
Int. J. Mol. Sci. 2013, 14, 2774-2787; doi:10.3390/ijms14022774 

 
International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

The Interaction of Adrenomedullin and Macrophages Induces 
Ovarian Cancer Cell Migration via Activation of RhoA  
Signaling Pathway 

Xiaoyan Pang 1, Hai Shang 2, Boya Deng 1, Fang Wen 1,* and Yi Zhang 1,* 

1 Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang 

110001, Liaoning, China; E-Mails: pxy-2011@hotmail.com (X.P.); frozenroses@yahoo.cn (B.D.)  
2 Department of Hepatobiliary Surgery, Liaoning Tumor Hospital, Shenyang 110042, Liaoning, China; 

E-Mail: fc325545@sina.com  

* Authors to whom correspondence should be addressed; E-Mails: wenfang64@hotmail.com (F.W.); 

syzi960@yahoo.com (Y.Z.); Tel./Fax: +86-24-8328-3510. 

Received: 13 November 2012; in revised form: 6 January 2013 / Accepted: 11 January 2013 / 

Published: 29 January 2013 

 

Abstract: Tumor-associated macrophages (TAMs) are correlated with poor prognosis in 

many human cancers; however, the mechanism by which TAMs facilitate ovarian cancer 

cell migration and invasion remains unknown. This study was aimed to examine the function 

of adrenomedullin (ADM) in macrophage polarization and their further effects on the 

migration of ovarian cancer cells. Exogenous ADM antagonist and small interfering RNA 

(siRNA) specific for ADM expression were treated to macrophages and EOC cell line 

HO8910, respectively. Then macrophages were cocultured with HO8910 cells without direct 

contact. Flow cytometry, Western blot and real-time PCR were used to detect macrophage 

phenotype and cytokine production. The migration ability and cytoskeleton rearrangement 

of ovarian cancer cells were determined by Transwell migration assay and phalloidin 

staining. Western blot was performed to evaluate the activity status of signaling molecules in 

the process of ovarian cancer cell migration. The results showed that ADM induced 

macrophage phenotype and cytokine production similar to TAMs. Macrophages polarized 

by ADM promoted the migration and cytoskeleton rearrangement of HO8910 cells. The 

expression of RhoA and its downstream effector, cofilin, were upregulated in 

macrophage-induced migration of HO8910 cells. In conclusion, ADM could polarize 

macrophages similar to TAMs, and then polarized macrophages promote the migration of 

ovarian cancer cells via activation of RhoA signaling pathway in vitro.  
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1. Introduction 

Epithelial ovarian cancer (EOC) is the most leading cause of death in women with gynecologic 

malignancies worldwide [1]. Most patients are diagnosed at an advanced stage due to occult onset and 

easily metastasis. However, the mechanism underlying the aggressiveness of EOC remains largely 

unclear. Accumulating evidences suggest that the progression of EOC is highly influenced by both the 

host immune response and inflammatory cells within the tumor microenvironment. Among 

inflammatory cells, macrophages are believed to play a pivotal role.  

Macrophages have functional plasticity and can change their functional profiles repeatedly in 

response to environmental changes [2]. When exposed to lipopolysaccharides (LPS) and interferon-γ 

(IFN-γ), they are polarized to classical activated macrophages (M1) and have antitumor activities. In 

stark contrast, when encountering factors, like IL-4, IL-10 and IL-13, they are polarized to alternatively 

activated macrophages (M2) and possess pro-tumor abilities [3–5]. Compared with M1, M2 

macrophages produce low amounts of inducible NOS (iNOS), tumor necrosis factor-α (TNF-α) and 

IL-1, but a higher amount of arginase 1 (Arg-1), IL-10 and express M2-specific surface markers, such as 

CD206 [6]. Tumor-associated macrophages (TAMs), referring to the macrophages residing in the tumor 

microenvironment, are polarized M2 macrophages. TAMs can promote tumor growth, angiogenesis, 

invasion and metastasis.  

