Supplementary Information

Figure S1. MALDI MSI analyses of MCF-7, MDA-MB-231 and MDA-MB-435 tumor sections in broadband mode. Inset indicates minor molecular species in a mass range comprised between m/z values 796.46 and 796.64 considered for lipid mapping.

Figure S2. Determination of low-abundant PL species associated with different tumor compartments by correlation between MALDI MSI data and histochemical stainings. (A) MALDI MSI ion image representing the localization of three PLs (m/z values of 703.5728 in red, 706.5379 in blue and 796.6218 in green) in a section of tumor induced by MCF-7 cells (right panel) and hematoxylin/eosin staining (left panel). Dotted lines on hematoxylin/eosin stained section delineate necrosis "N" and tumor "T" areas. And (B) Binary images of CD45 (right panel), Ki-67 (central panel) and CA IX (left panel) immunostainings of MCF-7 serial tissue sections. Dotted lines of each binary image delineate the localization of PL (1) (m/z value of 703.5728 in red), PL (2) (m/z value of 706.5379 in blue) and PL (3) (m/z value of 796.6218 in green) shown in ion image.

Figure S3. Localization of major PL species in MDA-MB-435 tumor sections. MALDI MSI ion images representing the localization of four major PL species (m/z values of 732.5513, 758.5703, 760.5849 and 786.6012) in a section of tumor induced by MDA-MB-435 cells.

Figure S4. MALDI MSI analyses of MCF-7 and MDA-MB-435 tumor sections in narrowband mode. Associated ion images represent the localization of low-abundant PLs with m/z values of 796.52524 (peak 1), 796.58547 (peak 2) and 796.62181 (peak 3).

LM-ID¹ Classes² M (Da) Formulas **Common names** LMGP01010395 PC PC(10:0/20:0) C₃₈H₇₆NO₈P LMGP01010416 PC(11:0/19:0) C38H76NO8P PC C38H76NO8P PC LMGP01010438 PC(12:0/18:0) PC(13:0/17:0) C38H76NO8P PC LMGP01010461 LMGP01010481 PC(14:0/16:0) C₃₈H₇₆NO₈P PC LMGP01010530 PC(15:0/15:0) C₃₈H₇₆NO₈P PC PC LMGP01010560 PC(16:0/14:0) C₃₈H₇₆NO₈P LMGP01010702 PC(17:0/13:0) C38H76NO8P PC C₃₈H₇₆NO₈P PC LMGP01010736 PC(18:0/12:0) C₃₈H₇₆NO₈P PC LMGP01010969 PC(19:0/11:0) LMGP01010995 PC(20:0/10:0) C₃₈H₇₆NO₈P PC 705.53030 LMGP01011265 PC(9:0/21:0) C₃₈H₇₆NO₈P PC LMGP02010337 PE-NMe(16:0/16:0) $C_{38}H_{76}NO_8P$ PE LMGP02010377 PE(12:0/21:0) PE C₃₈H₇₆NO₈P LMGP02010413 PE(14:0/19:0) $C_{38}H_{76}NO_8P$ PE PE LMGP02010542 PE(17:0/16:0) C₃₈H₇₆NO₈P LMGP02010623 PE(18:0/15:0) C₃₈H₇₆NO₈P PE PE LMGP02011170 PE(21:0/12:0) C₃₈H₇₆NO₈P PE LMGP02011181 PE(20:0/13:0) C₃₈H₇₆NO₈P PE(19:0/14:0) PE LMGP02011186 C₃₈H₇₆NO₈P LMGP02011227 PE(16:0/17:0) C₃₈H₇₆NO₈P PE LMGP02011233 PE(15:0/18:0) C₃₈H₇₆NO₈P PE LMGP02011253 PE(13:0/20:0) C₃₈H₇₆NO₈P PE PC LMGP01010543 PC(15:0/18:2(9Z,12Z)) C41H78NO8P LMGP01011354 PC(13:0/20:2(11Z,14Z)) $C_{41}H_{78}NO_8P$ PC PC(14:1(9Z)/19:1(9Z)) PC LMGP01011396 C41H78NO8P PC LMGP01011443 PC(15:1(9Z)/18:1(9Z)) $C_{41}H_{78}NO_8P$ LMGP01011465 PC(16:0/17:2(9Z,12Z)) C41H78NO8P PC LMGP01011481 PC(16:1(9Z)/17:1(9Z)) $C_{41}H_{78}NO_8P$ PC PC(17:1(9Z)/16:1(9Z)) PC LMGP01011528 $C_{41}H_{78}NO_8P$ LMGP01011557 PC(17:2(9Z,12Z)/16:0) PC $C_{41}H_{78}NO_8P$ LMGP01011599 PC(18:1(9Z)/15:1(9Z)) $C_{41}H_{78}NO_8P$ PC 743.54595 LMGP01011618 PC(18:2(9Z,12Z)/15:0) C41H78NO8P PC PC LMGP01011759 PC(19:1(9Z)/14:1(9Z)) $C_{41}H_{78}NO_8P$ PC LMGP01011836 PC(20:2(11Z,14Z)/13:0) C₄₁H₇₈NO₈P LMGP02010039 PE(18:1(9E)/18:1(9E)) $C_{41}H_{78}NO_8P$ PE LMGP02010044 PE(18:0/18:2(9Z,12Z)) PE C41H78NO8P LMGP02010052 PE(18:1(9Z)/18:1(9Z)) $C_{41}H_{78}NO_8P$ PE LMGP02010109 PE(18:1(6Z)/18:1(6Z)) $C_{41}H_{78}NO_8P$ PE LMGP02010420 PE(14:0/22:2(13Z,16Z)) $C_{41}H_{78}NO_8P$ PE LMGP02010448 PE(14:1(9Z)/22:1(11Z)) $C_{41}H_{78}NO_8P$ PE

