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Abstract: Genome-wide experiments are routinely used to increase the understanding of 

the biological processes involved in the development and maintenance of a variety of 

pathologies. Although the technical feasibility of this type of experiment has improved in 

recent years, data analysis remains challenging. In this context, gene set analysis has 

emerged as a fundamental tool for the interpretation of the results. Here, we review 

strategies used in the gene set approach, and using datasets for the pig cardiocirculatory 

system as a case study, we demonstrate how the use of a combination of these strategies 

can enhance the interpretation of results. Gene set analyses are able to distinguish vessels 

from the heart and arteries from veins in a manner that is consistent with the different 

cellular composition of smooth muscle cells. By integrating microRNA elements in the 

regulatory circuits identified, we find that vessel specificity is maintained through specific 

miRNAs, such as miR-133a and miR-143, which show anti-correlated expression with 

their mRNA targets. 
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1. Introduction 

Genome-wide experiments on RNA expression typically provide lists of differentially expressed 

genes (DEGs) [1,2] that represent the starting point of a highly challenging process of result 

interpretation in which the gene-by-gene approach is often used. The lists obtained are highly 

dependent on the statistical tests adopted and on the threshold used to declare a gene significant. This 

variability has raised substantial criticism concerning the reproducibility of array experiments. Several 

studies have demonstrated greater consistency of array results using gene set approaches, rather than 

single gene approaches [3], indicating that there is greater reproducibility of the main biological 

themes than of their single elements. A gene set is defined as a set of genes that are functionally 

related. Gene sets are usually identified based on a priori biological knowledge (see, for example, 

Gene Ontology “GO” (http://www.geneontology.org/ (accessed on 13 November 2013)) and the Kyoto 

Encyclopedia of Genes and Genomes “KEGG” (http://www.genome.jp/kegg/ (accessed on 13 

November 2013))). In this regard, several new bioinformatics tools have been developed that allow the 

integration of information such as gene location [4–6], ontological annotations [7–10], or sequence 

features [11]. These methods can be broadly divided into supervised and unsupervised approaches. 

Supervised methods use a priori information on the functional relationships among genes to identify 

the processes involved in an experimental condition, while unsupervised approaches attempt to 

reconstruct functional associations among genes without relying on external information. In the 

following, we will briefly review these strategies, focusing specifically on their pros and cons; in 

addition, we will apply these strategies to a case study. 

1.1. Supervised Approaches: Pathway Analysis 

The integration of gene expression profiles with additional information on pathway annotations is 

called pathway analysis. The pathway analysis approach evaluates gene expression profiles among 

related genes, looking for coordinated changes in their expression levels. Several implementations of 

pathway analysis are now available, from the widely used algorithm developed by Subramanian and 

colleagues (Gene Set Enrichment Analysis; GSEA) [9], with its improvements [10,12], to more 

sophisticated implementations that exploit the topology of the pathway [13,14] (for a comprehensive 

review of existing methods, see [15]). Pathway analysis methods can be divided into (i) methods based 

on enrichment analysis and performed on a list of genes selected through a gene-level test; and  

(ii) methods based on global and multivariate approaches that define a model based on the whole gene 

set. With the first class of methods, the primary concerns are the assumption that genes are 

independent and the use of a threshold value for the selection of differentially expressed genes. Due to 

the latter, many genes with moderate but meaningful expression changes are discarded based on the 

strict cut-off value, leading to a reduction in statistical power. On the other hand, global and 

multivariate approaches relax the assumption of independence among genes belonging to the same 
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gene sets and identify moderate but coordinated expression changes that cannot be detected by the 

enrichment analysis approach [16]. 

From this perspective, we recently developed three novel algorithms that can be used to perform 

gene set and pathway analysis. Graphite, a Bioconductor package [17], is a computational framework 

that can be used to manage, interpret, and convert pathway annotations to gene-gene networks, while 

STEPath [18] integrates expression levels and chromosome positioning to identify regional gene 

activation and CliPPER [14,19] explores the topology of a pathway, highlighting the portions most 

involved in its deregulation. We have implemented most of these analyses in a new web tool  

called GraphiteWeb [20]. 

One of the major drawbacks associated with these approaches is the limitation of pathway 

annotation. Pathway annotation is a highly challenging procedure that exploits the efforts of many 

researchers, who manually curate each single pathway based on information available in the literature. 

Pathways are often thought of as the elementary functional and evolutionary building blocks of the 

complete metabolic network, with each pathway representing a “self-contained” elementary biochemical 

process. To partition the reaction network of an organism into a set of (possibly overlapping) 

metabolic pathways requires arbitrary decisions as to where such partitions should be made and how 

pathway variants should be described [21]. For these reasons, only a portion (in humans, 

approximately one-third) of known genes are currently annotated in at least one pathway. 

In KEGG [22], the metabolic pathways—called “maps”—are subparts of the overall reaction graph. 

Reactions within a map are connected by their constituent metabolites, which also provide links to 

reactions in other maps. KEGG metabolic maps are described without reference to a particular species, 

and each map includes the reactions belonging to all known variants of a particular pathway. MetaCyc 

is a database of non-redundant, experimentally elucidated metabolic pathways that are found in many 

species [23] while, in the smaller Reactome database [24], the human database is used as the reference 

for predicting reactions and pathways in other organisms. 

1.2. Unsupervised Approaches: Reverse Engineering Approach 

A different approach to dealing with biological networks is the ab initio strategy: using  

genome-wide expression values, these algorithms try to infer the best network of interactions 

satisfying specific conditions. Unlike the pathway analysis approach, here, all known genes can be 

taken into consideration. Several methods have been proposed for the reconstruction of gene 

regulatory networks (GRNs) from experimental data; these include Bayesian Networks (BN) [25], 

Relevance Networks (RN) [26], and Graphical Gaussian Models (GGM) [27,28]. While BN and GGM 

distinguish between direct and indirect edges, RN does not. It is worth noting that although BN and 

GGM are able to infer edge direction this does not necessarily imply an ability to identify  

biological causality. 