Adrenomedullin (ADM) is a potent vasodilator peptide originally isolated from human 

pheochromocytoma [7]. ADM expression was observed in various kinds of tumors, including breast, 

lung, colon and ovarian cancer [8]. It is a multifunctional regulatory peptide that is involved in 

angiogenesis, cell proliferation, apoptosis survival and immune escape [9]. Our previous study 

demonstrated that ADM contributed to the progression of EOC [10]. Thus, we supposed that ADM 

might play an important role in EOC invasion and metastasis. Subsequently, a recent study reported that 

TAMs enhanced angiogenesis and melanoma growth via ADM [11]. However, the relationship between 

TAMs and ADM in EOC has not been determined. 

In the present study, we found that tumor-derived ADM could polarize macrophages similar to 

TAMs, and then polarized macrophages promote the migration of ovarian cancer cells via activation of 

RhoA signaling pathway in vitro. 

2. Results and Discussion 

2.1. Mice Peritoneal Macrophages Isolated and Determined 

Mice were sacrificed, and peritoneal macrophages were isolated and cultured (Figure 1A). Flow 

cytometry was used to determine the surface marker of the macrophages. As shown in Figure 1B, 

macrophages showed a significant induction for CD 69 (marker for macrophages differentiation). 
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Figure 1. Mice peritoneal macrophage culture and determination of surface marker.  

(A) Mice peritoneal macrophages were isolated and cultured. Original magnification is 100× 

(left) or 400× (right); (B) Flow cytometry showed a significant induction for CD 69  

in macrophages. 

 

2.2. ADM Induced Macrophage Phenotype and Cytokine Production Similar to TAMs 

To examine the effect of tumor-derived ADM on macrophage polarization, we constructed a stable 

HO8910 cell line with ADM knockdown (Figure 2) or pretreated macrophages with ADM22-52, the 

antagonist of ADM, to block the function of ADM in macrophages. We then used macrophages 

pretreated with or without ADM22-52 to coculture with normal or ADM knockdown HO8910 cells for 

24 h in a noncontact system. After coculture, the macrophages were harvested and assayed for 

phenotype and cytokine production. High expression of CD206 reflects the tendency of macrophage 

skewing toward M2 phenotype [6]. CD68 was expressed on both M1 and M2 macrophages. We found 

that the expression of CD206 was significantly increased in macrophages after coculture with normal 

HO8910 cells compared with the control, whereas a noticeable reduction of CD206 expression was 

detected in the presence of ADM22-52 or knockdown of ADM in HO8910 cells (Figure 3A,B). To 

explore the secretion effect of ADM on macrophages, Arg-1, the marker for M2 macrophages, was also 

examined in macrophages after coculture with normal HO8910 cells. The results showed that the 

expression of Arg-1 was greatly increased compared with the control, and the increments were 

abrogated in the presence of ADM22-52 or knockdown of ADM in HO8910 cells (Figure 3C). To 

further demonstrate macrophage polarization, real-time PCR was used to detect cytokines and 

chemokines in macrophages after coculture with normal HO8910 cells (Figure 3D). We found that the 

mRNA levels of IL-10 and CCL18 were obviously increased compared with the control, whereas 

ADM22-52 or knockdown of ADM in HO8910 cells attenuated the effects. We also observed lower 

mRNA level of CCR2 compared with the control, which was significant increased in the presence of 

ADM22-52 or knockdown of ADM in HO8910 cells. These results clearly supported that tumor-derived 

ADM could induce macrophage phenotype and cytokine production similar to TAMs. 
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Figure 2. Knockdown of adrenomedullin (ADM) expression in HO8910 cells with  

specific shRNA. (A) The mRNA level of ADM was quantified by real-time Polymerase 

Chain Reaction (PCR); (B) The protein level of ADM was measured by Western blot.  

The relative expression of ADM was normalized to glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH). Data are presented as the mean ± SD of triplicate experiments.  

