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Abstract: In order to improve the thermal properties of important engineering plastics, a 

novel kind of liquid crystalline epoxy resin (LCER), 3,3',5,5' -Tetramethylbiphenyl-4,4' -diyl 

bis(4-(oxiran-2-ylmethoxy)benzoate) (M1) was introduced to blend with nylon 66 (M2) at 

high temperature. The effects of M1 on chemical modification and crystallite morphology 

of M2 were investigated by rheometry, thermo gravimetric analysis (TGA), dynamic 

differential scanning calorimetry (DSC) and polarized optical microscopy (POM). TGA 

results showed that the initial decomposition temperature of M2 increased by about  

8 °C by adding 7% wt M1, indicating the improvement of thermal stability. DSC results 

illustrated that the melting point of composites decreased by 12 °C compared to M2 as the 

content of M1 increased, showing the improvement of processing property. POM 

measurements confirmed that dimension of nylon-66 spherulites and crystallization region 

decreased because of the addition of liquid crystalline epoxy M1. 
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1. Introduction 

Nylon 66 has been widely used in the fields of engineering plastics and fibers because of its 

excellent performance due to its high strength, wear-resistance and self-lubrication. With the 

development of economics, new and higher requirements are proposed in every material field. 

Modified nylon has also gained considerable interest for its excellent mechanical strength, heat 

resistance, oil resistance, chemical resistance and other properties. Mason [1] and Baer [2] had 

obtained high impact resistance nylon. Anbarasan [3] studied chemical grafting of polyaniline onto 

nylon 66 fiber in different media. Yue Huang and Krumova [4,5] explored the performance and 

characteristics of modified nylon using microindentation technique. By adding soft phase to absorbing 

impact energy into the hard nylon matrix, the toughness of nylon was improved without a dramatic 

reduction in strength and rigidity [6–8]. DuPont and BASF, etc., have produced nylon 66 with high 

content of glass fiber, which possesses low water absorption, high rigidity, heat deflection temperature 

and dimensional stability [9,10]. Preparation of nanocomposite polymer using nano-composite 

technology is a new direction in modifying polymers. With a small amount of nano-materials such as 

montmorillonite nanocomposites [11,12] added to the nylon substrate, the original performances, such 

as strength, modulus, heat deflection temperature and even air tightness can be greatly enhanced [13]. 

So far, few articles about nylon modified with liquid crystalline epoxy resin were published. Liquid 

crystalline polymers as a new class of materials have been successfully used in the technology of 

polymer materials. It can form fibrils in the blends of nylon 66 and thermotropic liquid crystalline 

polymers and thus change the thermal behavior of the system [14]. Self-reinforcement of blends 

containing liquid crystalline polymer has been widely due to the special structural property. Primary 

and secondary amines are commonly used as curing agents to obtain epoxy resin. Nylon 66 contains 

plenty of primary amine which could react with epoxy monomer, thus forming an interpenetrating 

polymer network. Rigid rod liquid crystalline epoxy resin runs through and entangles with the  

nylon 66. 

In this study, our work was focused on the thermal properties of nylon 66 modified with liquid 

crystalline epoxy resin (M1). 3,3',5,5' -Tetramethylbiphenyl-4,4'-diylbis(4-(oxiran-2-ylmethoxy) 

benzoate) (M1) was synthesized with a high efficient and economical method [15]. Effects on 

modifying diglycidyl ether of bisphenol A (DGEBA)/4,4'-diaminodiphenyl methane (DDM) revealed 

that the izod notched impact strength could be enhanced by 55% by the addition of 2% M1 compared 

to unmodified DGEBA blends [16,17]. With respect to its excellent performance in improving 

mechanic and thermal properties of ordinary commercial epoxy resin, a good performance on 

modifyingnylon66 (M2) will be a reasonable expectation. 