BN and GGM function poorly in cases involving thousands of genes and a small number of 

replicates, while RN has the ability to address such cases. RN uses association measures between two 

expression profiles, such as correlation and mutual information, to rank gene-gene interactions 

according to their strengths; the higher the association measure, the greater the probability of a 

functional interaction between the two genes. All of these approaches produce a large number of false 
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positives (false interactions). The seminal paper of Basso et al., 2005 [29], extends RN, introducing an 

algorithm based on Data Processing Inequality (DPI) for removing indirect edges. Their approach, 

called ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) [30], has been 

successfully used to reconstruct the sub-network of the MYC gene in human B cells. 

In this context, we developed a new R package, parmigene, that performs network inference by 

implementing an unbiased estimation of the mutual information between expression profiles, thus 

yielding more precise results than existing software at strikingly less computational cost [31]. 

Apart from their low specificity, a significant issue raised by the last network inference challenge 

(DREAM 5) is that no single network inference method performs optimally across all data sets. In 

contrast, integration of predictions from multiple inference methods through a consensus network 

shows robust and high performance across diverse data sets [32]. 

Apart from the algorithm used, once the whole network has been inferred, the classical approach to 

dealing with large amounts of interactions is identifying small-connected components as a means of 

testing their enrichment in specific biological processes. 

1.3. The Missing Element: MicroRNAs (miRNAs) 

Although highly innovative, the supervised and unsupervised approaches described so far do not 

take miRNAs into consideration. Many efforts have been made to predict miRNA/mRNA interactions, 

first by developing various target prediction algorithms and then by introducing new experimental 

techniques to isolate miRNA/mRNA complexes [33–36]. Computational target prediction is still 

widely used, although it is characterized by many false positives. For exhaustive reviews on miRNA 

discovery algorithms and in silico target prediction [37,38]. 

The integration of target predictions with miRNA and gene expression profiles has recently been 

proposed as a means of computationally improving and refining miRNA-target predictions. As 

miRNAs act predominantly through target degradation, the expression profiles of miRNAs and those 

of their target genes are expected to be inversely correlated [39,40]. 

Although the key role of miRNA in post-transcriptional regulation is universally recognized, few 

attempts have been made to use combinations of miRNA elements in developing gene set approaches. 

The only such attempt was described by Nam and colleagues [41], who performed GSEA on the 

mRNA targets of de-regulated miRNAs. 

1.4. Case Study: The Pig as a Model Organism 

Considering the advantages and disadvantages of the approaches described above, here we propose 

a consensus strategy based on the integration of pathway analysis, relevance networks and miRNA 

expression using as a model organism the pig and its cardiocirculatory system. 

The size of organs, as well as various anatomical features, general physiology, and features of organ 

development, are very similar in pigs and humans. This permits the use of the pig as a model in the study of 

a number of pathologies, such as those affecting eyes [42], muscle [43], organ transplantation [44,45], and 

the gastrointestinal [46], nervous [47], and cardiovascular [48] systems. The coronary artery 

distribution in the pig is more similar to that of humans than is that of other animals. In addition, pigs 

present very similar cardiac output to humans; they possess a vaso vasorum in the aorta, and the left 
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azygous vein empties into the coronary sinus instead of into the precava. Blood pressure  

(145–160/105 BP), heart rate (100–150 BPM) and pulmonary pressure are higher in pigs than  

in humans. 

Despite the medical importance of the pig as a species for study, our knowledge of the genome 

organization, gene expression regulation, and the molecular mechanisms underlying the 

pathophysiological processes of the pig is far less than the knowledge we have acquired of the mouse 

and rat. More than 90% of the porcine genome has been sequenced by the Swine Genome Sequencing 

Consortium [49]. The availability of detailed information on the porcine genome, together with 

emerging transgenic technologies, will enhance our ability to create specific and useful pig models. 

Recently, an atlas of DNA methylomes in porcine adipose and muscle tissues was published [50], and 

a great effort was made to combine genome sequence information with our knowledge of gene 

expression. Many of these studies focused on the swine immune system [51–54], while a genome-wide 

expression analysis in different tissues was described in Freeman’s paper [55]. Recently, using 

sequencing approaches, a compendium of small non-coding RNAs was identified in various pig tissues 

(e.g., skeletal muscle [56–62], kidney [63], tooth [64], intestinal tract [65], brain [66], testis, ovary, 

sperm, and embryo [67–71] and pituitary gland [72]). Li and colleagues demonstrated that a complex 

regulatory network of porcine subcutaneous fat development is reflected in a great diversity of miRNA 

composition and expression between muscle and adipose tissue [73]. 

Here, we generate new custom mRNA and miRNA platforms that can be used to dissect the 

transcriptomic changes and regulatory circuits that are involved in the maintenance of veins and 

arteries in the pig. An integrative approach, combining pathway analysis and de novo network 

reconstruction, was used to expand our current knowledge of these regulatory circuits and to integrate 

miRNA activity into these circuits demonstrating their role in vessel specification. We show that vessel 

specificity can be maintained through different miRNAs (e.g., miR-133a and miR-143), the expression 

of which is inversely correlated with that of their mRNA targets. 

2. Results and Discussion 

The integration and analysis of gene and miRNA expression profiles across different tissues is 

fundamental to our understanding of tissue-specific processes. Here, we focus our analysis on 

differences in gene and miRNA expression among different tracts of the circulatory system: the two 

largest veins of the body (superior and inferior vena cava), the aorta (ascending and descending), the 

pulmonary artery, and the coronary artery. To achieve this goal, we created mRNA and miRNA [74] 

platforms, the latter based on the RAKE (RNA primed–array-based Klenow enzyme assay)  

method [75,76], to quantify coding and non-coding gene expression in pig tissues. After quantifying 

miRNA and mRNA expression, we used a combination of supervised and unsupervised approaches  

to detect transcriptional and post-transcriptional differences among different tracts of the  

circulatory system. 

