## **Supplementary Information**

| Definition | Values | Definition | Values | Definition  | Values |
|------------|--------|------------|--------|-------------|--------|
| 19–21      | 1.42   | 19–21–25   | 122.0  | 19-21-26-28 | -71.2  |
| 21–25      | 1.42   | 25-21-26   | 118.9  | 25-21-26-27 | -71.1  |
| 21–26      | 1.43   | 19–21–26   | 119.1  | 28-30-36-49 | -88.6  |
| 30–36      | 2.04   | 30-36-31   | 90.2   | 27-31-36-42 | -92.8  |
| 31–36      | 2.04   | 30-36-42   | 89.8   | 34-35-38-68 | -72.3  |
| 42–36      | 2.04   | 31–36–49   | 89.8   | 39-53-52-55 | 67.0   |
| 49–36      | 2.04   | 42-36-49   | 90.2   | 40-35-38-67 | -72.7  |
| 46–47      | 1.42   | 31-36-42   | 179.1  | 50-53-52-54 | 66.8   |
| 47-80      | 1.22   | 30-36-49   | 179.2  | 43-45-46-47 | 1.2    |
| 80-82      | 1.42   | 34-35-38   | 117.6  | 48-44-46-47 | -1.8   |
| 86-87      | 1.48   | 39-53-52   | 117.6  | 46-47-80-82 | -75.5  |
| 87-88      | 1.36   | 45-46-47   | 117.5  | 47-80-82-83 | -2.6   |
| 87-89      | 1.22   | 86-87-89   | 125.0  | 47-86-82-81 | 117.4  |
| 35–38      | 1.50   | 89-87-88   | 121.9  | 84-86-87-89 | 0.0    |
| 53-52      | 1.50   | 86-87-88   | 113.1  | 85-86-87-88 | 0.0    |

**Table S1.** The selected bond lengths (in Å), bond angles (in degree) and dihedrals (in degree) of the dye YD2. (B3LYP/6-31g(d,p), gas phase).

**Table S2.** The selected bond lengths (in Å), bond angles (in degree) and dihedrals (in degree) of the dye YD2-o-C8. (B3LYP/6-31g(d,p), gas phase).

| Definition | Values | Definition | Values | Definition  | Values |
|------------|--------|------------|--------|-------------|--------|
| 19–21      | 1.42   | 19-21-25   | 122.0  | 19-21-26-28 | 71.6   |
| 21-25      | 1.42   | 19-21-56   | 119.1  | 25-21-26-27 | 71.1   |
| 21-26      | 1.44   | 25-21-26   | 118.8  | 28-30-36-49 | 89.9   |
| 30–36      | 2.04   | 30-36-31   | 90.0   | 27-31-36-42 | 92.3   |
| 31–36      | 2.04   | 30-36-42   | 90.0   | 34-35-38-59 | -86.5  |
| 42-36      | 2.04   | 31-36-49   | 90.0   | 39-53-52-55 | 97.7   |
| 49–36      | 2.04   | 42-36-49   | 90.0   | 40-35-38-60 | -85.9  |
| 46–47      | 1.42   | 31-36-42   | 179.2  | 50-53-52-54 | 97.9   |
| 47–64      | 1.22   | 30-36-49   | 179.3  | 43-45-46-47 | 0.5    |
| 64–66      | 1.42   | 34-35-38   | 117.5  | 48-44-46-47 | 0.4    |
| 70–71      | 1.48   | 39-53-52   | 117.4  | 46-47-64-66 | -12.8  |
| 71–72      | 1.36   | 45-46-47   | 117.5  | 47-64-66-65 | 114.4  |
| 71–73      | 1.22   | 70-71-73   | 125.1  | 47-64-66-67 | -38.6  |
| 35–38      | 1.50   | 73-71-72   | 121.8  | 68-70-71-73 | -0.1   |
| 53-52      | 1.50   | 70-71-72   | 113.2  | 69-70-71-72 | -0.1   |

