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Abstract: Approximately 25,000 ovarian cancers are diagnosed in the U.S. annually, and 

75% are in the advanced stage and largely incurable. There is critical need for early 

detection tools and novel treatments. Proteasomal ubiquitin receptor ADRM1 is a protein 

that is encoded by the ADRM1 gene. Recently, we showed that among 20q13-amplified 

genes in ovarian cancer, ADRM1 overexpression was the most highly correlated with 

amplification and was significantly upregulated with respect to stage, recurrence, and 

metastasis. Its overexpression correlated significantly with shorter time to recurrence and 

overall survival. Array-CGH and microarray expression of ovarian cancer cell lines 

provided evidence consistent with primary tumor data that ADRM1 is a 20q13 

amplification target. Herein, we confirm the ADRM1 amplicon in a second ovarian cancer 

cohort and define a minimally amplified region of 262 KB encompassing seven genes. 

Additionally, using RNAi knock-down of ADRM1 in naturally amplified cell line OAW42 

and overexpression of ADRM1 via transfection in ES2, we show that (1) ADRM1 

overexpression increases proliferation, migration, and growth in soft agar, and  

(2) knock-down of ADRM1 results in apoptosis. Proteomic analysis of cells with ADRM1 
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knock-down reveals dysregulation of proteins including CDK-activating kinase assembly 

factor MAT1. Taken together, the results indicate that amplified ADRM1 is involved in cell 

proliferation, migration and survival in ovarian cancer cells, supporting a role as an 

oncogene and novel therapeutic target for ovarian cancer.  
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1. Introduction 

Ovarian cancer is the leading cause of death from gynecologic malignancy accounting for 

approximately 15,000 deaths in the US annually. The disease is identified primarily in its advanced 

stage when it is largely incurable. New approaches for detection and therapy are warranted.  

Recently, we showed that out of the 214 known genes mapping to 20q13, ADRM1, a gene that 

encodes the proteasomal ubiquitin receptor ADRM1 protein, is the most likely amplification target at 

20q13 in ovarian cancer with over-expression correlating significantly with a shorter time to 

recurrence and death [1]. ADRM1 encodes an integral plasma membrane protein involved in 

development, cell adhesion, deubiquitination, and proteolysis [2–5]. Overexpression of ADRM1 in 

293T adenovirus-transformed human embryonic kidney cells reduces degradation of short-lived 

proteins [5]. It has been shown that ADRM1 binds directly to proteasome-associated deubiquitinating 

enzyme, UCH37, enhancing its isopeptidase activity [4,5]. Deubiquinating proteins in human cancer 

represent a newly emerging class of oncogenes and tumor suppressors [6]. In ADRM1 knock-out mice, 

the most notable phenotype is a defect in oogenesis, suggesting that ADRM1 normally plays a critical 

role in ovarian development [7]. The role ADRM1 plays in ovarian cancer is unknown but it has been 

shown to be upregulated in metastatic tumor cells, and its overexpression increased the propensity of 

cells to engage in cell-cell interactions [2,8]. A study of commonly overexpressed genes in solid 

tumors by microarray analysis shows that ADRM1 is consistently over-expressed in multiple tumor 

types, including lung adenocarcinoma, lung squamous cell carcinoma, bladder, colon, liver, kidney, 

and stomach cancer in addition to ovarian cancer [9], suggesting that this gene may be a potential 

target in many tumor types. Recently, it has been shown that knockdown of ADRM1 suppresses 

proliferation and inhibits colorectal cancer cell migration, survival and tumorigenicity [10,11]. 