Ensembl transcripts (Ver. 56; EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, 

Cambridgeshire, UK) and UniGene (Ver. 38; National Center for Biotechnology Information, U.S. 

National Library of Medicine, Bethesda, MD, USA) pig sequences were used to produce a dedicated 

microarray platform for monitoring mRNA expression. On the basis of sequence similarity, UniGene 
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features that overlapped more than 40% with an Ensembl transcript were discarded. After this filter, 

we obtained 40,267 UniGene clusters and 19,603 Ensembl transcripts (protein coding + pseudogenes + 

retrotransposed elements). For this selected collection of sequences, we designed microarray probes 

with different specificities and located at different distances from the 3' ends of specific transcripts 

using six different algorithms. The two best probes for each sequence, as determined by the reliability 

of the prediction algorithm and by the probe’s vicinity to the 3'-end, were experimentally tested in a 

hybridization trial performed with a pool of mRNA populations independently prepared from 20 pig 

tissues (GEO: GSE28636). For each transcript with a replicated probe, we selected the probe that was 

the most responsive and specific on the basis of the intensity of fluorescence in the hybridization test, 

as suggested by Kronick [77]. The resulting pig whole-genome microarray, which was used in the gene 

expression analysis, is composed of: (i) 17,048 replicated probes and 963 single probes specific for the 

Ensembl transcripts; (ii) 11,363 replicated probes specific for the UniGene clusters of lengths between 

778 nt and 1348 nt; and (iii) 28,790 single probes specific for the remaining UniGene clusters. Our 

analysis was not able to identify specific probes for 114 UniGene clusters and 1592 Ensembl 

transcripts. A limitation we faced in working with gene expression in pig was the poor gene annotation 

available. The number of annotated features on the array was increased by mining description and 

protein annotations to associate gene names with our probe symbols. Basically, for genes for which the 

HUGO (Human Genome Organisation) symbol was not present, we mined the description available 

from the Unigene database and retrieved additional gene or protein IDs, if present. All IDs were 

manually curated (ArrayExpress ID: A-MEXP-2351). 

Recently, a new microarray platform based on 52,355 expressed sequences comprising miRNAs in 

miRBase Ver. 15 (Wellcome Trust Sanger Institute, Cambridge, UK) for pigs, cows, humans, and 

mice was described [55]. Unlike this new platform, which was constructed by spanning 22 probes 

along the transcripts, the platform we developed detects the 3'-UTR of each transcript; therefore, we 

are able to distinguish mRNA isoforms. This feature is fundamental because the activity of miRNAs is 

predominantly based on their interactions with the 3'-UTR region of mRNAs. 

The identification of miRNAs was described in [74]. Briefly, bioinformatic analyses were 

performed on the pig genome for the identification of putative pre-miRNAs. These were 

experimentally tested using six independent RAKE experiments to identify 5' and 3' miRNA 

boundaries. After this experimental confirmation, all the pre-miRNAs identified as responsive (1235 

hairpins) were tested for the presence of mature miRNA through RNA sequencing experiments. RNA 

sequencing experiments identified 343 hairpins coding for miRNAs. However, using PCR we were 

able to validate several miRNAs that were not confirmed by RNA sequencing. Therefore, we decided 

to produce an miRNA microarray platform (Array Express ID: A-MEXP-2348) containing all 

miRNAs detected by RAKE experiments. In the following analysis, we will discuss only miRNAs that 

were confirmed in sequencing experiments. Each specific probe is flanked by a background probe that 

was used to subtract the corresponding background fluorescence signal in the analysis (Figure 1). 
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Figure 1. Explicative scan portion of miRNA microarray after the RAKE and labeling 

reactions (A) and before hybridization (B). Spike-in spots are indicated by red lines; the 

blue arrow indicates a specific probe, and the orange arrow indicates its background probe. 

Each background probe was positioned to the right of its probe. 

 

The short length of miRNAs makes complementary probe selection and the identification of 

optimized PCR primers a challenging task. While miRNA microarrays permit massive parallel and 

accurate relative measurement of all known miRNAs, they have been less useful for absolute 

quantification. We developed a new method that integrates the hybridization of miRNAs with an 

enzymatic elongation reaction that can take place only following a perfect match between the miRNA 

and the probe. Moreover, we introduced oligonucleotide spikes into the hybridization-enzymatic 

reaction, permitting the quantification of miRNAs over the linear dynamic range of 10−18 moles to 

10−14 moles and avoiding biases related to sequence, labeling, or hybridization [74]. 

2.1. Differences between Arteries and Veins 

We compared different tracts of the circulatory system: the two largest veins (the superior and 

inferior vena cava), the aorta (ascending and descending tracts), the pulmonary artery, and the 

coronary artery. As expected, the ascending and descending aorta and the coronary artery display 

similar gene expression profiles that are distinct from those of the superior and inferior vena cava 

(Figure 2A), while the pulmonary artery has an intermediate expression profile (Figure 2A). Arteries 

and veins are structurally different in terms of their relationship to the heart. Arteries receive blood 

directly from the heart and are therefore characterized by high pressure; in contrast, veins receive 

blood from peripheral body regions, and low pressure characterizes them. For this reason, some of the 

blood in the veins may not return to the heart but instead may back up or collect in these vessels. Veins 

transport de-oxygenated blood, while arteries transport oxygenated blood (with the exception of the 

pulmonary artery, which transports de-oxygenated blood to the lungs for oxygenation). The difference 

in blood pressure in arteries and veins is reflected in the different structures of these vessels. Arteries 

and arterioles have thicker walls than veins and venules; specifically, they possess an increased amount 

of smooth muscle that provides extra strength and elasticity to withstand surges of blood from the 

heart. Moreover, the thinner the vessel, the lower its innervation. 
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In accordance with the increased number of smooth muscle cells in arteries, the aorta expresses 

more smooth muscle-specific transcripts than the vena cava (Figure 2B). Genes that are up-regulated in 

the aorta include genes related to biological structures such as adherence junctions and processes such 

as nerve function and blood circulation (Table S1). This is consistent with the significantly higher level 

of innervation of arteries than of veins. Up-regulated genes in the vena cava are enriched in genes 

coding for proteins involved in the formation of the extracellular matrix (Table S1). These findings 

may be associated with the differences in elasticity between veins and arteries (veins have less elastic 

tissue than arteries). 