2. Results and Discussion 

2.1. Mixing Analysis  

A rheological test was used to evaluate thermal properties, viscosity and shear stability of 

thermosetting plastics consistently and accurately. Materials were mixed during feeding and torque M 

would change consistently along with time, which could lead us to study the rheological property and 

processing quality of the materials. The absolute value of torque M reflected the chemical and physical 
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characters and apparent viscosity directly. Torque M vs. time reflected the degree of uniformity of the 

mixture. The torque M recorded during mixing is reported in Figure 1 vs. time for the runs performed 

at a temperature of 260 °C and an rpm of 60 min
−1

. As time goes on, the low peaks appeared at the 

start of mixing, representing the completion of feeding. The onset melting points of M1 and M2 are 

251.8 °C [15] and 251.2 °C respectively, so both M1 and M2 melted as soon as they were fed. The 

molecule structure of M1 and M2 are presented in Table 1 respectively. The high peaks indicate the 

end of cross-linking before the torque-time curve flattens. As shown in Figure 1, samples of M2 

modified with M1 (M1/M2) show a dramatic increase of the torque, indicating that the addition of M1 

led to a great increase in viscosity. The torque M decreases gradually, meaning composites have begun 

to melt and reache the balanced torque. Finally the temperature of the material increases to the set 

point after the addition of M1. Compared with M2, the torques of M1/M2 blends increase at different 

degrees, indicating that the addition of M1 gives rise to partial cross-linking in the system. Epoxy resin 

monomer contains a reactive epoxy group in the molecule chain that could react with primary and 

secondary amines, thus form a crosslink network structure. The epoxy in M1 could react with amine 

group in the terminal of M2; a light crosslink network structure is formed as is presented in Figure 2. 

Chains of molecules begin to bind. Thus, the viscosity of the system increases, leading to the increase 

of torque. As the cross-linking finishes, the torque starts to decrease, reaching the balance again. The 

blends still stay thermoplastic. 

Table 1. Structure of M1 and M2. 

Monomer Constitutions Formula 

M1 
 

M2 
 

Figure 1. Torque vs. time for blends with different content of M1 performed at 260 °C and 60 min
−1
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Figure 2. The crosslink reaction formula of nylon 66 and liquid crystalline epoxy. 

 

Peak values of torque M in Figure 1 were summarized to form the black curve line in Figure 3. The 

blue curve line showed the peak temperature during the melting of the mixture with different amounts 

of M1. Figure 3 describes the influence of the amount of M1 on the torque and temperature of the 

modified system. As is shown, the melt temperature of modified system surpasses the setting point 

(260 °C) and increases gradually with the increase of the amount of M1. It is a proof that the reaction 

of M1 and M2 during mixing is an exothermic reaction. The peak torque increases with an increase in 

the amount of M1. When the content of M1 reaches 5%, the peak torque reaches its extreme value and 

then begins to decrease. This is probably due to the reunion of M1 when the content of M1 surpasses 

5%. So the dispersion of M1 in M2 becomes difficult and the opportunity to react with M2 reduces. 

Figure 3. Effect of content of M1 on torque and temperature of modified system. 
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2.2. Thermogravimetric Analysis 

Thermal stability and thermal-degradation property were evaluated with TGA. TGA thermograms 

of the M2 and M1/M2 are shown in Figure 4. These test samples show a conspicuous weight loss 

between 350–400 °C, as seen in the figure. Thermal decomposition parameters according to Figure 4 

are listed in Table 2. 
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Table 2. Thermal decomposition parameters of composites. 

ø 0 3 5 7 10 

Tdi (°C) 358 360 365 365 364 

Td (°C) 381 382 386 389 388 

Tdt (°C) 402 402 398 407 406 

ps: Tdi—initial decomposition temperature; Td—decomposition temperature at inflection point; Tdt—terminal 

decomposition temperature. 

Figure 4. Isothermal TG curves (a) of blends of different content of M1 as a function of 

cure temperature and DTG (b) curve of the compositions. 
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As shown in Table 2, Tdi and Td were increased by 5–10 °C after small additions of M1 to M2 

compared to M2, showing improvement in thermal stability. This increase may be attributed to the 

long range molecular orientation feature of M1 which probably improved the thermal conductivity of 

the composition. Initial decomposition temperatures of different samples in Table 2 were analyzed in 

Figure 4. 