We have shown that amplification in ovarian cancer tumors is a major mechanism of up-regulation 

of ADRM1 and that its expression increases with tumor stage and recurrence [1]. Consistent with these 

findings, using array-CGH and RNA expression analysis of ovarian cancer cell lines, we showed the 

amplification and overexpression of ADRM1 in 18% (7/39) of ovarian cancer cell lines [12]. Among 

these, ovarian cancer cell line OAW42 was found to be amplified and had the highest level of 

overexpression and was used as a model for knock-down of expression of ADRM1 in  

ADRM1-amplified ovarian cancer. Ovarian cancer cell line ES2 was not amplified and was used for 

transfection leading to in vitro overexpression of ADRM1. With a new ovarian cancer cohort in 

addition to these two ovarian cancer cell line models, herein we provide additional evidence that 

ADRM1 plays a role in ovarian cancer. 
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2. Results and Discussion 

2.1. Confirmation of ADRM1 Amplification in a Second Ovarian Cancer Cohort 

Array-CGH analysis of 68 primary ovarian carcinomas shows DNA amplification (CGH > 0.7X) of 

ADRM1 in 15% of tumors. Among the amplified tumors was a stage 3, grade 4 Endometrioid Ovarian 

Carcinoma with a 262 kilobase amplification of 1.01X mapping from 60,071,478 kb within the TAF4 

gene on chromosome 20q13 extending to 60,333,397 kb within the LAMA5 gene on 20q13. The 

amplicon includes ADRM1 and six additional genes whose expression levels do not correlate as 

significantly with amplification [1]. There are no gains either proximal or distal to this region on 

chromosome 20q in this tumor (Figure 1). 

Figure 1. Array CGH used to define 262 KB ADRM1 amplicon. Array CGH on DNA 

isolated from ovarian endometrioid stage III, grade 4 tumor reveals a 1.01-fold 

amplification of seven genes including ADRM1 on 20q13.  

 

2.2. ADRM1 Over-Expression Increases Cell Proliferation and Conversely, ADRM1 Knockdown 

Results in Significant Growth Inhibition 

We speculated that the preferential amplification of ADRM1 gives overexpressing ovarian cancer 

cells a proliferative advantage. To determine whether or not this was the case, an ovarian cancer cell 

line that over-expresses ADRM1 (ES2A1) was created by stable transfection of an ADRM1 plasmid 

into ES2 cells. Cell counts in triplicate showed at least a 2.2-fold increase in cell growth on day 7 in 

ES2A1 cells compared to parental ES2 cells (Figure 2). In addition, naturally occurring  
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ADRM1-amplified OAW42 cells treated with RNAi knock-down of ADRM1, resulted in a 1.4-fold 

growth inhibition compared to both parental ADRM1 untreated and non-targeting RNAi treated 

OAW42 cells by day 7 after transfection (Figure 3). Changes in cell cycle were not detected in the 

overexpressing and the knock-down cell line models.  

Figure 2. Cell counts (average of triplicate on 12-well) show a 2.2-fold increase in cell 

growth on day 7 in ADRM1-overexpressing clone ES2A1 compared to parental cell line ES2.  

 

Figure 3. RNAi interference of ADRM1 in OAW42 results in 1.4-fold growth inhibition 

compared to growth of PARENTAL (untreated) OAW42 cells.  

 

2.3. ADRM1 Over-Expression Increases Growth in Soft-Agar and Conversely, Knockdown of ADRM1 

Decreases Growth in Soft Agar 

ADRM1 overexpression correlates with recurrence and metastasis, and therefore, we hypothesized 

that expression levels effect the malignant tendency of the cells. In soft agar experiments,  

colony-forming efficiency in ADRM1-overexpressing ES2A1 cells was 1.9-fold higher than parental 

ES2 cells (Figure 4), and colonies are larger (Figure 5). Conversely, parental OAW42 cells showed a 

2.3-fold increase and non-targeting RNAi-treated OAW42 cells showed a 1.8-fold increase in  

colony-formation efficiency, when compared to ADRM1 RNAi-treated OAW42 cells (Figure 6). 
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Figure 4. ADRM1-overexpressing cells are 1.9-fold more efficient in colony-formation 

(colony number) in soft agar than parental ES2 cells, and produce larger colonies.  

