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Abstract: A fungal immunomodulatory protein isolated from Flammulina velutipes  

(FIP-fve) has structural similarity to the variable region of the immunoglobulin heavy 

chain. In the present study, the recombinant bioactive FIP-fve protein with a His-tag in  

N-terminal of recombinant protein was expressed in transetta (DE3) at a high level under 

the optimized culturing conditions of 0.2 mM IPTG and 28 °C. The efficiency of the 

purification was improved with additional ultrasonication to the process of lysozyme lysis. 

The yield of the bioactive FIP-fve protein with 97.1% purity reached 29.1 mg/L with a 

large quantity for industrial applications. Enzyme-linked immunosorbent assay showed a 

maximum increase in interleukin-2 (IL-2) and gamma interferon (IFN-γ) for the mice 

serum group of 5 mg/kg body mass (p < 0.01) with three doses of His-FIP-fve. However, 

the production of IL-4 had no apparent difference compared to the control.  
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Abbreviations: Ig, Immunoglobin; FIP, Fungal immunomodulatory protein; FIP-fve, FIP isolated 

from Flammulina velutipes; ELISA, Enzyme-linked immunosorbent assay; IL-2, Interleukin-2;  

IL-4, Interleukin-4; IFN-γ, Interferon gamma; IPTG, Isopropyl β-d-thiogalactoside. 

1. Introduction 

The first fungal immunomodulatory protein (FIP) was isolated from Ganoderma lucidum named 

LZ-8 or FIP-glu [1]. Since then, another six FIPs have been discovered in recent years with a primary 

homologous sequence of 60% to 70%, including FIP-fve from Flammulina velutipes [2], FIP-gts from 

G. tsugae [3], FIP-vvo from Volvariella volvacea [4], FIP-gja from G. japoncium (GenBank: 

AY987805), FIP-gmi from G. microsporum [5], and FIP-gsi from G. sinense [6], respectively. The 

natural FIPs were presented in dimerization form which showed a dumb bell-shaped structure [7] and 

the molecular structure of FIP is similar to a heavy-chain variable region of immunoglobulin (Ig) [7]. 

Ig is a group of proteins mainly existing in blood, tissue, and exocrine secretions that are responsible 

for the humoral immunity of mammals [8,9]. Ig plays an essential role in the body’s immune  

response. Given FIPs’ similar chain structure with Ig [10], FIPs are capable of inhibiting allergic  

reactions [1,2,11,12], promoting cytokines syntheses [13–16], activating the immune system [2,11,17], 

and presenting no cytotoxicity in vitro [15,18] and so on. As a small-molecular-weight protein, FIPs have 

the advantage of easy modification and potential use in wide-ranging industrial applications [19,20]. 

Flammulina velutipes belongs to Kingdom Fungi and is widely distributed in China, Russia, 

Siberia, Europe, North America, Australia, and so on [2]. According to previous experiments, FIP 

isolated from F. velutipes (FIP-fve), as a pure protein (contains 114 amino acids and the molecular 

weight is 12,704 Da) without carbohydrate [2], can be used to develop novel protein vaccines [14,15]. 

FIP-fve boosts the immune system, inhibits allergy formation [11,21], and stimulates the human 

peripheral blood lymphocytes to produce the cytokines IFN-γ and IL-2 [13,22,23] in vitro. The oral 

FIP-fve may produce an anti-inflammatory effect on OVA-induced airway inflammations, and FIP-fve 

may be an alternative therapy for allergic diseases and autoimmune disorder diseases [15,16]. 

Although FIP-fve affects the immune system similar to Ig, FIP-fve is extracted in extremely low levels 

from fruit bodies [2,15]. Hitherto, the expression of recombinant FIP-fve in Escherichia coli [11] yeast 

expression system, baculovirus system in insect cell lines [24] has been reported, however, it has not 

been reported that FIPs were applied to clinical trials or treatment. Hence, the study on large-scale 

production and activities of the product in vivo are still need to be carried out. Thus, in-depth studies of 

the recombinant E. coli for efficient expression have important significance and application value. 

In this study, the optimum expression and purification conditions for obtaining soluble fusion 

protein (His-FIP-fve) from E. coli were investigated. The yield of the recombinant protein was found 

to reach 29.1 mg/L culture, which is a sufficiently large quantity for industrial applications.  