** p < 0.01 vs. control. 

 

Figure 3. ADM induced macrophage phenotype and cytokine production similar to 

tumor-associated macrophages (TAMs). Macrophages were treated with or without 

ADM22-52, the antagonist of ADM (1 nM) for 1 h, then cocultured with normal or ADM 

knockdown HO8910 cells for 24 h. (A) Macrophages were cocultured with normal HO8910 

cells for 24 h in the presence of ADM22-52 or knockdown of ADM, and the expression of 

CD206 was assessed by flow cytometry; (B) The expression of CD206 was significantly 

decreased in the presence of ADM22-52 or knockdown of ADM in HO8910 cells. Data are 

presented as the mean ± SD of triplicate experiments. *** p < 0.001 vs. coculture with 

normal HO8910 cells. Panels: 1, control; 2, coculture with normal HO8910 cells; 3, 

coculture with ADM shRNA cells; 4, pretreatment with ADM22-52 and then coculture with 

normal HO8910 cells; (C) Macrophages were cocultured with normal HO8910 cells for 24 h 

in the presence of ADM22-52 or knockdown of ADM, and the expression of Arg-1 was 

analyzed using Western blot. Lanes: 1, control; 2, coculture with normal HO8910 cells; 3, 

coculture with no-silence shRNA cells; 4, coculture with ADM shRNA cells; 5, pretreatment 

with ADM22-52 and then coculture with normal HO8910 cells; (D) The mRNA levels of 

IL-10, CCL18 and CCR2 in cocultured macrophages were examined by real-time PCR in the 

presence of ADM22-52 or knockdown of ADM in HO8910 cells. The relative expression 

levels of target genes were normalized to GAPDH. Data are presented as the mean ± SD of 

triplicate experiments. * p < 0.05, *** p < 0.001 between indicated pairs. 
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Figure 3. Cont. 

 

2.3. Macrophages Polarized by ADM Promoted the HO8910 Cell Migration 

To investigate the effect of macrophages polarized by ADM on ovarian cancer cells, we first assessed 

the migration ability of normal HO8910 cells after coculture with macrophages, as described in the 

Methods. The results showed that the migrated cells were obviously increased compared with the 

control, whereas pretreatment macrophages with ADM22-52 attenuated the effect (Figure 4A,B). We 

also found that after coculture with macrophages, ADM knockdown led to significantly decreased 

migrated cells compared with normal HO8910 cells, whereas knockdown of ADM in HO8910 cells only 

showed no effect compared with normal HO8910 cells (Figure 4C,D). Thus, these results indicated that 

polarized macrophages promoted the HO8910 cell migration. 

Figure 4. Macrophages polarized by ADM promoted the HO8910 cell migration.  

(A) Macrophages were pretreated with ADM22-52 (1 nM) for 1 h and then cocultured with 

normal HO8910 cells for 24 h. The migration ability of HO8910 cells was assessed by 

Transwell migration assay; (B) The number of migrated cells in cocultured HO8910 cells 

was greatly reduced in the presence of ADM22-52. Data are presented as the mean ± SD of 

triplicate experiments. ***p < 0.001 between indicated pair; (C) ADM knockdown HO8910 

cells were cocultured with macrophages for 24 h, and then the migration ability was 

examined; (D) ADM knockdown significantly decreased the number of migrated cells in 

cocultured HO8910 cells. Data are presented as the mean ± SD of triplicate experiments.  

*** p < 0.001 between indicated pair.  
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Figure 4. Cont. 

 

2.4. Macrophages Polarized by ADM Induced HO8910 Cell Cytoskeleton Rearrangement 

Cell migration is driven by the mechanical force provided by dynamic remodeling of the actin 

cytoskeleton [12]. Consequently, we examined the stress fiber formation and cytoskeleton 

rearrangement in normal cocultured HO8910 cells using phalloidin staining. The results showed that 

stress fiber formation and cytoskeleton rearrangement were significantly increased compared with the 

control, whereas this alteration was abrogated in the presence of ADM22-52 (Figure 5A). Furthermore, 

after coculture with macrophages, downregulation of ADM led to an obviously decreased stress fiber 

formation and cytoskeleton rearrangement compared with normal HO8910 cells, whereas knockdown of 

ADM in HO8910 cells only had no effect compared with normal HO8910 cells (Figure 5B). These 

results suggested that polarized macrophages induced HO8910 cell cytoskeleton rearrangement.  