 

Figure 5. Largest ES2 colony in soft agar compared to typical ES2A1 colony in soft agar. 

 

Figure 6. Growth in soft agar (number of colonies) in parental (untreated) compared to 

ADRM1 siRNA-treated and non-targeting siRNA-treated OAW42 shows knock-down of 

ADRM1 inhibits colony formation. 

 

2.4. ADRM1 Knockdown Results in a Decrease in Proliferation and/or Migration Using the  

Scratch Test 

Additionally, a wound-healing assay was performed on ADRM1 knock-down OAW42 cells 

compared to both parental and non-targeting RNAi-treated OAW42 cells. A similar-sized wound was 

detected on the first day for each cell type. By day 3, the ADRM1-knock-down cells were only 50% 
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healed, compared to 75% closing of the scratch wound in the parental and 88% in the non-targeting 

control cells (Figure 7). 

Figure 7. Wound-healing assay using the scratch test shows decrease in proliferation 

and/or migration in ADRM1-silenced OAW42 cells compared to non-targeting-RNAi 

treated OAW42 cells and parental untreated OAW42 cells.  

 

2.5. Knockdown of ADRM1 Increases Apoptosis in Ovarian Cells 

Cell cycle and apoptosis experiments were performed to determine whether ADRM1 expression has 

an effect on cell cycle and whether blocking ADRM1 results in apoptosis. Cell cycle and apoptosis 

were examined by flow cytometry for ADRM1 over expressing clone ES2A1 and parental ES2, and no 

significant differences were detected (data not shown). Additionally, no significant differences in the 

cell cycle were detected between OAW42 cells with knock down of ADRM1 compared to parental 

untreated OAW42, nor dharmafect-treated OAW42 (nor OAW42 treated with either of two  

non-specific RNAi controls) (data not shown). However, there was a 20% increase in apoptosis, both 

early and late apoptosis (AN+/AN+PI+), and a 10% increase in cell death (PI+ cells) in ADRM1  

RNAi-treated OAW42 cells compared to parental untreated OAW42, nor dharmafect-treated OAW42 

and non-specific RNAi controls (Figure 8). 
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Figure 8. Effects on apoptosis of silencing ADRM1 in OAW42 ovarian cells. ADRM1 

siRNA cells shows an increase in the percentage of apoptotic cells (25% Annexin-V 

positive) and dead cells (21% PI+) cells when compared with untreated control  

(8% Annexin-V positive/6% PI+), Dharmafect (13% Annexin-V positive/5% PI+) or 

scramble control siRNA (8% Annexin-V positive/12% PI+). No significant apoptosis or 

death was seen in Dharmafect or control siRNA compared to untreated OAW42 cells.  

 

2.6. ADRM1 Knockdown Results in the Down-Regulation of 15 Proteins Including MNAT1 and the 

Up-Regulation of Seven Proteins 

ADRM1 is a proteasomal ubiquitin receptor and therefore we predicted knock-down of ADRM1 

might affect the regulation of other proteins. Therefore, we performed Difference Gel Electrophoresis 

(DiGE) analysis on OAW42 cells with RNAi knock-down of ADRM1 and compared protein levels to 

parental untreated and non-targeting RNAi-treated OAW42 cells. We identified 15 proteins that were 

down-regulated and 7 proteins that were upregulated when ADRM1 is knocked-down (Table 1). These 

proteins were excised from the gel and identified with mass spectrometry. Three of the proteins were 

confirmed to be differentially expressed by Western Blot Analysis on the original lysates, including 

MNAT1, HAX1, and ST1A3 (Figure 9).  

Table 1. Difference Gel Electrophoresis (DIGE) and mass spectrometry results in 

identification of 15 down-regulated and 7 up-regulated proteins in ADRM1 RNAi-treated 

OAW42 cells compared to untreated parental and non-targeting siRNA-treated OAW42 

cells (not including ADRM1). 