In Figure 5, another interesting phenomenon can be found. Both Tdi and Td increase with increasing 

M1 content up to 7% wt, and then decrease as the M1 content increases. The first increase of Tdi and 

Td may be ascribed to the formation of thermal network and the increased chance of reunion when 

further increase in content of M1 after 7% wt may explain the decrease of Tdi and Td. 

Figure 5. Initial decomposition temperature vs. compositions. 
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As the main chains of aromatic polymers have an aromatic ring, they can get a high rate of carbon. 

The higher the degree of aromatics, the higher the rate of carbon. If the yield of carbon becomes more 

aromatic and tighter, its resistance to thermal decomposition at high temperature becomes stronger and 

more stable. According to the structure of M1, it has a plenty of aromatic rings which condense to 

aromatic carbon at high temperature; the generation of those carbons can then affect decomposition. 

They form an insulating layer on the surface of the polymer, making further decomposition become 

more difficult, so the thermal resistance of modified system improves. 

2.3. Differential Scanning Calorimetry Analysis 

DSC measurement was performed to demonstrate thermal effects of the materials whose melting 

behavior were analyzed systematically. Figure 6 depicts the melting curves of the test samples on DSC 

instruments. All samples show a single peak, representing good compatibility of M1 and M2. The 

melting point (Tm), onset melting point (Tmo), final melting point (Tmf), melting temperature range 

(ΔTm, ΔTm= Tmf − Tmo) and the melting enthalpy (ΔHm) can also be obtained from Figure 6. The 

thermodynamic parameters of each sample are reported in Table 3. 

Figure 6. Differential Scanning Calorimetry (DSC) curves of samples at heating rate of 20 °C/min. 
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Table 3. Thermodynamic parameters of each sample. 

ø 0 3 5 7 10 

Tm/°C 251.2 247.2 241.5 239.1 231.1 

Tmo/°C 238.1 229.5 221.1 218.9 211.4 

Tmf/°C 260.0 254.0 248.8 247.6 240.6 

ΔTm/°C 21.9 24.5 27.7 28.7 29.2 

ΔHm/(J.g−1) 16.5 15.9 11.8 10 12.3 

Thermodynamic parameters in Table 3 and Figure 6 show the DSC scans obtained for M2 and 

M1/M2 upon heating. The melting pointing(Tm) and onset melting point (Tmo) of M1/M2 decrease 

with the improvement of M1. Compared to M2, the decrease of melting point of M1/M2 may be put 

down to the hyper-dispersion of M1 among M2. It damages the regularity of M2 crystallization, 

resulting in the decrease of melting point. In contrast, the melting temperature range (ΔTm) [18], which 

indicates the degree of crystal perfection, increases. This result may be attributed to a small amount of 

M1 present in the sample, which has a heterogeneous nucleation effect on PA66 (M2) and promotes 
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the generation of a different degree of crystal perfection. The enthalpy of melting ΔHm was found to 

decrease with the increasing content of M1. 

2.4. Crystallite Morphology 

POM with a hot stage was used to observe microstructure of polymer during crystallization. It is an 

important way to study the optical properties of crystal. Figure 7 depicts the POM images of neat M2 

and M1 modified M2. M2 exhibits the usual spherulitic structure characterized with Maltese cross. 

However, after the addition of M1, the sizes of spherulites clearly decrease, indicating that the 

structure of M2 spherulites was partly destroyed by M1. Feng et al. studied the crystallization behavior 

of co-polyamide 66 (FR-PA66) containing triarylphosphine oxide (TPO) which acts as a flame  

retardant [19]. They also observed the size change. Other researchers also observed similar 

crystallization structure [20]. The polymer spherulite dimension is governed by the number of nuclei 

formed in a unit volume at the time of crystallization. The addition of liquid crystalline epoxy affects 

the crystallization rate and dimension of nylon-66 spherulite. M1 acts as a heterogeneous nucleation 

agent. Meanwhile, interaction between the M1 and M2 molecules decreases the number of crystalline 

M2 molecules and results in imperfect crystalline structures. Thus, perfect spherulites cannot form and 

the spherulite size decreases which indicates that M1 groups are unfavorable for M1 modified M2 

crystallization. These results are consistent with non-isothermal crystallization analysis. 