Table S1. Low-abundant PL species identified from elemental formula of Table 3 by database searching in lipidmaps.

M (Da)	LM-ID ¹	Common names	Formulas	Classes ²
	LMGP02010510	PE(16:0/20:2(11Z,14Z))	$C_{41}H_{78}NO_8P$	PE
	LMGP02010530	PE(16:1(9Z)/20:1(11Z))	$C_{41}H_{78}NO_8P$	PE
	LMGP02010578	PE(17:1(9Z)/19:1(9Z))	$C_{41}H_{78}NO_8P$	PE
	LMGP02010607	PE(17:2(9Z,12Z)/19:0)	$C_{41}H_{78}NO_8P$	PE
	LMGP02010774	PE(19:0/17:2(9Z,12Z))	$C_{41}H_{78}NO_8P$	PE
743.54595	LMGP02010802	PE(19:1(9Z)/17:1(9Z))	$C_{41}H_{78}NO_8P$	PE
	LMGP02010848	PE(20:1(11Z)/16:1(9Z))	$C_{41}H_{78}NO_8P$	PE
	LMGP02010877	PE(20:2(11Z,14Z)/16:0)	$C_{41}H_{78}NO_8P$	PE
	LMGP02011043	PE(22:1(11Z)/14:1(9Z))	$C_{41}H_{78}NO_8P$	PE
	LMGP02011073	PE(22:2(13Z,16Z)/14:0)	$C_{41}H_{78}NO_8P$	PE
	LMGP02011193	PE(18:2(9Z,12Z)/18:0)	$C_{41}H_{78}NO_8P$	PE
	LMGP01020039	PC(O-16:0/18:2(9Z,12Z))	$C_{42}H_{82}NO_7P$	РС
	LMGP01030006	PC(P-16:0/18:1(9Z))	$C_{42}H_{82}NO_7P$	PC
	LMGP01030053	PC(P-18:0/16:1(9Z))	$C_{42}H_{82}NO_7P$	PC
	LMGP01030077	PC(P-20:0/14:1(9Z))	$C_{42}H_{82}NO_7P$	PC
	LMGP01030128	PC(P-16:0/18:1(11Z))	$C_{42}H_{82}NO_7P$	PC
	LMGP01030134	PC(P-18:1(11Z)/16:0)	$C_{42}H_{82}NO_7P$	PC
712 50021	LMGP01030144	PC(P-18:1(9Z)/16:0)	$C_{42}H_{82}NO_7P$	РС
/43.58234	LMGP01090006	PC(16:0/P-18:1(11Z))	$C_{42}H_{82}NO_7P$	PC
	LMGP01090007	PC(16:0/P-18:1(9Z))	$C_{42}H_{82}NO_7P$	PC
	LMGP01090009	PC(16:1(9Z)/P-18:0)	$C_{42}H_{82}NO_7P$	PC
	LMGP01090012	PC(18:1(11Z)/P-16:0)	$C_{42}H_{82}NO_7P$	PC
	LMGP02020070	PE(O-20:0/17:2(9Z,12Z))	$C_{42}H_{82}NO_7P$	PE
	LMGP02030051	PE(P-18:0/19:1(9Z))	$C_{42}H_{82}NO_7P$	PE
	LMGP02030071	PE(P-20:0/17:1(9Z))	$C_{42}H_{82}NO_7P$	PE