| Functional                  | States         | Major transition configurations                                                       | E(nm/eV) | f      |
|-----------------------------|----------------|---------------------------------------------------------------------------------------|----------|--------|
| CAM-B3LYP S<br>S<br>M062X S | S <sub>1</sub> | $H - 1 \rightarrow L + 1$ (25%); $H \rightarrow L$ (69%)                              | 585/2.12 | 0.3012 |
|                             | S3             | $H - 2 \rightarrow L (51\%); H - 1 \rightarrow L + 1 (24\%); H \rightarrow L (16\%)$  | 443/2.80 | 0.3372 |
|                             | $S_5$          | $H - 2 \rightarrow L (35\%); H - 1 \rightarrow L + 1 (45\%); H \rightarrow L (10\%)$  | 397/3.13 | 2.0155 |
|                             | $S_1$          | H − 1→L + 1 (21%); H→L (75%)                                                          | 573/2.17 | 0.3551 |
|                             | $S_3$          | H − 2→L (58%); H − 1→L + 1 (23%); H→L (11%)                                           | 452/2.75 | 0.1824 |
|                             | $S_5$          | H − 2→L (31%); H − 1→L + 1 (50%); H→L (11%)                                           | 397/3.12 | 2.1369 |
| PBE0                        | $S_1$          | H→L (96%)                                                                             | 902/1.37 | 0.2574 |
|                             | $S_4$          | H − 3→L (18%); H − 2→L + 1 (14%); H − 1→L (52%); H→L + 2 (13%)                        | 604/2.05 | 0.2844 |
|                             | $S_9$          | H − 2→L + 1 (41%); H − 1→L + 2 (45%)                                                  | 481/2.58 | 0.9151 |
| ВМК                         | $S_1$          | H − 1→L + 1 (13%); H→L (83%)                                                          | 582/2.13 | 0.4536 |
|                             | $S_4$          | H − 2→L + 1 (19%); H − 1→L (29%); H→L + 1 (51%)                                       | 430/2.88 | 0.4875 |
|                             | $S_5$          | H − 2→L (22%); H − 1→L + 1 (58%)                                                      | 403/3.08 | 2.2109 |
| ωB97XD                      | $\mathbf{S}_1$ | H − 1→L + 1 (27%); H→L (66%)                                                          | 595/2.08 | 0.2667 |
|                             | $S_3$          | H − 2→L (39%); H − 1→L + 1 (30%); H→L (20%)                                           | 428/2.90 | 0.6154 |
|                             | $S_5$          | H − 2→L (42%); H − 1→L + 1 (37%)                                                      | 391/3.17 | 1.7495 |
| HSE06                       | $\mathbf{S}_1$ | H→L (94%)                                                                             | 677/1.83 | 0.3660 |
|                             | $S_3$          | H − 2→L (78%); H − 1→L + 1 (21%)                                                      | 537/2.31 | 0.1294 |
|                             | $S_7$          | H − 2→L (11%); H − 1→L + 1 (39%); H→L + 2 (21%)                                       | 423/2.93 | 1.1253 |
| LC-ωPBE<br>S                | $\mathbf{S}_1$ | H − 1→L + 1 (38%); H→L (59%)                                                          | 628/1.98 | 0.1397 |
|                             | $S_3$          | H − 1→L + 1 (48%); H→L (36%)                                                          | 399/3.11 | 1.7768 |
|                             | $\mathbf{S}_1$ | H→L (96%)                                                                             | 874/1.42 | 0.2542 |
| OPT-LC-ωPBE                 | $S_4$          | H − 3→L (19%); H − 2→L + 1 (15%); H − 1→L (62%)                                       | 598/2.07 | 0.3024 |
|                             | $S_9$          | H − 2→L + 1 (50%); H − 1→L + 2 (31%)                                                  | 475/2.61 | 1.1893 |
| MPW1K                       | $\mathbf{S}_1$ | H − 1→L + 1 (20%); H→L (75%)                                                          | 575/2.16 | 0.3731 |
|                             | $S_3$          | $H - 2 \rightarrow L$ (62%); $H - 1 \rightarrow L + 1$ (21%); $H \rightarrow L$ (11%) | 461/2.69 | 0.1178 |
|                             | $S_5$          | H − 2→L (29%); H − 1→L + 1 (51%); H→L (10%)                                           | 401/3.09 | 2.2289 |