Figure 2. (A) Principal component analysis (PCA). The first three components account for 

62.8% of the observed variance. The green rectangle identifies the group of ascending and 

descending aorta samples (green dots); the coronary artery is indicated by a black dot, the 

red rectangle highlights pulmonary artery samples (red dots), and the blue rectangle 

surrounds superior and inferior vena cava samples (blue dots). On the right, separated from 

other samples, are heart samples; (B) Heat map of muscle transcripts. Transcripts coding 

for muscle proteins are up-regulated in arteries with respect to veins. The red squares 

indicate up-regulated genes, and the green squares indicate down-regulated genes. The 

grey squares indicate genes for which no expression was detected. L.P.V. = leaflet of 

pulmonary valve; Inf. Vena Cava = inferior vena cava; Sup. Vena Cava = superior vena cava. 

The numbers following the sample names indicate the number of experimental replicates. 

 

A major component of the vessel walls of large arteries and veins is the extracellular matrix (ECM), 

which consists of collagens, elastin, and proteoglycans. The smooth muscle cells of the aorta and vena 

cava synthezise different amounts of collagen. As expected, our data show that collagen synthesis is 

four-fold higher in venous than in arterial [78]; collagen type I (COL1A2) is the most highly expressed 

extracellular matrix component. 

Procollagen C-endopeptidase enhancer 2 (PCOLCE2) and P4HA1 prolyl 4-hydroxylase,  

α polypeptide I (P4H4) genes were found to be up-regulated in the vena cava. PCOLCE2 binds to the  

C-terminal propeptide of type I and II procollagens and may enhance the cleavage of their propeptides, 
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while P4H4 is a key enzyme in collagen synthesis. Moreover, we found type VIII collagen (COL8A1), 

which is typical of the endothelium lining vessels, and type VI collagen (COL6A3), a subendothelial 

constituent [79], to be highly expressed in the vena cava. 

2.2. Pathway Analysis 

Using multivariate pathway analysis methods such as GSEA, we overcame the major limitation of 

the classical enrichment approach, cut-off-based gene selection, focusing instead on coordinated 

changes in gene expression. Using this method, we were able to identify gene pathways that are 

specifically expressed in arteries and veins (Table 1). Among the activated pathways in arteries are 

those associated with smooth muscle contraction, calcium-calmodulin-dependent events, genome 

stability and regulation of intracellular signaling cascades. This finding is consistent with the presence 

of a thicker smooth muscle ring in arteries than in veins. Among the activated pathways in veins, we 

find the complement cascade, arachidonic acid metabolism, cell surface interactions at the vascular 

wall, and extracellular matrix metabolism (glycosaminoglycan metabolism and keratin/keratan 

sulphate metabolism). Arachidonic acid metabolism is involved in the control of various processes 

within the cardiocirculatory system, including vasoconstriction [80] and vasodilation [81,82]. The two 

most highly expressed genes related to arachidonic acid metabolism were prostaglandin-endoperoxide 

synthase 2 (PTGS2 or COX-2) and γ-glutamyltransferase 5 (GGT5). COX-2 and endothelial nitric 

oxide synthase (eNOS) are primarily expressed in endothelial cells and are considered important 

regulators of vascular function. Under normal conditions, laminar flow induces COX-2 expression and 

synthesis of PGI2, which in turn stimulates eNOS activity [83]. GGT expression was also localized in 

the endothelium [84]. As blood normally flows more slowly through veins than through arteries, 

thromboses are more common in veins than in arteries. This could be the reason for the control of 

vasodilation and vasoconstriction through metabolites of arachidonic acid. 

In support of the up-regulation of elements of the complement cascade in veins, it is known that 

inflammation is more readily induced in venous than in arterial epithelium due to the conditions of the 

venous circulation. We checked for the presence of an inflammatory process by analyzing the 

expression of complement components in 19 tissues (Figure 3). We find that not all complement 

components are up-regulated in veins, while most are highly expressed in lymph nodes, spleen, and 

liver. This is in accordance with complement system synthesis and laundering. The complement 

system consists of a dozen circulating proteins, most of which are synthesized by the liver, that have 

the ability to bind to cellular membranes. The spleen and the liver are able to remove immune 

complexes composed of complement elements linked to erythrocyte membranes [85]. 

Finally, it is worth noting that pathways describing mucopolysaccharidosis syndromes such as 

Hurler, Sanfilippo, and Morquio syndromes were found to be significantly expressed in veins. Altered 

glycosaminoglycan metabolism is a key feature of these pathologies. Glycosaminoglycans are 

proteoglycans that bind to a varying degree water, electrolytes and macromolecules, such as collagen, 

within the connective tissue. The lining of veins and arteries comprises a substantial amount of the 

body’s connective tissue. The outer layer of vessels (tunica adventitia) consists chiefly of connective 

tissue and is the thickest layer of the vein. 
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Table 1. Summary of Gene Set Enrichment Analysis (GSEA) analysis based on the 

Reactome database (http://www.reactome.org/ (accessed on 13 Novembre 2013)). Set size 

refers to the dimension of the pathway, and NTK (Normalized T-test of the kth gene set) is 

the observed value of the statistic as defined in the Graphite web tool [20]. Negative NTK 

values indicate pathways activated in veins, while positive values indicate pathways 

activated in arteries. It is worth noting that GSEA is known to have low statistical power; 

the suggested Q-value cut-off for identification of significant pathways is 0.25. 