Table S1. Cont.

Note: ¹ Lipidmaps accession numbers. ² PC (phosphatidylcholine) and PE (phosphatidylethanolamine) PL classes. Grey highlighted lines corresponds to the PL species characterized by LC-ESI-MS/MS analyses.

Table S2. Low-abundant PL species identified from elemental formula of Table 4 by database searching in lipidmaps.

M (Da)	LM-ID ¹	Common names	Formulas	Classes ²
757.56160	LMGP01010585	PC(16:0/18:2(10E,12Z))	$C_{42}H_{80}NO_8P$	PC
	LMGP01010586	PC(16:0/18:2(11Z,13Z))	$C_{42}H_{80}NO_8P$	PC
	LMGP01010587	PC(16:0/18:2(2E,4E))	$C_{42}H_{80}NO_8P$	PC
	LMGP01010588	PC(16:0/18:2(2Z,4Z))	$C_{42}H_{80}NO_8P$	PC
	LMGP01010589	PC(16:0/18:2(6Z,9Z))	$C_{42}H_{80}NO_8P$	PC
	LMGP01010590	PC(16:0/18:2(9E,11E))	$C_{42}H_{80}NO_8P$	PC
	LMGP01010591	PC(16:0/18:2(9E,11Z))	$C_{42}H_{80}NO_8P$	PC
	LMGP01010592	PC(16:0/18:2(9E,12E))	$C_{42}H_{80}NO_8P$	PC
	LMGP01010594	PC(16:0/18:2(9Z,12Z))	$C_{42}H_{80}NO_8P$	PC
	LMGP01010678	PC(16:1(2Z)/18:1(9Z))	$C_{42}H_{80}NO_8P$	PC
	LMGP01010687	PC(16:1(9Z)/18:1(11Z))	$C_{42}H_{80}NO_8P$	PC