Figure 5. Macrophages polarized by ADM induced HO8910 cell cytoskeleton 

rearrangement. (A) Macrophages were pretreated with ADM22-52 (1 nM) for 1 h and then 

cocultured with normal HO8910 cells for 24 h. The stress fiber formation and cytoskeleton 

rearrangement of HO8910 cells were significantly reduced in the presence of ADM22-52, 

detected by phalloidin staining; (B) ADM knockdown cells were cocultured with 

macrophages for 24 h, and then the stress fiber formation and cytoskeleton rearrangement 

were examined using phalloidin staining. ADM knockdown obviously decreased the stress 

fiber formation and cytoskeleton rearrangement of cocultured HO8910 cells.  
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2.5. Macrophage-Induced Migration of HO8910 Cells via Activation of RhoA Signaling Pathway 

Strong evidence indicated that cancer cell migration was regulated by several components of the 

intracellular signaling pathways, including RhoA, protein kinase C (PKC), phosphoinositide 3-kinase 

(PI3K) and extracellular regulated protein kinase (ERK) [13–16]. To define the intracellular effectors 

that were responsible for macrophage-induced migration of cancer cells, HO8910 cells were pretreated 

with the specific inhibitors for the signaling molecules mentioned above. We noticed that only 

pretreatment with C3 exoenzyme significantly reduced the migration ability of HO8910 cells  

(Figure 6A,B). In contrast, Gö6983, LY294002 and PD98059 had no such effect. Moreover, the stress 

fiber formation and cytoskeleton rearrangement of HO8910 cells were consistently greatly inhibited by 

pretreatment of C3 exoenzyme, whereas other inhibitors showed no such effect (Figure 6C). It is well 

known that C3 exoenzyme is the specific inhibitor of three isoforms of Rho, RhoA, RhoB and RhoC. 

These results demonstrated that Rho was involved in macrophage-induced migration of HO8910 cells. 

Rho is a molecular switch that depends on the cycling of GDP and GTP-bound form. In its 

GTP-bound form, Rho activates downstream kinases, ROCK and LIMK, in turn. Activated LIMK can 

inactivate cofilin by inducing phosphorylation of cofilin, while non-phosphorylated cofilin can induce 

actin depolymerization [17–19]. To further confirm the inhibition experiments, we detected the activity 

status of signaling molecules in HO8910 cells after coculture with macrophages. Here, we employed 

anti-RhoA antibody to examine the RhoA activation. The results showed that GTP-binding RhoA was 

significantly increased, while the increment was abrogated in the presence of ADM22-52 (Figure 6D). 

We also observed a similar effect in phosphorylated cofilin (Figure 6E). Taken together, these results 

suggested that a signaling cascade downstream of RhoA was involved in macrophage-induced migration 

of HO8910 cells. 

Figure 6. Macrophage-induced migration of HO8910 cells via activation of RhoA signaling 

pathway. (A) HO8910 cells were pretreated with C3 (5 μM), Gö6983 (100 nM), LY294002 

(25 μM) and PD98059 (10 μM) for 1 h and then cocultured with macrophages for 24 h. The 

migration ability of HO8910 cells was examined by Transwell migration assay;  

(B) Pretreatment with C3 significantly reduced the migration ability of HO8910 cells. Data 

are presented as the mean ± SD of triplicate experiments. *** p < 0.001 vs. no inhibitor;  

(C) HO8910 cells were pretreated with inhibitors above for 1 h and then cocultured with 

macrophages for 24 h. The stress fiber formation and cytoskeleton rearrangement were 

detected by phalloidin staining; (D) Macrophages were pretreated with ADM22-52 (1 nM) 

for 1 h and then cocultured with normal HO8910 cells for 24 h. GTP-binding RhoA was 

detected by RhoA activity assay, followed by Western blot; (E) Macrophages were 

pretreated with ADM22-52 (1 nM) for 1 h and then cocultured with normal HO8910 cells for 

24 h. Phosphorylated cofilin was accessed by Western blot.  
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Figure 6. Cont. 

 

2.6. Discussion  

It is now widely accepted that TAMs play a pivotal role in regulating tumor invasion and metastasis. 

Clinical studies showed that extensive TAM infiltration was associated with disease progression and 

poor prognosis in patients with breast, cervix and prostate cancer [20], yet, the precise mechanism by, 

which TAMs facilitate ovarian cancer cells migration and invasion remains unknown. In this study, we 

used a noncontact system described previously for coculture macrophages and ovarian cancer cells. The 

result showed that ADM, derived from ovarian cancer cells, could polarize macrophages similar to 

TAMs, which in turn promote the migration of ovarian cancer cells via activation of the RhoA  

signaling pathway. 