Av. Ratio t-test ID Protein pI MW 

1.43 0.0019 LAMB1_HUMAN Laminin subunit beta-1 4.83 205150 

1.41 0.00043 LAMC1_HUMAN Laminin subunit gamma-1 5.01 183191 

1.28 0.00016 ITAV_HUMAN Integrin alpha-V 5.45 117048 

1.22 0.00011 IDHC_HUMAN Isocitrate dehydrogenase (NADP) cytoplasmic 6.53 46915 

1.21 0.00017 PLST_HUMAN Plastin-3 5.41 71279 

1.21 0.00024 ST1A3_HUMAN Sulfotransferase 1A3/1A4  5.68 34288 

1.2 2.30E−05 DC1I2_HUMAN Cytoplasmic dynein 1 intermediate chain 2 5.08 71811 

−1.17 0.00012 PURA2_HUMAN Adenylosuccinate synthetase isozyme 2 6.13 50465 

−1.18 0.0053 CAPZB_HUMAN F-actin-capping protein subunit beta  5.36 31616 

−1.2 0.00059 CSDE1_HUMAN Cold shock domain-containing protein E1  5.88 89684 

−1.21 0.00021 KAP0_HUMAN 
cAMP-dependent protein kinase type I-alpha 

regulatory subunit  
5.27 43183 
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Table 1. Cont. 

Av. Ratio t-test ID Protein pI MW 

−1.25 8.20E−05 SUGT1_HUMAN Suppressor of G2 allele of SKP1 homolog  5.07 41284 

−1.26 0.0083 HS90B_HUMAN Heat shock protein HSP 90-beta  4.97 83554 

−1.31 0.033 HS90A_HUMAN Heat shock protein HSP 90-alpha 4.94 85006 

−1.33 0.031 H90B3_HUMAN Putative heat shock protein HSP 90-beta-3 4.71 68624 

−1.33 0.0038 H90B3_HUMAN Putative heat shock protein HSP 90-beta-3 4.71 68624 

−1.39 0.0098 HS90A_HUMAN Heat shock protein HSP 90-alpha 4.94 85006 

−1.44 0.0024 H90B3_HUMAN Putative heat shock protein HSP 90-beta-3 4.71 68626 

−1.47 0.00026 H90B3_HUMAN Putative heat shock protein HSP 90-beta-3 4.71 68626 

−1.48 1.50E−06 CALU_HUMAN Calumenin 4.47 37198 

−1.5 0.0053 HAX1_HUMAN HCLS1-associated protein X-1 4.76 31601 

−1.59 1.30E−06 MAT1_HUMAN CDK-activating kinase assembly factor MAT1  5.79 36256 

−1.78 4.00E−07 ADRM1_HUMAN Proteasomal ubiquitin receptor ADRM1  4.96 42412 

−2.11 1.40E−09 ADRM1_HUMAN Proteasomal ubiquitin receptor ADRM1  4.96 42412 

Figure 9. Western Blotting confirms that gene-silencing of ADRM1 results in 

dysregulation of MNAT1 (and HAX1 and ST1A3, not shown). (1) Dharmafect-treated 

OAW42; (2) ADRM1 RNAi-treated OAW42; (3) siRNA non-targeting treated OAW42. 

 

2.7. Discussion 

Recently, we showed that among 225 ovarian samples, ADRM1 is a likely 20q13-amplification 

target in ovarian cancer. It was amplified and overexpressed in 23% of tumors, was significantly 

upregulated with respect to stage, recurrence and metastasis, and its overexpression correlates 

significantly with shorter time to recurrence and overall survival [1]. Consistent with these findings, 

using array-CGH and RNA expression analysis of ovarian cancer cell lines, we showed the 

amplification and overexpression of ADRM1 in 18% (7/39) of ovarian cancer cell lines [12]. Herein, 

CGH analysis of ADRM1 in a separate cohort of 68 primary ovarian carcinomas, including one with 

high level amplification of a 262 kilobase region containing ADRM1, provide additional evidence that 

ADRM1 is the driver of a 20q13 amplicon in ovarian cancer.  