Pathway Set size NTk Q-Value 
Complement cascade 18 −5.29 0 
Arachidonic acid metabolism 11 −3.09 0.044912281 
Glycosaminoglycan metabolism 54 −3.09 0.044912281 
MPS I—Hurler syndrome 54 −3.09 0.044912281 
MPS II—Hunter syndrome 54 −3.09 0.044912281 
MPS IIIA—Sanfilippo syndrome A 54 −3.09 0.044912281 
MPS IIIB—Sanfilippo syndrome B 54 −3.09 0.044912281 
MPS IIIC—Sanfilippo syndrome C 54 −3.09 0.044912281 
MPS IIID—Sanfilippo syndrome D 54 −3.09 0.044912281 
MPS IV—Morquio syndrome A 54 −3.09 0.044912281 
MPS IV—Morquio syndrome B 54 −3.09 0.044912281 
Biological oxidations 56 −2.75 0.106666667 
Cell surface interactions at the vascular wall 54 −2.75 0.106666667 
Keratan sulfate/keratin metabolism 20 −2.46 0.205977011 
G α (12/13) signaling events 35 −2.37 0.24 
Antigen presentation: Folding, assembly and peptide loading of class I MHC 11 −2.33 0.250980392 
Golgi associated vesicle biogenesis 29 −2.29 0.247017544 
Glutathione conjugation 10 −2.26 0.249756098 
Phase II conjugation 23 −2.26 0.249756098 
EGFR interacts with phospholipase C-γ 17 2.12 0.273710692 
Ca-dependent events 14 2.14 0.262564103 
Calmodulin induced events 14 2.14 0.262564103 
CaM pathway 14 2.14 0.262564103 
Cell-extracellular matrix interactions 15 2.2 0.254184397 
PLCG1 events in ERBB2 signaling 18 2.23 0.252121212 
DARPP-32 events 12 2.26 0.249756098 
DAG and IP3 signaling 15 2.29 0.247017544 
PLC-γ1 signaling 15 2.29 0.247017544 
Amyloids 18 2.33 0.250980392 
Telomere Maintenance 31 2.46 0.192688172 
RNA polymerase I promoter opening 18 2.65 0.131282051 
Chromosome maintenance 53 2.75 0.1024 
Meiotic synapsis 24 2.88 0.077575758 
Deposition of new CENPA-containing nucleosomes at the centromere 21 2.88 0.077575758 
Nucleosome assembly 21 2.88 0.077575758 
Packaging of telomere ends 12 3.09 0.044912281 
Striated muscle contraction 21 4.76 0 
Smooth muscle contraction 19 6.13 0 
Muscle contraction 36 7.25 0 
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Figure 3. Expression of genes involved in the complement response. The numbers 

represent gene expression levels normalized to the average expression of the same gene 

across all tissues. Down-regulated genes are shown in green, and up-regulated genes are 

shown in red. Most of the up-regulated genes are expressed in the liver, which is 

responsible for the synthesis of most of the proteins of the complement system, in  

the spleen and in lymph nodes (lymphoid organs). NA = Expression not detected;  

L.P.V. = leaflet pulmonary valve; WBC.A = white blood cells from arterial blood;  

WBC.V = white blood cells from venous blood. 

 

2.3. De Novo Pathway Reconstruction: Topological Parameters 

Pathway analysis fails to consider many known genes and miRNAs that are not annotated in any 

pathway. To fill these gaps, we used de novo network reconstruction using both mRNA and miRNA 

profiles. Using a correlation measure with a permutation-based threshold of 0.9 of mutual information 

(0.9 was the maximum value of mutual information of the network generated by the permuted 

expression matrix), we generated a network with 7762 nodes (7647 genes and 115 miRNAs) and 

44,092 edges (Figure 4). The global architecture of the network is characterized by two large clusters, 
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which are shown as the blue and violet nodes in Figure 4. As expected (Figure 2A), these two clusters 

are composed of genes prevalently expressed in heart (the most different tissue) and in blood  

vessels (Figure S1). Thus, we separated these two clusters to create a vessel-specific and a  

heart-specific network. 

To gain insight into the structure of complex networks of this type, various topological parameters 

were calculated (Table 2). The heart network is sparser and less connected than the vessel network. 

This is reflected by a larger number of connected components, a higher diameter and a smaller number 

of neighborhood genes of the heart network. 

Figure 4. Regulatory network reconstructed using mutual information. The edges of the 

network are colored according to their prevalent expression. Heart-specific genes are 

shown in violet, vessel-specific genes are shown in blue, and genes without tissue-specific 

expression are shown in pink. 

 

The degree of a node, also referred to as its connectivity, is the number of edges connected to the 

node. Based on this definition, the nodes with the highest connectivities are called hubs. In general, 

hub genes are master regulators and play important roles in the biology of the cell. In our networks, we 
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define as hubs the top 5% of genes in the connectivity distribution. We found 162 and 128 hubs in the 

vessel and heart networks, respectively. The hub genes of the vessel network encode proteins that 

participate in two main processes: RNA processing and the regulation of apoptotic events (Table S2). 

During normal development as well as in pathology, the formation of new vessels and the regression of 

pre-existing ones depend on the balance between endothelial cell proliferation and endothelial cell 

apoptosis. In mature vessels, endothelial cell turnover is also under the control of these tightly 

regulated phenomena. Among the hubs of the heart network, we identified genes involved in cell 

membrane structure and signal transduction through MAPK activity as well as genes encoding various 

ion transporters (e.g., Na2+, K+) (Table S2). The members of the MAPK family are involved in the 

regulation of many cellular processes, including cell growth, differentiation, development, the cell 

cycle, death, and survival. Activation of genes in the MAPK family plays a key role in the 

pathogenesis of various processes in the heart, including myocardial hypertrophy and its transition to  

heart failure, ischemic and reperfusion injury, and cardioprotection conferred by ischemia- or  

drug-induced preconditioning [86]. 

Table 2. Summary of the principal topological parameters estimated for the de novo 

reconstructed network. 