Table S2. Cont.						
M (Da)	LM-ID ¹	Common names	Formulas	Classes ²		
	LMGP01010688	PC(16:1(9Z)/18:1(9Z))	$C_{42}H_{80}NO_8P$	PC		
	LMGP01010727	PC(17:1(10Z)/17:1(10Z))	$C_{42}H_{80}NO_8P$	PC		
757 56160	LMGP01010728	PC(17:1(9Z)/17:1(9Z))	$C_{42}H_{80}NO_8P$	PC		
/3/.30100	LMGP01010745	PC(18:0/16:2(2E,4E))	$C_{42}H_{80}NO_8P$	PC		
	LMGP01010585	PC(16:0/18:2(10E,12Z))	$C_{42}H_{80}NO_8P$	PC		
	LMGP01010586	PC(16:0/18:2(11Z,13Z))	$C_{42}H_{80}NO_8P$	PC		
	LMGP01010003	PC(17:0/20:4(5Z,8Z,11Z,14Z))	$C_{45}H_{82}NO_8P$	PC		
	LMGP01011429	PC(15:0/22:4(7Z,10Z,13Z,16Z))	$C_{45}H_{82}NO_8P$	PC		
	LMGP01011542	PC(17:1(9Z)/20:3(8Z,11Z,14Z))	$C_{45}H_{82}NO_8P$	PC		
	LMGP01011571	PC(17:2(9Z,12Z)/20:2(11Z,14Z))	$C_{45}H_{82}NO_8P$	PC		
	LMGP01011658	PC(18:3(6Z,9Z,12Z)/19:1(9Z))	$C_{45}H_{82}NO_8P$	PC		
	LMGP01011687	PC(18:3(9Z,12Z,15Z)/19:1(9Z))	$C_{45}H_{82}NO_8P$	PC		
	LMGP01011717	PC(18:4(6Z,9Z,12Z,15Z)/19:0)	$C_{45}H_{82}NO_8P$	PC		
	LMGP01011742	PC(19:0/18:4(6Z,9Z,12Z,15Z))	$C_{45}H_{82}NO_8P$	PC		
	LMGP01011770	PC(19:1(9Z)/18:3(6Z,9Z,12Z))	$C_{45}H_{82}NO_8P$	PC		
	LMGP01011771	PC(19:1(9Z)/18:3(9Z,12Z,15Z))	$C_{45}H_{82}NO_8P$	PC		
	LMGP01011845	PC(20:2(11Z,14Z)/17:2(9Z,12Z))	$C_{45}H_{82}NO_8P$	PC		
	LMGP01011875	PC(20:3(8Z,11Z,14Z)/17:1(9Z))	$C_{45}H_{82}NO_8P$	PC		
	LMGP01011904	PC(20:4(5Z,8Z,11Z,14Z)/17:0)	$C_{45}H_{82}NO_8P$	PC		
			G			