Our previous study demonstrated that ADM is a factor of biological aggressiveness in EOC  

patients [10], which was in agreement with the result shown by Hata K. et al. [21]. However, a recent 

study reported the opposite, namely that high expression level of ADM in primary tumors was related to 

a better outcome. They also observed that, for the vasoactive properties, actually the peptide could 

increase perfusion and chemotherapy sensitivity [22]. The inconsistency might be attributed to the 

differences within the study populations and/or designs, which makes the precise function of ADM in 

this disease more complicated. Accumulating studies suggest that macrophages in the tumor 

microenvironment can be polarized to M2 phenotype [3], whereas the role of ADM in this process 

remains poorly clarified. A recent study showed that TAM-derived ADM contributed to macrophage 

polarization in an autocrine manner to promote angiogenesis and melanoma growth [11]. Interestingly, 

our results revealed that ADM, derived from ovarian cancer cells, correlated with macrophage 

polarization in vitro. Our present study showed that ovarian cancer cells switched phenotype and 

cytokine production of cocultured macrophages similar to TAMs, which exhibited increased expression 

levels of CD206, Arg-1, IL-10 and CCL18 and a lower expression level of CCR2. It is known that 
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CCL18, the most abundant chemokine in human ovarian ascites, was of M2 origin [23]. IL-10 is 

produced by a variety of tumor cells, and TAMs and accounts for CCL18 production by TAMs [3]. 

Downregulation of CCR2 is somewhat consistent with a recent study, showing that TAMs isolated from 

various murine tumors and from human ovarian cancer express low levels of CCR2 in particular [24]. 

Our further data revealed that macrophage polarization was attenuated by ADM antagonist or 

knockdown of ADM in ovarian cancer cells. Consistently, Baranello C. et al. noticed in vitro the 

capability of ADM to stimulate M2 differentiation [22]. We therefore considered that ADM, derived 

from ovarian cancer cells, might be a novel target to inhibit macrophages polarization. 

Using in vitro Transwell migration assay, we demonstrated that polarized macrophages could 

promote ovarian cancer cell migration. Further results showed that the migration ability of cocultured 

ovarian cancer cells was effectively blocked in the presence of ADM antagonist or knockdown of ADM 

in ovarian cancer cells, which was different from our previous studies showing that ADM had an 

autocrine effect on ovarian cancer cells [10]. Interestingly, downregulation of ADM only showed a 

similar migration effect compared with normal ovarian cancer cells, which excluded the possible 

functions of endogenous ADM in ovarian cancer cells. In addition, our results confirmed that ADM 

antagonist or knockdown of ADM in ovarian cancer cells could reverse the effect that polarized 

macrophages induced cytoskeleton rearrangement of ovarian cancer cells. Collectively, these 

observations suggested that ADM, derived from ovarian cancer cells, was a key factor for 

macrophage-induced migration and cytoskeleton rearrangement of ovarian cancer cells. ADM, 

therefore, represented an important link between TAMs and ovarian cancer cell migration. 

Polarized macrophages may activate several signaling pathways to promote cancer cell migration. In 

this study, we found that RhoA signaling was activated in macrophage-induced migration of ovarian 

cancer cells. Based on the observed results, we suppose that the interaction between ADM and 

macrophages might be a signal for RhoA activation, which correlates with the subsequent events, 

including phosphorylation of cofilin, cytoskeleton rearrangement and ovarian cancer cell migration.  

3. Materials and Methods 

3.1. Cell Culture 

Human EOC cell line HO8910 cells were maintained in RPMI 1640 medium supplemented with 10% 

fetal bovine serum (Invitrogen, Carlsbad, CA, USA) and cultured at 37 °C with 5% CO2. 