Topological parameters Heart network Vessels network 

Average clustering coefficient 0.195 0.234 
Connected components 237 86 

Avg. number of neighbors 6.329 15.611 
Network radius 1 1 

Network diameter 36 16 
Network centralization 0.020 0.036 

Network density 0.002 0.005 
Network heterogeneity 1.198 1.183 

The de novo reconstructed network (Figure 4) is characterized by the presence of different miRNAs 

(Table S3) that are responsible for the regulation of vessel specificity. Figure 5 represents the  

sub-network of the neighboring genes of miRNAs. Interestingly, the central part of the network (the 

densely connected portion of the sub-network) is characterized by genes involved in smooth muscle 

contraction (Table S4) that show differential expression in arteries and veins (Figure 6). As discussed 

previously, a thicker ring of smooth muscle is present in arteries than in veins (see Section 2.2). Our 

results suggest that this difference may be regulated by specific miRNAs that display anti-correlated 

expression with their putative targets (Figure 6). 

Specifically, the α 2-actin (ACTA2) smooth muscle gene in aorta (ENSSSCG00000010447) is 

regulated by a specific miRNA (prediction_15_14390446_14390503_-_3p) that is down-regulated in 

the aorta and up-regulated in venous tissue (Figure 6). Defects in ACTA2 are the cause of aortic 

aneurysm familial thoracic type 6 (AAT6) [MIM:611788]. AATs are characterized by permanent 

dilation of the thoracic aorta, usually due to degenerative changes in the aortic wall. RHOB 

(Ssc#S35170885), an important gene involved in vasoconstriction, is also regulated by miR-133a 

(Figure 6). RHO gene family is involved in vascular morphogenesis [87], and miR-133a contributes to 

the phenotypic state of smooth muscle cells both in vitro and in vivo, suggesting a potential for 
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therapeutic application of this miRNA in vascular disease [88]. In fact, miR-133a, in association with 

miR143/145, is fundamental for the maintenance of the contractile smooth muscle cell phenotype [88]. 

The expression of miRNAs prediction_15_14390446_14390503_-_3p and miR-133 and their targets 

ACAT2 and RHOB was confirmed by qRT-PCR (Figure 6C). 

Figure 5. Gene and miRNA interaction sub-network describing vessel specificity. 

Triangles represent miRNAs; circles represent mRNAs. Gene expression in the ascending 

aorta according to log2 (gene expression/average gene expression) is represented by color; 

green indicates down-regulation, red indicates up-regulation. Under each node, histograms 

representing log2 (gene expression/average gene expression) in the ascending aorta, 

descending aorta, inferior vena cava, and superior vena cava (reading from left to right) are 

shown. The area highlighted by the circle indicates the densely connected portion of the 

sub-network (an enlarged view of this area is available in Figure 6). 
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Figure 6. Enlarged view of the densely connected area of Figure 5. (A) The colors indicate 

expression in the aorta; (B) The colors indicate expression in veins. The triangles represent 

miRNAs; circles represent mRNAs. Up-regulated = red; down-regulated = green; * = nodes 

discussed in the text; (C) qRT-PCR results confirm that there is an inverse relationship 

between miRNAs and their targets. P_15 is for prediction_15_14390446_14390503_-_3p. In  

Y axis the original expression level related to H3. Bars are for standard deviation between  

three replicates. 
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2.4. Integration of Supervised and Unsupervised Approaches 

Supervised and unsupervised approaches gave similar results in terms of biological processes 

involved in tissue specificity. However, their complementary behavior might be better exploited 

through the use of an integrative approach. Specifically, our aim is to combine the topology of the 

discovered pathways with that of the de novo reconstructed network. The advantage of combining the 

topologies obtained in sections 2.2 and 2.3 is two-fold: (i) it allows the expansion of pathway 

definitions to include genes currently without pathway annotation; and (ii) it permits the inclusion of 

miRNAs. Using the topological structure of the pathway as a backbone, we include new genes in the 

pathway, following two rules: (i) a gene/miRNA is added only if it presents an edge in the de novo 

network with at least one gene in the pathway; and (ii) additional miRNAs are included if they share 

an edge with previously added non-annotated genes. Here, we will use this strategy to discuss one of 

the most interesting pathways significantly activated in arteries: the smooth muscle contraction 

pathway (Figure 7A). The genes used to expand this pathway (the γ isoform of the catalytic subunit of 

protein phosphatase 1 (PPP1CC), transgelin (TAGLN), and smooth muscle and non-muscle myosin 

light chain 6 (Myl6), among others) are primarily involved in membrane and actin filament 

organization, actomyosin function and responses to specific stimuli (NF-κB binding and response to 

unfolded protein) (Table S5), reflecting their functional congruence with the smooth muscle 

contraction pathway. Indeed, the membrane organization category includes the organismation of the 

sarcoplasmic reticulum, which is involved in the regulation of intracellular Ca2+ concentration (Figure 7). 

All of these genes are prevalently expressed in smooth muscle; in particular, TAGLN was purified 

from bovine aorta [89]. Moreover, we added 61 miRNAs that putatively regulate genes involved, 

directly or indirectly in the smooth muscle contraction pathway (Figure 7A). Interestingly, 23 miRNAs 

are involved in the regulation of the original genes of the pathway (core genes). Among these 

miRNAs, miR-542 (ENSSSCT00000021275), which was shown in a previous work to be involved in 

the epithelial-mesenchymal transition [90], was found to be associated with vimentin (VIM) regulation 

(Figure 7B). Finally, it is worth noting that many other miRNAs important for vascular remodeling and 

smooth muscle phenotypic control, such as miR-133 [88], miR-143 [91], miR-99b [92], miR-23a [93], 

miR-138 (ENSSSCT00000021566) [94], miR-29c [95], miR-125a (ENSSSCT00000020936) [95], and 

miR-24 [96]), are included in this network. 
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Figure 7. (A) Combination of pathway topology and ab initio reconstructed network. 