The immunoactivity of the purified His-FIP-fve was also tested in vivo. 
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2. Results and Discussion 

2.1. Expression and Purification of His-FIP-Fve Fusion Protein in E. coli  

To produce FIP-fve protein for the bioactivity assay, FIP-fve gene was cloned into expression 

vector pET30a and then E. coli (DE3) cells were transformed with the resulting pET30a-FIP-fve. 

Recombinant protein expression was induced with 1 mM IPTG. Lanes 1–4 showed the production of 

His-FIP-fve fusion protein for different induction time at 0, 1.5, 3.0, and 4.5 h respectively (Figure 1). 

The result indicated that His-FIP-fve fusion protein had about 18.8 kDa (arrow in Figure 1).  

The recombinant protein clearly increased at the induction time of 1.5 h, and the expression level of  

His-FIP-fve fusion protein increased with increased induction time from 0 h to 4.5 h. 

Figure 1. Duration of the expression of His-FIP-fve fusion protein. Lysates were  

obtained from E. coli (DE3) cells with pET30a-FIP-fve induced by 1 mM Isopropyl  

β-d-thiogalactoside (IPTG) and were analyzed on 12% SDS-PAGE. Lane M was a 

molecular weight marker. Lanes 1 to 4 were the samples induced for 0, 1.5, 3.0, and 4.5 h, 

respectively. The arrow indicated the target protein His-FIP-fve. 10 μL sample was used in 

SDS-PAGE after centrifugation. 

 

To produce a large amount of His-FIP-fve protein for industrial applications, its high expression 

levels were sought in E. coli. The effects of the IPTG concentration (0.2, 0.5, and 1.0 mM) and culture 

temperatures (21, 28, and 37 °C) on the bioactive protein quantity were examined. The production of 

soluble protein slightly decreased with increased IPTG concentration at 21 °C and 37 °C. For 

incubation at 28 °C, the production of His-FIP-fve was improved no significant effect on the IPTG 

concentration (Figure 2D). These results showed that 0.2–1.0 mM IPTG concentration did not 

significantly affect the soluble His-FIP-fve protein expression level (Figure 2). His-FIP-fve was 

produced within a wide temperature range (21, 28, and 37 °C); however, lower and higher 

temperatures were inappropriate for maximizing production, showing that the optimum temperature 

for the soluble protein was at 28 °C. 



Int. J. Mol. Sci. 2013, 14 2233 

 

 

Figure 2. Effects of induction temperatures and IPTG concentrations on the soluble 

expression of His-FIP-fve at different temperatures: (A) 21 °C; (B) 28 °C; and (C) 37 °C 

with lane 1, molecular weight marker; lane 2, 0.2 mM IPTG; lane 3, 0.5 mM IPTG; lane 4, 

1.0 mM IPTG. (D) Plots of (A), (B), and (C) after digitalization using Image J  

(NIH, USA). The different consecutive elution fractions were mixed and then were used 

for SDS-PAGE gel analysis. 

  

To determine the optimum purification conditions, the E. coli lysis method was controlled to 

improve the lysis rate of E. coli and reduce the solution viscosity. Consequently, the protein yield 

increased. For cell lysis, the conditions for lysozyme lysis and ultrasonication were examined by 

microscopy and protein electrophoresis. The cell lysis rate of ultrasonication after lysozyme lysis 

(Figure 3, lane 1) was higher than that of lysozyme lysis (Figure 3, lane 2).  

Using the optimized expression procedure, batch purification was applied to obtain a large amount 

of His-FIP-fve protein. Exactly, 5.379 g (wet weight) of cells were collected by centrifuging 1 L of 

cultures. Then the obtained samples were lysed by 80 mL of lysozyme buffer with additional 

ultrasonication. Furthermore, the obtained soluble His-FIP-fve proteins were purified through a 

His•Bind resin chromatography column with washing buffer and 30 mL of elution buffer. 

Subsequently, the His-FIP-fve protein solution was desalted by Sephadex G25 and treated by dialysis 

in PBS at 4 °C. Finally, 62.5 mL of His-FIP-fve protein solution was obtained and analyzed by  

Tris-Tricine SDS-PAGE (Figure 4). About 29.1 mg of His-FIP-fve protein (97.1% purity) obtained 

from 1 L of cultures was analyzed using a BCA Protein Assay Kit (Pierce) (Table 1 and Figure 4B). 

This large quantity of His-FIP-fve proteins (~5.4 mg of pure protein per gram of E. coli cell paste) was 

sufficient to analyze its bioactivities and also for industrial applications. Subsequently, we expressed 

and purified GST-FIP-fve protein, and its yield was about 5–6 mg of pure protein from 1 L of cultures 
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with the same methods (data not shown). Compared with a GST fusion protein expression system and 

expression of FIP-fve mainly as inclusion bodies (insoluble) previous in E. coli by us [20], the FIP-fve 

recombinant proteins produced in E. coli reached a high quantity and soluble, which can be convenient 

for its future industrial applications.  