**Table S3.** The different functional calculated excitation energies (eV), wavelength (nm), oscillator strengths (f) and major transition configurations with coefficients larger than 10% of three stronger absorption bands in UV-vis region for YD2 in THF.

| Functional  | States                | Major transition configurations                                                                  | E(nm/eV) | f      |
|-------------|-----------------------|--------------------------------------------------------------------------------------------------|----------|--------|
| CAM-B3LYP   | $\mathbf{S}_1$        | H − 1→L + 1 (23%); H→L (73%)                                                                     | 592/2.10 | 0.3470 |
|             | $S_3$                 | H − 2→L (53%); H − 1→L + 1 (25%); H→L (12%)                                                      | 439/2.82 | 0.3594 |
|             | $S_5$                 | H − 2→L (33%); H − 1→L + 1 (45%); H→L (11%)                                                      | 397/3.12 | 1.8676 |
| M062X       | $\mathbf{S}_1$        | H − 1→L + 1 (19%); H→L (78%)                                                                     | 579/2.14 | 0.4027 |
|             | $S_3$                 | H − 2→L (61%); H − 1→L + 1 (23%)                                                                 | 447/2.78 | 0.1888 |
|             | $S_5$                 | H − 2→L (28%); H − 1→L + 1 (52%); H→L (11%)                                                      | 397/3.12 | 1.9965 |
| PBE0        | $\mathbf{S}_1$        | H→L (94%)                                                                                        | 879/1.41 | 0.2944 |
|             | $S_3$                 | H − 3→L (17%); H − 1→L (68%)                                                                     | 619/2.00 | 0.2027 |
|             | $S_{16}$              | $H - 7 \rightarrow L + 1 (15\%); H - 2 \rightarrow L + 1 (25\%); H - 1 \rightarrow L + 2 (35\%)$ | 477/2.60 | 0.7692 |
| HSE06       | $\mathbf{S}_1$        | H→L (93%)                                                                                        | 671/1.85 | 0.4237 |
|             | $S_3$                 | H − 2→L (78%); H − 1→L + 1 (17%)                                                                 | 535/2.32 | 0.1058 |
|             | <b>S</b> <sub>9</sub> | H − 1→L + 1 (42%); H→L + 2 (25%)                                                                 | 420/2.95 | 1.0332 |
| LC-ωPBE     | $\mathbf{S}_1$        | H − 1→L + 1 (35%); H→L (63%)                                                                     | 632/1.96 | 0.1792 |
|             | $S_3$                 | H − 2→L (11%); H − 1→L + 1 (51%); H→L (32%)                                                      | 399/3.11 | 1.7253 |
| OPT-LC-ωPBE | $\mathbf{S}_1$        | H→L (95%)                                                                                        | 853/1.45 | 0.2862 |
|             | $S_3$                 | H − 3→L (25%); H − 1→L (63%)                                                                     | 614/2.02 | 0.1651 |
|             | S <sub>16</sub>       | H − 2→L + 1 (35%); H − 1→L + 2 (29%)                                                             | 472/2.63 | 1.0264 |

**Table S4.** The different functional calculated excitation energies (eV), wavelength (nm), oscillator strengths (f) and major transition configurations with coefficients larger than 10% of three stronger absorption bands in UV-vis region for YD2-o-C8 in THF.

**Figure S1.** Plot of the error function  $\delta_{IP}(\omega)$  used for optimization of  $\omega$  in the long-range corrected DFT functionals.



© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).