3.2. Knockdown of ADM Expression with Specific shRNA  

The ADM-specific short hairpin RNA (shRNA) and no-science shRNA were designed and 

constructed in our previously study [25]. The oligonucleotide shRNAs based on the small interfering 

RNA (siRNA) sequences were cloned into pRNA-U6.1/Neo (GeneScript, Piscataway, NJ, USA), 

respectively. The constructs were transfected into HO8910 cells using Lipofectamine 2000 (Invitrogen, 

Carlsbad, CA, USA) and selected by G418 (Invitrogen, Carlsbad, CA, USA). Stable cell clones were 

identified by Western blot.  
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3.3. Western Blot 

The cells were lysed in RIPA buffer (50 mM Tris-HCL, 150 mM NaCl, 1% NP-40, 0.5% 

deoxycholate, 0.1% sodium dodecylsulfate) supplemented with protease inhibitors. Protein 

concentrations were determined using BCA protein assay reagent kit (Pierce Chemical Co., Rockford, 

IL, USA). Equal amounts of protein were separated by SDS-PAGE and transferred to PVDF membrane 

followed by immunoblotting. Membranes were then incubated overnight at 4 °C with primary antibodies 

for ADM (1:800, Sigma, St. Louis, MO, USA), Arg-1 (1:1000, Santa Cruz Biotechnology, Santa Cruz, 

CA, USA), p-cofilin (1:1000, Cell Signaling Technology Inc., Danvers, MA, USA), cofilin (1:1000, Cell 

Signaling Technology Inc., Danvers, MA, USA) and GAPDH (1:1000, Santa Cruz Biotechnology, Santa 

Cruz, CA, USA) and subsequently incubated with horseradish peroxidase-conjugated secondary 

antibodies for 1 h at room temperature. Protein bands were visualized using Amersham ECL plus 

Western Blotting Detection Reagents (GE Healthcare, Diegem, Belgium). Quantification of band 

density was done using Alpha Ease Fc software (Alpha Innotech, CA, USA). 

3.4. Preparation of Peritoneal Macrophages and Culture 

BALB/c female nude mice (6 weeks old, 16.0 ± 2.0 g) were purchased from Institute of Laboratory 

Animal Science, Chinese Academy of Medical Sciences (Beijing, China). Animal experiment was 

approved by the China Medical University Animal Care and Use Committee. Mice were sacrificed and 

peritoneal macrophages were isolated by peritoneal lavage with 3 mL RPMI 1640 without fetal bovine 

serum. The cells were centrifuged at 1000× g for 5 min, resuspended in RPMI 1640 containing 10% fetal 

bovine serum. The cells were seeded into 6-well plates at a concentration of 2 × 105 cells/well. Following 

incubation in a humidified incubator for 24 h at 37 °C with 5% CO2, the cells were washed 3-times with 

culture medium before the specific treatment. 

3.5. Macrophage and HO8910 Cell Coculture  

Normal or ADM knockdown HO8910 cells were cocultured with macrophages without direct 

cell-to-cell contact, as described previously [26]. Briefly, 2 × 105 macrophages were seeded into the 

upper chamber of Transwell (0.4 μm pore, Corning Costar Corp., Cambridge, MA, USA). Macrophages 

were pretreated with 1 nM ADM22-52, the ADM antagonist (Sigma, St. Louis, MO, USA), 1 h before 

coculture. After coculture for 24 h, the macrophages were harvested from the Transwell inserts for 

subsequent experiments.  

3.6. Flow Cytometry  

After blocking, cells were incubated with fluorescein isothiocyanate (FITC)-conjugated rat 

anti-mouse CD68 antibody (1:200, BD Biosciences, Franklin Lakes, NJ, USA), PE-conjugated rat 

anti-mouse CD206 antibody (1:200, BD Biosciences, Franklin Lakes, NJ, USA) and PE-conjugated rat 

anti-mouse CD69 (1:200, BD Biosciences, Franklin Lakes, NJ, USA) for 1 h at 4 °C. After washed twice 

by cold PBS, cells were analyzed by the FACSCalibur flow cytometry system (BD Biosciences, 

Franklin Lakes, NJ, USA). 
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3.7. Real-Time PCR 

Total RNA was isolated with Trizol (Invitrogen, Carlsbad, CA, USA), and the reverse transcriptase 

reaction was carried out using a PrimeScript RT Reagent (Takara, Tokyo, Japan). Real-time PCR was 

performed with SYBR Premix Ex Taq Kit (Takara, Tokyo, Japan) on Applied Biosystems 7500  

(Foster City, CA, USA). The sequences of primers and probes were listed in Table 1. Recombinant 

pGEM T-vectors (Promega, Madison, WI, USA) containing ADM, IL-10, CCL18, CCR2 or GAPDH 

cDNA were constructed and used to establish the standard curves.  