Figure 3. Purification optimization of His-FIP-fve fusion protein. The optimized lysis 

method of recombinant E. coli electrophoresed by 12% SDS-PAGE; ultrasonic lysis after 

lysozyme (Son+Lys) and lysozyme (Lys) methods of E. coli with a molecular weight 

marker. A sample of 3.75 μL of lysis plus 1.25 μL 4× Protein Gel Loading Buffer was used 

in SDS-PAGE. 

 

Figure 4. Scale-up of the expression of His-FIP-fve fusion protein. (A) His-FIP-fve 

eletrophoresised in line 1 by 15% SDS-PAGE, and (B) Densitometry of line 1 containing 

the purified His-FIP-fve fusion protein. The large peak corresponds to the purified protein 

representing 97.1%. 
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Table 1. Summary of the purification process. a The purity of His-FIP-fve was assessed by 

densitometry analysis of Tris-Tricine SDS-PAGE. Total protein mass was estimated using 

a protein assay kit (Pierce) with BSA as a standard. One liter of culture media was used to 

purify His-Fip-fve. 

Fraction sample Soluble protein 

Wet weight of cells  
Soluble total protein 
Purified His-FIP-fve 

Purity a (%) 

5.379 g 
150 mg 
29.1 mg 

97.1 

Compared with other expression platforms, the E. coli expression system is a useful benchmark 

because of its advantages, such as short growth cycle and low cost [25]. Although there are some 

disadvantages using E. coli as the expression host for production of recombinant protein for research 

and clinical applicaton, e.g., post-translational modifications, lipopolysaccharide (LPS) contamination, 

yet because FIP-fve is a pure protein with a molecular weight of 12.7 kDa and without  

carbohydrate [2], it could be produced in E. coli. However, improving the expression level and 

effective purification are important. In this study, bioactive FIP-fve production in E. coli reached  

29.1 mg/L, which was six times higher than the result of Ko in 1997 [11]. 

2.2. Bioactivity Assay of His-FIP-Fve 

To verify whether His-FIP-fve possess the immunomodulatory activity of inducing cytokine 

secretion in vivo, the levels of three cytokines were measured by ELISA. Table 2 indicated the immune 

effects of His-FIP-fve on the serum cytokines IL-2, IL-4, and INF-γ in vivo. IL-2 was higher in the  

5 mg/kg body mass group than in the control group (p < 0.01). The 5 mg/kg body mass group had a 

higher serum IFN-γ than in the control group (p < 0.01). However, for IL-4, no statistical difference 

was observed among all groups (p > 0.05). Overall, His-FIP-fve induced the production of serum IL-2 

and IFN-γ, but did not change the level of IL-4. This result was similar to that for natural FIP-fve in 

increasing the IL-2 and IFN-γ levels in vivo [22], suggesting that the recombinant His-FIP-fve proteins 

were bioactive in terms of immunomodulatory activity. 

Cytokines have an immunomodulatory function. T helper (Th) cells, including Th1 and Th2 

subsets, are important immune adjustment cells. The two cell types have antagonistic functions [26]. 

Th1 can secrete IFN-γ, IL-2, etc., and inhibit the proliferation of Th2; Th1 belongs to the cellular 

immune response group. Meanwhile, Th2 can secrete IL-4, etc., as well as promote the proliferation 

and differentiation of B cells; Th2 belongs to the B cell-mediated humoral immune response  

group [27]. Bioactivity assay showed that the immune activity of His-FIP-fve may function in the 

stimulation of Th1 cell function by maintaining the balance between Th1 and Th2 cells and inducing 

the body to maintain normal immune function, which are the key points to the alleviation of disease 

symptoms and treatment of some diseases [28]. 
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Table 2. Effects of His-FIP-fve on the serum cytokines IL-2, IL-4, and IFN-γ in mice  

in vivo (n = 8). Mice were injected (i.p.) with sterile saline as negative control and  

His-FIP-fve by 5, 10, and 20 mg/kg body mass, and continuously treated for 3 d at 0.5 mL 

once a day. After 1 h during the last injection, blood was collected to obtain sera. IL-2,  

IL-4, and IFN-γ were detected by ELISA as described in the Materials and methods 

section. The levels of IL-2 (line A), IL-4 (line B), and IFN-γ (line C) were shown. p < 0.01 

was considered an extremely significant difference and p < 0.05 was considered significant 

under the t-test. ** p < 0.01, * p < 0.05 (compared with the control). 