Nodes corresponding to the Reactome pathway (core nodes) are shown in red; additional 

genes in the first neighborhood of the core nodes obtained from the ab initio network are 

shown in light blue, and miRNAs are shown in grey; (B) Portion of (A) representing the 

miRNAs regulating the core nodes. 
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3. Experimental Section 

3.1. Sample Preparation 

RNA samples (total RNA and small RNAs) were extracted from the analyzed tissues of three  

non-inbred pigs and kept at −80 °C until use. Before the experiments were performed, the three 

samples from the same tissues were pooled, and miRNA was selected using a flashPAGE instrument 

(Ambion, Carlsbad, CA, USA). RNA extraction was performed using TRIzol (Invitrogen, Carlsbad, 

CA, USA) according to the manufacturer’s protocol. The PureLink Isolation Kit (Invitrogen, Carlsbad, 

CA, USA) was used to separate long RNA from short (<200 nt, after use in the flashPAGE 

instrument). All samples were quantitated using a NanoDrop ND-1000 spectrophotometer; RNA 

quality was then analyzed using the Agilent Bioanalyser 2100 (Agilent, Santa Clara, CA, USA) 

(Agilent RNA 6000 nano kit; RIN at least 7 accepted) and for the presence of miRNA using the 

Agilent small RNA kit. 

3.2. Microarray Platforms 

For this study, we synthesized two different types of microarray platforms: (a) 4 × 2 K Combimatrix 

microarrays for miRNA expression profiling (ArrayExpress ID: A-MEXP-2348); (b) 90 K Combimatrix 

microarrays (ArrayExpress ID: A-MEXP-2351) for mRNA expression profiling. All microarrays were 

synthesized using the Combimatrix oligonucleotide synthesizer station (Combimatrix, Mukilteo, WA, 

USA), which allows in situ synthesis of oligonucleotide probes through phosphoramidite chemistry. 

All synthesized microarray platforms were tested for uniformity of the probes as suggested by  

the manufacturer. 

The 4 × 2 K microarrays contain specific probes for miRNAs. Each specific probe is flanked by a 

background probe that is used in the analysis to subtract the corresponding background fluorescence 

signal (Figure 1). The background probes were derived from a previous RAKE experiment aimed at 

the identification of specific ends of miRNAs in which a tiling microarray was used for the  

scope (Figure S2) [74]. 

3.3. Microarray mRNA and miRNA Gene Expression and qRT-PCR 

3.3.1. mRNA 

Pooled RNA (1 μg; three samples from the same tissue) was linearly amplified and labeled by the 

addition of biotinylated nucleotides according to the procedure described in the Ambion 

MessageAmp™ II aRNA Amplification kit (Ambion, Carlsbad, CA, USA). The procedure includes 

reverse transcription with an oligo-dT primer carrying a T7 promoter to produce the first-strand cDNA. 

After second-strand synthesis and clean-up, the cDNA is used as template in an in vitro transcription 

reaction to generate a large quantity of antisense RNA (aRNA). Biotinylated UTPs were incorporated 

into the aRNA during the in vitro transcription reaction. Following purification, 18 μg of aRNA was 

fragmented using the Ambion Fragmentation Kit (Ambion, Carlsbad, CA, USA). Intact and 

fragmented aRNAs were tested on an Agilent Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA) 

using the RNA 6000 Nano LabChip (Agilent, Santa Clara, CA, USA). The size of intact aRNAs 
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ranged from 300 to 4000 nucleotides, while that of fragmented aRNAs ranged from 50 to 250 

nucleotides. Fragmented aRNA was hybridized to pre-hybridized 90 K Combimatrix microarrays. The 

pre-hybridization step was performed for 2 h at 42 °C in a solution containing 5× Denhardt’s solution, 

100 ng/μL salmon sperm DNA and 0.05% SDS in 1× Hyb solution prepared as suggested by 

Combimatrix. Hybridizations were carried out with 4.8 μg of fragmented aRNA in 25% DI formamide, 

100 ng/μL salmon sperm DNA and 0.04% SDS in 1× Hybridization solution at 42 °C for 18 h with 

constant mixing. After hybridization, the microarray platforms were washed with the following: 

 6× SSPET (SSPE added with 0.05% of Tween-20) preheated at 42 °C for 5 min; 

 3× SSPET for 1 min at room temperature; 

 0.5× SSPET for 1 min at room temperature; and 

 PBST for 1 min at room temperature. 

The microarray chamber was then filled with biotin blocking solution (0.1% Tween-20 and  

10 mg/mL BSA in 2× PBS) and incubated at room temperature for 1 h. Labeling was performed by 

incubating the microarray with dye labeling solution (0.1% Tween-20, 10 mg/mL BSA and 1.6 ng of 

Cy3-streptavidin (Amersham, Little Chalfont, UK) in 2× PBS) for 1 h at room temperature. After the 

washing steps (PBST for 1 min at room temperature two times; PBS for 1 min at room temperature), 

microarrays were scanned at 3 μm resolution with the VersArray ChiprRaderTM (BioRad, Hercules, 

CA, USA) (ArrayExpress ID: E-MTAB-1941). 

3.3.2. miRNA 

A sample of the miRNA pool (350 ng) was hybridized for 20 h at 37 °C in a static hybridization 

oven in hybridization buffer consisting of 6× SSPE, 8 mg/mL BSA, 700 ng of small RNAs and  

spike-in. After hybridization, the microarrays were washed with the following stringent procedure: 

 1 min at room temperature with 6× SSPET (SSPE containing 0.05% Tween-20); 

 1 min at room temperature with 3× SSPET; 

 1 min at room temperature with 2× PBS; 

 1 min at room temperature with 1× Buffer 2 (the buffer for the Klenow enzyme). 