Table 1. The sequences of primers for real-time PCR. 

Gene Sequence 

Homo-ADM Forward: 5'-TCCCCCTATTTTAAGACGTGAATG-3' 
Reverse: 5'-CATGCACACAAA CACACTCACAT-3' 

Homo-GAPDH Forward: 5'-GAAGGTGAAGGTCGGAGT-3' 
Reverse: 5'-GAAAGATGGTGATGGGATTTC-3' 

Mus-IL-10 Forward: 5'-TGAGGCGCTGTCGTCATCGATTTCTCCC-3' 
Reverse: 5'-GGTTGCCAAGCCTTATCGGA-3' 

Mus-CCL18 Forward: 5'-CCCTCCTTGTCCTCGTCTG-3' 
Reverse: 5'-GCTTCAGGTCGCTGATGTATT-3' 

Mus-CCR2 Forward: 5'-TTTGTTTTTGCAGATGATTCAA-3' 
Reverse: 5'-TGCCATCATAAAGGAGCCAT-3' 

Mus-GAPDH Forward: 5'-TGCATCCTGCACCACCAACTGCTTAG-3' 
Reverse: 5'-TTCACCACCATGGAGAAGGC-3' 

3.8. Cell Migration Assay 

The cell migration assay was conducted using 24-well Transwell inserts (8 μm pore, Corning Costar 

Corp., Cambridge, MA, USA). Briefly, 1 × 105 normal or ADM knockdown HO8910 cells were seeded 

into the upper chamber of Transwell and 2 × 105 macrophages were seeded into the lower chamber of 

Transwell. Macrophages were pretreated with 1 nM ADM22-52 1 h before coculture. After coculture for 

24 h, cells on the upper surface of the insert membrane were removed with cotton rods, and the migrated 

cancer cells were fixed and stained with 0.05% crystal violet. The migrated cells were counted at 200× 

magnification in 10 different fields for each insert by microscopy.  

For inhibitor experiments, HO8910 cells cultured in Transwell inserts were pretreated for 1 h with the 

inhibitors, including C3 (5 μM), Gö6983 (100 nM), LY294002 (25 μM) and PD98059 (10 μM) 

(Calbiochem, San Diego, CA, USA), respectively. Then, the culture medium was removed, and the 

inserts were loaded into the lower chamber of Transwell seeded with macrophages to examine the 

migration of cancer cells. 

3.9. Cell Cytoskeleton Staining 

Normal or ADM knockdown HO8910 cells were washed with PBS (pH 7.4) and fixed with 3.7% 

paraformaldehyde for 10 min. Subsequently, cells were washed with PBS and incubated with 0.1% 

Triton X-100 for 5 min. After blocking with 1% bovine serum albumin, cells were then incubated with 
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FITC-phalloidin (Sigma, St. Louis, MO, USA) for 30 min. Images were captured at 1000× 

magnification by Laser confocal microscopy.  

3.10. RhoA Activity Assay 

The activation of RhoA in HO8910 cells cocultured with macrophages was detected by Rho 

Activation Assay Kit (Upstate Biotechnology, Lake Placid, NY, USA), according to the manufacturer’s 

instructions. Activated GTP-RhoA was detected by Western blot using rabbit anti-RhoA antibody 

(Santa Cruz Biotechnology, Santa Cruz, CA, USA). 

3.11. Statistical Analysis 

Data were analyzed with one-way ANOVA or Student t test using SPSS (version 16.0, Chicago, IL, 

USA). All the experiments were repeated at least three times. Data were presented as means ± standard 

deviation (SD). p < 0.05 was considered as statistically significant. 

4. Conclusions  

In summary, this study showed a novel connection among ADM, macrophages and ovarian cancer 

cell migration. Additional studies are needed to better define how these interactions are initiated and 

regulated and to demonstrate whether similar effects play a role in vivo. 
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