Cytokines Sterile saline 
His-FIP-fve (mg/kg body mass) 

5 10 20 

A IL-2 (pg/mL) 16.761 ± 2.049 
37.235 ± 7.133 
10.557 ± 1.402 

20.560 ± 2.607 * 19.956 ± 3.301 * 17.662 ± 3.421 
B IL-4 (pg/mL) 36.567 ± 10.156 40.675 ± 9.988 39.692 ± 9.978 
C IFN-γ (pg/mL) 15.917 ± 3.872 * 12.362 ± 2.008 * 12.503 ± 1.893 * 

Previous experiments have detected the bioactivity of recombinant proteins expressed in E. coli, 

yeast, or insect cells to determine their cytokine production ability in vitro [24,29,30]. The methods 

include culturing mouse splenocytes and adding recombinant proteins in vitro. The test in vitro is a 

preliminary way of the recombinant protein activity. However, our experiments were performed  

in vivo by injecting His-FIP-fve (i.p.) based on the large amount of recombinant FIP-fve. The immune 

index would be considered accurately with both experiments in vivo and in vitro, and we are 

suggesting the in vitro invetigation for the future work. 

A previous study had showed that natural FIP-fve stimulated the proliferation of human peripheral 

blood mononuclear cells (PBMCs) in vitro with increased transcripts of IL-2 and IFN-γ of spleen cells 

of mice [2], and FIP-fve stimulates interferon gamma production [13,23], and intraperitoneal (i.p.) 

injection of FIP-fve appeared to have modified immune responses in mice and have inhibitive 

anaphylactic responses [22]. Natural FIP-fve has been demonstrated to skew the response to Th1 

cytokine production by oral [15,22]. Due to the complicated technology and high cost, the yield of 

natural FIP-fve was very low (87.5–165 mg/kg) [2,24], thus, selecting a suitable expression system is 

the premise of the application of FIP-fve. While the FIP-fve expressed in insect cells can also induce 

the expression of IL-2 of mouse spleen cells [24], yet it’s yield was low (6 mg/L) [25]. Meanwhile, 

recombinant GST-FIP-fve from E. coli with the yield (5 mg/L) only has 50% activity of natural  

FIP-fve [2,11], whereas we get 29.1 mg recombinant FIP-fve from 1L culture of E. coli Transetta 

(DE3), and the obtained His-FIP-fve increased the secretion of IL-2 and IFN-γ at suitable 

concentrations, which correlated with the findings of Wang P.H. and his colleagues in activities of 

nature FIP-fve in increasing the IFN-γ levels and not increasing the IL-4 levels in vivo [22]. 

3. Experimental Section  

3.1. Materials 

The competent cells were E. coli cells of Transetta (DE3) (CD801, TransGen Biotech, China).  

The expression vector, pET30a(+) (5422 bp), was purchased from Amersham Pharmacia Biotech. 
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3.2. Construction of Expression Plasmids 

The FIP-fve gene-coding region (342 bp) was prepared by RT-PCR using a forward primer  

(5'-AGGATCCATGTCCGCCACGTCGCTCACCTT CCAG-3'; BamHI site underlined) and a reverse 

primer (5'-GGAATTCTTAAGTCTTCTTCC ACTCAGCGA-3'; EcoRI site underlined).  

The PCR product was gel purified and then ligated into pET30a (+) at the BamHI (R602A, Promega) 

and EcoRI (R6011, Promega) sites. The obtained plasmid was identified by DNA sequencing and 

named pET30a-FIP-fve. 

3.3. Expression and Purification of His-FIP-Fve Fusion Protein 

3.3.1. Time Course of the Expression 

The converted E. coli cells of DE3 cells with pET30a-FIP-fve plasmid were incubated and induced 

with 1 mM isopropyl β-D-thiogalactoside (IPTG; TaKaRa) upon reaching 0.8 OD600. The applied time 

course was chosen at 1.5, 3.0, and 4.5 h after IPTG induction at 30°C, meanwhile, the non-induced 

sample was acquired at 4.5 h. One milliliter culture was centrifugated and the pellet were suspended 

with 75 μL distilled water and added 4× Protein Gel Loading Buffer (R 40678, ROTRN, China), 

boiled at 100 °C for 5 min, and 10 μL sample was used in SDS-PAGE after centrifugation. 