Figure 7. Polarized optical microscopy (POM) images of nylon 66 (a) and  

LCE-nylon 66 (b) after holding at 268 °C for 40 min then slowed cooled temperature. 

  

(a) (b) 

3. Experimental Section  

Chemical structure of M1 employed in our study was given in Table 1. Synthesis and 

characterization of M1 was reported previously by our group. Nylon 66 (M2) was provided by 

Zhejiang Xinli Plastic Co., Ltd.  

M1 and M2 were both carefully dried at 70 °C for at least 24 h, and then blended using a HAAKE 

400P Rheometer. During mixing the torque was continuously recorded. The content of M1 in the 

compositions ø was 0, 3, 5, 7 and 10 wt% and the composites were prepared after mixing in the 
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HAAKE 400P Rheometer for 15 min. Then the prepared mixtures were kept in sealed bags at room 

temperature before use. 

Mixing of reactants was recorded by HAAKE 400P Rheometer to confirm crosslink between 

Functional groups. Nylon 66 particles along with M1 was melt mixed with a screw speed of 60 r/min 

at a feeder temperature of 260 °C for 15 min to achieve a uniform dispersion. 

Thermogravimetric analysis (TGA) was performed on a Netzsch STA 449C thermogravimetric 

analyzer under a nitrogen atmosphere at a heating rate of 10 °C∙min
−1

 up to 800 °C. The degradation 

temperature of the samples was analyzed from TGA plot. 

Differential Scanning Calorimetry (DSC) texting: Non-isothermal crystallization behaviors of 

blends of M1 and M2 were carried out using Netzsch DSC204F1 to determine if complete 

crystallization was obtained in samples and to observe the thermal transitions of the materials. All 

DSC experiments were performed at heating/cooling rate of 20 °C/min in an atmosphere of nitrogen. 

Polarized optical microscopy (POM) was performed to determine the phase morphology of 

crystallization. Small particles of simples were spread on a round glass slide and then covered by 

another slide. The samples were heated to 268 °C to melt and kept at this temperature for 40 min and 

then cooled to ambient temperature, crystallization behaviors were observed with POM. Comparison 

of images of spherulite growing of pure M2 and M1 modified M2 was carried out with POM. 

4. Conclusions  

The results discussed above lead to two main conclusions: First, small additions of M1 to M2 

increase the initial decomposition temperature (Tdi) by 5~10 °C; second, the melting point of M1/M2 

blends decreases with respect to M1. It also decreases as the content of M1 increases. As for the first 

effect, a similar effect had already been noticed by another author for blends of PA66/Amine-based  

multi-walled carbon nanotubes [21]. The literature data is in agreement with our present study, 

considering that the system studied is not the same. The evidence obtained in our study indicates that 

the increase of initial decomposition temperature can be interpreted as being due to the increase of 

thermal conductivity of the composites caused by the long range molecular orientation feature of M1. 

As for the reduction of melting point of M1/M2, the damage of regularity of M2 caused by hyper 

dispersion of M1 and the heterogeneous nucleation effect of M1 can probably account for this 

discrepancy. Finally, a comparison of M2 and M1/M2 has shown that the initial decomposition 

temperature of M2 increased by about 8 °C by adding 7% wt M1 to it, whereas the melting point 

decreased approximately 12 °C, showing the improvement of the processing property. M1 acted act as 

nucleating agents which resulted in the decrease of spherulite dimension of the crystallization, 

indicating the crystallization structure was partly destroyed by adding M1. 
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