The role of this gene was explored using ADRM1-upregulated and ADRM1 down-regulated in vitro 

models. Evidence suggests that ADRM1 has traits of an oncogene as amplification leads to increased 

cell proliferation and increased colony-formation efficiency. Conversely, down-regulation of ADRM1 
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at the RNA and protein levels results in growth inhibition, decreased colony-formation efficiency, 

slower wound-healing, decreased cell viability, and significantly increased apoptosis. Knock-down of 

ADRM1 resulted in the dysregulation of multiple proteins already known to play a role in cancer. In 

particular, multiple HSP90 fragments were identified. A recent study showed HSP90 inhibition leads 

to simultaneous inactivation of multi-RTKs including EGFR, ERBB2, MET, and AXL and suppresses 

the downstream survival/proliferation signaling in multiple ovarian cancer cell lines [13] making it a 

promising target for ovarian cancer therapy. Drugs targeting heat shock proteins are currently of 

intense focus, and are involved in several clinical trials in ovarian and other cancers [14]. 

SULT1A1 (ST1A3) is up regulated with the knock-down of ADRM1 and encodes a protein that 

catalyzes the sulfate conjugation of many hormones. Variants in ST1A3 are linked to increased 

hormone-dependant ovarian cancer risk [15,16].  

The gene HAX1 was shown in this study to be down regulated with ADRM1 and is known to 

associate with hematopoeitc cell-specific Lyn substrate 1, a substrate of the Src family of tyrosine 

kinases [17]. HAX1 promotes cell survival via inhibition of CASP9, responsible for apoptosis 

execution [18]. Therefore its down regulation may explain the significant increase in apoptosis in 

ADRM1 RNAi-treated ovarian cancer in this study. It also potentiates GNA13-mediated cell migration 

and invasion [19,20], and thus its down regulation may contribute to the decrease in wound healing in 

ADRM1 knock-down cells shown in this study. Thus one can hypothesize that the correlation between 

ADRM1 over expression and recurrence and metastasis shown previously in ovarian cancer may be 

through regulation of HAX1.  

Finally, the most significantly dysregulated gene, MNAT1 (MAT1), stabilizes the cyclin H-CDK7 

complex to form a functional CDK-activating kinase (CAK) enzymatic complex, which in turn activates 

the cyclin-associated kinases CDK1, CDK2, CDK4 and CDK6 by threonine phosphorylation [21]. 

Interestingly, in a mouse model for pancreatic cancer lymphatic metastasis, ADRM1 was one of  

30 genes found to be upregulated in the metastatic cell line compared to the parental cell line [22]. In 

another study, direct RNAi silencing of MNAT1 suppressed the growth of pancreatic cancer cells  

in vitro, and significantly achieved an anti-tumor effect on the subcutaneously transplanted pancreatic 

tumor in vivo [23]. Thus, down regulation of MNAT1 in ADRM1-silenced ovarian cancer may explain 

the similar anti-tumor effects shown in this study. Additionally, MNAT1 has been shown to interact 

with Cyclin H, Estrogen receptor alpha, MTA1, and cyclin-dependent kinase 7, all linked previously to 

ovarian cancer [24–26]. 

3. Experimental Section 

3.1. Tissue 

Sixty-eight primary ovarian carcinomas were snap frozen in liquid nitrogen and prepared for DNA 

and RNA processing as described below. The samples consisted of 38 ovarian endometrioid 

carcinomas (19 stage I and II, 19 stage III and IV), 16 ovarian clear cell carcinomas (5 stage I and II, 

11 stage III and IV), 11 mucinous ovarian tumors (10 stage I, 1 stage III), and 3 mixed ovarian 

epithelial carcinomas (1 stage I, 2 stage III and IV). 
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3.2. Cell Lines 

The cell line OAW42 was obtained from the European Collection of Cell Cultures (Salisbury, UK). 