	LMGP01011687	PC(18:3(9Z,12Z,15Z)/19:1(9Z))	$C_{45}H_{82}NO_8P$	PC
	LMGP01011717	PC(18:4(6Z,9Z,12Z,15Z)/19:0)	$C_{45}H_{82}NO_8P$	PC
	LMGP01011742	PC(19:0/18:4(6Z,9Z,12Z,15Z))	$C_{45}H_{82}NO_8P$	PC
	LMGP01011770	PC(19:1(9Z)/18:3(6Z,9Z,12Z))	$C_{45}H_{82}NO_8P$	PC
	LMGP01011771	PC(19:1(9Z)/18:3(9Z,12Z,15Z))	$C_{45}H_{82}NO_8P$	PC
	LMGP01011845	PC(20:2(11Z,14Z)/17:2(9Z,12Z))	$C_{45}H_{82}NO_8P$	PC
	LMGP01011875	PC(20:3(8Z,11Z,14Z)/17:1(9Z))	$C_{45}H_{82}NO_8P$	PC
	LMGP01011904	PC(20:4(5Z,8Z,11Z,14Z)/17:0)	$C_{45}H_{82}NO_8P$	PC
	LMGP01012070	PC(22:4(7Z,10Z,13Z,16Z)/15:0)	$C_{45}H_{82}NO_8P$	PC
795.57726	LMGP02010677	PE(18:2(9Z,12Z)/22:2(13Z,16Z))	$C_{45}H_{82}NO_8P$	PE
	LMGP02010706	PE(18:3(6Z,9Z,12Z)/22:1(11Z))	$C_{45}H_{82}NO_8P$	PE
	LMGP02010734	PE(18:3(9Z,12Z,15Z)/22:1(11Z))	$C_{45}H_{82}NO_8P$	PE
	LMGP02010764	PE(18:4(6Z,9Z,12Z,15Z)/22:0)	$C_{45}H_{82}NO_8P$	PE
	LMGP02010862	PE(20:1(11Z)/20:3(8Z,11Z,14Z))	$C_{45}H_{82}NO_8P$	PE
	LMGP02010892	PE(20:2(11Z,14Z)/20:2(11Z,14Z))	$C_{45}H_{82}NO_8P$	PE
	LMGP02010922	PE(20:3(8Z,11Z,14Z)/20:1(11Z))	$C_{45}H_{82}NO_8P$	PE
	LMGP02010951	PE(20:4(5Z,8Z,11Z,14Z)/20:0)	$C_{45}H_{82}NO_8P$	PE
	LMGP02011027	PE(22:0/18:4(6Z,9Z,12Z,15Z))	$C_{45}H_{82}NO_8P$	PE
	LMGP02011054	PE(22:1(11Z)/18:3(6Z,9Z,12Z))	$C_{45}H_{82}NO_8P$	PE
	LMGP02011055	PE(22:1(11Z)/18:3(9Z,12Z,15Z))	$C_{45}H_{82}NO_8P$	PE
	LMGP02011084	PE(22:2(13Z,16Z)/18:2(9Z,12Z))	$C_{45}H_{82}NO_8P$	PE
	LMGP02011113	PE(22:4(7Z,10Z,13Z,16Z)/18:0)	$C_{45}H_{82}NO_8P$	PE
	LMGP02011177	PE(20:0/20:4(5Z,8Z,11Z,14Z))	$C_{45}H_{82}NO_8P$	PE
	LMGP02011200	PE(18:0/22:4(7Z,10Z,13Z,16Z))	$C_{45}H_{82}NO_8P$	PE
795.61364	LMGP01020100	PC(O-18:0/20:4(5E,8E,11E,14E))	$C_{46}H_{86}NO_7P$	PC
	LMGP01020102	PC(O-18:0/20:4(5Z,8Z,11Z,14Z))	$C_{46}H_{86}NO_7P$	PC
	LMGP01020192	PC(O-16:0/22:4(7Z,10Z,13Z,16Z))	$C_{46}H_{86}NO_7P$	PC
	LMGP01020231	PC(O-20:0/18:4(6Z,9Z,12Z,15Z))	$C_{46}H_{86}NO_7P$	PC
	LMGP01020247	PC(O-18:0/20:4(8Z,11Z,14Z,17Z))	$C_{46}H_{86}NO_7P$	PC
	LMGP01030067	PC(P-18:0/20:3(8Z,11Z,14Z))	$C_{46}H_{86}NO_7P$	PC

M (Da)	LM-ID ¹	Common names	Formulas	Classes ²
795.61364	LMGP01030088	PC(P-20:0/18:3(6Z,9Z,12Z))	C ₄₆ H ₈₆ NO ₇ P	PC
	LMGP01030089	PC(P-20:0/18:3(9Z,12Z,15Z))	$C_{46}H_{86}NO_7P$	PC
	LMGP01030131	PC(P-18:0/20:3(5Z,8Z,11Z))	$C_{46}H_{86}NO_7P$	PC
	LMGP01030138	PC(P-18:1(11Z)/20:2(11Z,14Z))	$C_{46}H_{86}NO_7P$	PC
	LMGP01090038	PC(20:2(11Z,14Z)/P-18:1(11Z))	$C_{46}H_{86}NO_7P$	PC
	LMGP01090039	PC(20:2(11Z,14Z)/P-18:1(9Z))	$C_{46}H_{86}NO_7P$	PC
	LMGP01090041	PC(20:3(5Z,8Z,11Z)/P-18:0)	$C_{46}H_{86}NO_7P$	PC
	LMGP01090045	PC(20:3(8Z,11Z,14Z)/P-18:0)	$C_{46}H_{86}NO_7P$	PC
	LMGP01090039	PC(20:2(11Z,14Z)/P-18:1(9Z))	$C_{46}H_{86}NO_7P$	PC
	LMGP01090041	PC(O-18:0/20:4(5E,8E,11E,14E))	C46H86NO7P	PC
	LMGP01090045	PC(O-18:0/20:4(5Z,8Z,11Z,14Z))	C ₄₆ H ₈₆ NO ₇ P	PC

Table S2. Cont.