3.3.2. Optimization Conditions 

The induction temperature was controlled at 21, 28, and 37 °C with a 5 mL culture volume.  

The IPTG concentration was controlled at 0.2, 0.5, and 1.0 mM. To determine the optimal lysis 

methods of E. coli cells, two different lysis processes (lysozyme lysis and ultrasonic lysis) were 

compared. Lysozyme lysis was done under the concentration of 0.5 mg/mL lysozyme. To obtain  

80 mL of cell lysis solution, the ultrasonic waves should be powered at 200 W every 5 s for 20 min  

on the ice. 

3.3.3. Large Scale Purification 

After optimizing the purification condition, 1 L of cultured cells was collected by centrifugation. 

The obtained cells were lysed by lysozyme and ultrasonication, and then centrifuged. The samples 

were purified through a His•Bind resin chromatography column with binding buffer (500 mM NaCl, 

20 mM Tris-HCl, and 10mM imidazole; pH 7.9), washing buffer (500 mM NaCl, 20 mM Tris-HCl, 

and 50 mM imidazole; pH 7.9) and with 30 mL of elution buffer (500 mM NaCl, 20 mM Tris-HCl, 

and 500 mM imidazole; pH 7.9). The samples were further purified by Sephadex G25 (eluted with  

20 mM phosphate-buffered saline, PBS; pH 7.8) and treated by dialysis in 20 mM PBS (pH 7.8)  

at 4 °C. 

3.3.4. Electrophoresis 

The protein samples were quantified using a BCA Protein Assay Kit (Pierce) and BSA as a standard 

sample to determine the protein content. The purified recombinant FIP-fve samples were analyzed by 

SDS-PAGE with molecular weight marker (80, 60, 40, 30, 20, 12 kDa, TransGen Biotect, China). 
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3.4. Bioactivity Assay of His-FIP-Fve in Vivo 

A total of 32 Kunming strain mice (8–10 week old, 20 ± 2 g body weight) were randomly divided 

into four groups (n = 8), each group was with equal numbers of male and female. Three of them were 

intraperitoneally (i.p.) injected with His-FIP-fve at 5, 10, and 20 mg/kg body mass once a day for  

3 days, respectively. The negative control group was treated with sterile saline. All mice were fed and 

maintained in specific pathogen-free conditions according to the guidelines of Care and Use of 

Laboratory Animals published by the China National Institute of Health. They were provided with  

12 h of daylight lamp daily. About 0.8 mL blood from the inner canthus of each mouse was collected 

within 1 h of the last injection, dried for 2 h at room temperature, centrifuged at 3000 rpm/min for  

10 min to obtain sera, and stored at −20 °C until use. 

To confirm the bioactivity of His-FIP-fve, the cytokine (IFN-γ, IL-2, and IL-4) levels were detected 

using commercial ELISA kits, i.e., # E0900004 for mouse- IFN-γ, # E0900141 for mouse IL-2, and  

# E0900003 for mouse IL-4 (Biosource International, Camarillo, CA, USA) according to the 

manufacturer’s protocol. A microtiter plate was coated with a monoclonal antibody specific for IFN-γ, 

IL-2 or IL-4. The cytokines found in the samples were bound by the immobilized antibody.  

After several washes to remove unbound proteins, an enzyme-linked polyclonal antibody which binds 

IFN-γ, IL-2 or IL-4 was added to the wells. The substrate solution was added after protein washing. 

Absorbance was measured at 450 nm using an ELISA reader (ELX800; Bio-Tek, Winooski, VT, 

USA). For every ELISA test, 100 μL sera sample (undiluted) was used. The concentrations of each 

cytokine in the samples were calculated from the corresponding standard curve and expressed as 

picogram per milliliter. Data were presented as the mean ± standard deviation. Statistical significance 

was assessed by one-way ANOVA followed by Tukey's multiple comparison tests. p < 0.05 was 

considered as a significant difference. 

4. Conclusions  

In conclusion, we successfully expressed the His-FIP-fve fusion protein in E. coli Transetta (DE3). 

The high soluble protein expression conditions for His-FIP-fve were optimized as 0.2 mM IPTG 

induction at 28 °C for 24 h. After the optimized lysis method, a large amount of His-FIP-fve was 

purified up to 29.1 mg with 97.1% purity from 1 L of cultured cells. The obtained His-FIP-fve 

increased the secretion of IL-2 and IFN-γ at suitable concentrations in vivo, suggesting its bioactivity. 
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