried at −86 °C with a vacuity of 0.1 mbar for 48 h in the vacuum 

freeze drying plant. The freeze-dried products of MCFAs-vit C complex nanoliposomes were 

henceforth obtained. 

3.4. Reconstitution of the Freeze-Dried MCFAs-Vit C Complex Nanoliposomes 

Aqueous suspensions were immediately formed upon the rehydration of the lyophilized products 

with distilled water to the original volume, and the ratio of the freeze-dried products to distilled water 

was 1:50–1:100 [36]. 

3.5. Determination of Entrapment Efficiency (EE) of MCFAs 

Entrapment efficiency (EE) of MCFAs was determined according to the methods of our previous 

studies [34]. About 1 mL of MCFAs-vit C complex nanoliposomes was centrifuged at 12000 × g for 

20 min, and 2 mL of n-hexane was added to withdraw unentrapped MCFAs. The rest of the suspension 

was mixed with 7 mL methanol, and then sonicated for 25 min to demulsify the complex 

nanoliposomes. The fatty acid methyl esters (FAMEs) were made by direct transesterification [37,38]. 

FAMEs were measured by gas chromatography (Agilent 6890 Series GC System, Aglient Technologies, 

Santa Clara, CA, USA) with a flame ionization detector. The chromatographic column was  

HP-innowax polyethylene glycol (30 m × 0.32 mm × 0.5 μm) and the flow rates of various gases were 

nitrogen, 20 mL/min; hydrogen, 40 mL/min; air, 450 mL/min. The temperatures of injection port and 

detector were maintained at 280 °C. The oven temperature was programmed to maintain at 150 °C for 

5 min, then rise to 180 °C at a rate of 6 °C/min and stay at 180 °C for 2 min. The injection volume was 

1 μL. Peak areas and retention times were calculated and FAMEs were identified by comparing 

retention times to the standard octanoic acid methyl ester and decanoic acid methyl ester. The 

entrapment efficiency of MCFAs (EEMCFAs) was calculated from Equation (1): 

 / 100%MCFAs en totalEE W W   (1)

where Wen is the analyzed weight of MCFAs encapsulated in the nanoliposomes, and Wtotal is the initial 

weight of MCFAs added. 
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3.6. Determination of Encapsulation Efficiency (EE) of Vit C 

Non-encapsulated vit C was separated from MCFAs-vit C complex nanoliposomes by 

centrifugation. About 5 mL of liposomes were centrifuged at 12000 × g for 20 min. Then, the drug 

content in the supernatant was quantified by UV-Visible spectrophotometry [39]. 1 mL of above 

treated mixture solution was placed in a 10 mL colorimetric tube followed by adding 0.3 mL of EDTA 

(0.25 M), 0.5 mL of acetic acid (0.5 M) and 1.25 mL of fast blue salt B (2 g/L) in sequence, then 

diluted to 10 mL with deionized water. 20 min later, the above mixture was determined 

spectrophotometrically at 420 nm using a UV-Visible spectrophotometer (T6, Purkinje General, 

Beijing, China). The entrapment efficiency of vit C (EEVit C) was calculated from Equation (2): 

 . 1 / 100%vit C free totalEE W W      (2)

where Wfree is the analyzed weight of free vit C, and Wtotal is the initial weight of vit C added in  

the preparation. 

3.7. Characteristics of MCFAs-Vit C Complex Nanoliposomes 

3.7.1. Particle Size and Size Distribution 

The particle sizes of MCFAs-vit C complex nanoliposomes prepared by DE-DHPM were 

determined by dynamic laser light scattering method at 25 °C using a Nicomp 380 ZLS  

(Santa Barbara, CA, USA). The intensity was detected at an angle of 90°. MCFAs-vit C complex 

liposomes were diluted with twice-distilled water before measurement [40]. 

3.7.2. Transmission Electron Microscopy (TEM) 

MCFAs-vit C complex liposome was diluted approximately at 1:10 with twice-distilled water. One 

drop of the diluted sample was left alone for 3 min. The solution was placed on a copper grid for 5 min 

before the excess liquid was sipped up by the filter papers [41,42], and then air-dried at room 

temperature before being observed under TEM (Hitachi H-600, Tokyo, Japan). 

3.7.3. Stability of MCFAs-Vit C Complex Nanoliposomes 

The stability was assessed by comparing different changes in mean diameters and drug 

encapsulation efficiencies of freshly prepared and freeze-dried MCFAs-vit C complex nanoliposomes 

prepared by DE-DHPM at fixed time intervals (1, 4, 7, 10, 13, 16, 30, 45, 60 days) respectively.  

The complex nanoliposomes were stored from light at 4 °C in a sealed condition [43]. 

3.8. Statistical Analysis 

All experiments were done in triplicate unless otherwise specified and the values were expressed as 

means ± standard deviation (SD) for three different experiments. Data were subjected to statistical 

analysis by Student’s t-test. 
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4. Conclusions 

MCFAs-vit C complex nanoliposomes suspensions were prepared by DE-DHPM. In order to 

enhance the stability of MCFA and vit C, the lyophilized complex nanoliposomes were prepared. After 

being freeze-dried under the optimum conditions of −86 °C for 48 h, freeze-dried MCFAs-vit C 

complex nanoliposomes with sucrose as the cryoprotectant at a sucrose/lipids ratio of 2:1 (w/w) had a 

good size distribution, good appearance and relatively high entrapment efficiency of MCFAs and vit C. 

The MCFAs entrapment efficiency of nanoliposomes was (44.26 ± 3.34)% with the mean diameter of 

(110.4 ± 7.28) nm, while vit C was (62.25 ± 3.43)%. MCFAs-vit C complex nanoliposomes exhibited 

a favorable stability during the storage period of 60 days at 4 °C. The TEM results of MCFAs-vit C 

complex nanoliposomes indicated that the freeze-dried samples with sucrose were stable without great 

changes in their characters. In conclusion, freeze-drying with sucrose was proved to be a successful 

method to form liposomal for long-term storage. 
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