Note: ¹ Lipidmaps accession numbers. ² PC (phosphatidylcholine) and PE (phosphatidylethanolamine) PL classes. Grey highlighted lines corresponds to the PL species characterized by LC-ESI-MS/MS analyses.

Table S3. LC-ESI-MS relative content determination of PLs observed during MALDI MSI analyses of MCF-7 and MDA-MB-435 tumor sections.

^{MSI} m/z _{obs} ¹	MCF-7		MDA-MB-435	
	$^{\rm LC-MS}$ m/z _{obs} 2	Relative content ³	$^{\rm LC-MS}$ m/z _{obs} 2	Relative content ³
744.49419 ⁴	-	-	-	-
744.55385 ⁵	744.54992	1	744.55021	0.25
744.59019 ⁵	744.59332	1	744.58834	18.95

Note: ¹ Experimental m/z values acquired during MALDI MSI analyses. ² Experimental m/z values acquired during LC-ESI-MS analyses. ³ Relative PL content normalized against MCF-7 PL content. ⁴ Adducted ([M+K]⁺) ion specie presented in Table 3. ⁵ Protonated ([M+H]⁺) ion species presented in Table 3.

Figure S5. Relative intensities of peaks of three couples low-abundant PLs from MCF-7, MDA-MB-231 and MDA-MB-435 samples. (A) PLs with m/z values comprised between m/z 744.45 and 744.60. (B) PLs with m/z values comprised between m/z 796.50 and 796.65. And (C) PLs with m/z values comprised between m/z 790.50 and 790.58. Arrows indicate the patterns of relative intensities directly associated with the aggressive phenotype of each tumor.

Figure S6. pLSA analysis from MALDI MSI data of MCF-7, MDA-MB-231 and MDA-MB-435 samples. Excerpts of the m/z range showing results of pLSA analyses of MCF-7 *versus* MDA-MB-231 (**A**) and MCF-7 *versus* MDA-MB-435 (**B**) for peaks comprised between m/z 744.45 and 744.60, m/z 796.50 and 796.65 and m/z 790.50 and 790.58. Bar plots result from the analysis of two components. Blue bars correspond to PL species localized in MCF-7 tumor section and red bars those ones localized in MDA-MB-231 (**A**) or MDA-MB-435 (**B**) tumor sections, respectively. At these m/z values, the blue and red bar plots have unequal intensity for the two component spectra, indicative of a discriminatory power from the m/z values. Arrows indicate the patterns of relative intensities directly associated with the aggressive phenotype of each tumor [blue for MCF-7 and red for MDA-MB-231 in (**A**) or MDA-MB-435 in (**B**)].

Figure S7. LC-ESI-MS analyses of lipid extracts from MCF-7 (**A**) and MDA-MB-231 (**B**) and MDA-MB-435 tissues (**C**). Upper panels correspond to the base peak chromatograms of the LC-ESI-MS analyses of lipid extracts. Lower panels correspond to XIC ranged from *m/z* values 744.5 to 744.6.

Figure S8. LC-ESI-MS analyses of lipid extracts from MCF-7 and MDA-MB-231 tissues. (A) Total ion currents (TIC) of LC-ESI-MS analyses. Insets show the extract ion currents ranged from m/z values 796 to 797. (B), (C) and (D) Exact mass measurements acquired with the FTICR analyzer. Insets show MS/MS spectra at respective retention times. The visualization of an ion with an m/z value of 184 indicates that the PL is a PC.

Figure S9. Specific localization of minor PL species in MDA-MB-435 tumor sections. Schema of the gradient of minor PL species from the necrotic area to the proliferating tumor region in a section of tumor induced by MDA-MB-435 cells. Dotted lines delineate necrosis "N" and tumor "T" areas.

Figure S10. Localization of PC(18:0/18:2) in MCF7 and MDA-MB-435 tumor sections. MALDI MSI ion images representing the localization of PC(18:0/18:2) (m/z values of 786.6008) in sections of tumor induced by MCF-7 cells (**A**) and MDA-MB-435 (**B**).

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).