The RAKE reaction was performed at 36.5 °C by incubating the microarray for 1.5 h in 1× Buffer 2 

containing 16 μM biotin-14-dATP (Invitrogen, Carlsbad, CA, USA) and 0.25 U/μL Klenow fragment 

(3'→5' exo−) (NEB, Ipswich, MA, USA). The microarrays were washed two times in 1× Buffer 2 and 

incubated in biotin blocking solution for 1 h at room temperature. Extended miRNAs (primers) were 

labeled by incubating the microarray in the dye labeling solution for 1 h at room temperature. The 

microarrays were rinsed in PBST (0.1% Tween-20 in 2× PBS) for 1 min at room temperature and in 

2× PBS for 1 min at room temperature and scanned (ArrayExpress ID: E-MTAB-1938). 

qRT-PCR was used to validate the expression of miRNAs and mRNAs. For mRNA, the SYBR 

green approach was used in association with the Power SYBR® Green PCR Master Mix (Applied 

Biosystems, Carlsbad, CA, USA); for miRNA, the NCodeTM SYBR® Green miRNA qRT-PCR Kit 

(Life Technologies, Carlsbad, CA, USA) was used according to the manufacturer’s specifications. The 

primers used were GCATGCAGAAGGAGATCACA (left) and GCTGGAAGGTGGACAGA 

GAG (right) for ACTA2, TATGTGCTTCTCGGTGGACA (left) and CGAGGTAGTCGTA 
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GGCTTGG (right) for RHOB, and GGTTCCCAGGCTAGGGGTCG (specific) for 

prediction_15_14390446_14390503_-_3p and CAGCTGGTTGAAGGGGACCA for miR-133a. The 

reference genes used were GAPDH for mRNA and snU6 for miRNA. The results shown are 

normalized to the expression of histone H3. 

3.4. Data Analysis 

Images of hybridized mRNA microarrays were quantitated using the Combimatrix imaging 

software. The raw data were normalized using the quantile method. The goal of the quantile method is 

to normalize the distribution of probe intensities across a set of microarrays. After normalization, the 

fluorescence intensities of probe spots presenting values lower than the average of the medians of all 

negative control probes were set as missing values (NA). The negative control probes were used to 

calculate the background value (filter). Probe spots presenting NA in more than six experiments were 

excluded from data analysis. Before performing the analysis, the intensity values of the replicated 

probes were averaged. Differentially expressed genes were identified using the MeV suite [97]  

and applying PCA (Principal Components Analysis) [98] and SAM (Significance Analysis of 

Microarrays) [2] analysis. COA (Correspondence Analysis) analysis [99] was used to determine the 

specificity of the de novo reconstructed network. Gene enrichment was performed using the DAVID 

web application [100]; pathway analysis was performed using GraphiteWeb [20]. 

miRNA data were pre-processed as previously described except that cyclic lowess normalization 

was applied [101]. After inter-array normalization, the fluorescence intensity of the specific miRNA 

probe was subtracted from the corresponding background fluorescence and used to extrapolate the 

miRNA concentration from the spike-in-derived curve. The spike-in curve was extrapolated using 

spline interpolation [102]. 

Pig gene symbols from Ensembl were converted to human gene symbols using the Ensembl 

orthologous database through the BioMart service. For UniGene clusters, we extracted the most similar 

protein or gene curated by NCBI (http://www.ncbi.nlm.nih.gov/ (accessed on 13 November 2013)) 

based on sequence similarity and then used the NCBI HomoloGene database to translate the protein or 

gene to its human homolog. This method is commonly used to map genes to pathways in non-model 

organisms or to map genes that are poorly annotated in model organisms [103]; it is also common to 

use the well-curated human pathways to extrapolate pathways for non-model organisms. GSEA [10] 

was then performed using the GraphiteWeb web tool [20]. 

Mutual information (MI) between all pairs of genes and miRNAs was estimated using the 

parmigene Bioconductor package [31]; miRNA-miRNA interactions have been removed. To assess MI 

significance, we estimated the null distribution using a permutational approach. The expression 

profiles of miRNAs and mRNAs were randomly shuffled, and MI was then estimated on the shuffled 

matrices. To generate the global network, we included only interactions with MI that were greater than 

the maximum MI value obtained from the null distribution, which was 0.9 (corresponding to quantile 

0.999 in the empirical distribution). 

The Cytoscape tool [104] with the Networkanalyser [105] plugin was used to estimate the 

topological properties of heart and vessel networks. 
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The topologies of the most interesting pathways derived from pathway annotation (graphite 

Bioconductor package) were integrated with the topology of the de novo reconstructed network. The 

combination was performed using the pathway topology as backbone; new genes/miRNAs were then 

added based on fulfilment of one of the following criteria: (i) if the new gene/miRNA shares an edge 

in the de novo network with at least one gene in the pathway; and (ii) if an miRNA shares an edge in 

the de novo network with at least one previously added gene. 

4. Conclusions 

Gene set analyses have been shown to provide better insights and more robust results in array 

experiments than classical gene-by-gene approaches. Here, we reviewed various strategies used in 

gene set analysis and showed how to address their integration. We combined genome and pathway 

information with expression data and applied this approach to a case study, the analysis of the pig 

cardiocirculatory system. Two new platforms for pig transcriptome analysis (mRNA and miRNA) 

were presented and applied to the study of tissue specificity. Different expression patterns were 

identified in heart and vessels; within these, arteries show distinct profiles from those of veins. These 

findings seem to be associated with the functional and structural composition of the vessels. In 

agreement with histochemical evidence, pathway analysis revealed the greater importance of smooth 

muscle in arteries than in veins. We showed that miRNAs participate in the definition of arterial and 

venous pathways; specifically, for smooth muscle, our data indicate the importance of miR-133a in 

regulating the RHOB gene. The use of a combination of supervised and unsupervised approaches 

allowed us to expand the compositions of known pathways to include new genes involved in 

membrane and actin filament organization, actomyosin function and response to stimuli and new 

miRNAs, most of which are known to be associated with vascular remodeling and control of the 

smooth muscle phenotype. These results demonstrate the feasibility and usefulness of combining these 

two approaches in identifying new candidate genes whose expression is associated with specific 

experimental conditions. 
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