The cell line ES2 was obtained from the American Type Culture Collection (ATCC, Rockville, MD, 

USA). OAW42 and cells was cultured in DMEM (ATCC) plus 10% FBS. ES2 was cultured in 

McCoy’S 5A medium (ATCC) plus 10% FBS. 

3.3. Array CGH 

Genomic DNA was extracted from frozen cell pellets using the DNeasy Blood and Tissue Kit 

(Qiagen) with the following modifications. Seventy percent ethanol was substituted for Buffer AW2 in 

the final wash, and DNA was eluted in 50 mL of sterile water (Invitrogen, Carlsbad, CA, USA). The 

concentration and quality of the DNA were measured with the NanoDrop Spectrophotometer 

(NanoDrop Technologies, Wilmington, DE, USA) and by electrophoresis in 1% agarose. 

Labeling and hybridization of Agilent 105K oligonucleotide CGH arrays was performed according 

to the manufacturer’s protocol for Human Genome CGH 105A Oligo Microarray Kit (version 5.0; 

Agilent Technologies, Santa Clara, CA, USA, 2008). Labeled tumor and reference DNAs were 

combined, annealed with COT-1 DNA (Invitrogen, Carlsbad, CA, USA) and 10X Blocking Agent 

(Agilent, Santa Clara, CA, USA) for 30 min at 37 °C after boiling, then hybridized to Agilent 105A 

arrays for 40 h at 65 °C according to the manufacturer’s instructions. After hybridization, arrays were 

washed according to Procedure B (which includes an ozone blocking wash), and scanned using an 

Agilent Scanner (G2565BA). Files were extracted using Agilent Feature Extraction software  

(version 9.5; Agilent, Santa Clara, CA, USA, 2007) with the default CGH protocol. Extracted arrays 

with a DRL Spread< 0.3 were included in the analysis.  

CGH Analytics software (version 4.0; Agilent Technologies, Santa Clara, CA, USA, 2008) was 

used for copy number analysis, employing the ADM1 algorithm (Threshold 5), with Fuzzy Zero and 

Centralization corrections to minimize background noise. All map positions were based on the March 

2006 NCBI 36/hg18 genome assembly. A minimum of 3 consecutive probes was required to define a 

region as amplified or deleted. The data was also filtered by requiring a minimum absolute average 

log2 ratio of 0.4. All data was inspected visually using the interactive view. Log2 ratios >0.4 (1.3-fold) 

were considered gain and log2 ratios >1 (2-fold) were considered amplified.  

3.4. Analyses of Cell Proliferation 

ES2 and ES2A1 cells were counted and seeded in triplicate on 12-well plates and were harvested by 

trypsinization on days 1, 3, and 7 and counted using a particle counter (Z1; Beckman Coulter, Inc., 

Brea, CA, USA). OAW42 cells were counted and seeded in triplicate on 6-well plates and treated with 

dharmafect only, dharmafect and ADRM1 siRNA, or dharmafect and si-negative control as explained 

in the RNA interference section. Cells were harvested by trypsinization on days 1, 2, 3, and 6 after 

transfection and counted using a particle counter (Z1; Beckman Coulter, Inc., Brea, CA, USA). 

Standard deviations were calculated from triplicate experiments and shown in bar graphs.  
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3.5. In Vitro Apoptosis and Cell Cycle Assays 

The effects of silencing ADRM1 on apoptosis and cell cycle were evaluated using Annexin V-FITC 

and Propidium Iodide (PI) staining and DAPI DNA staining respectively. Cells were plated evenly and 

allowed to grow to log phase before being transfected with siRNA to knockdown ADRM1 or control. 

Also, a vehicle for transfection Dharmafect was used as a control. For apoptosis analysis supernatant 

was collected, cells were washed with PBS, and trypsin was applied to release cells, which were then 

centrifuged at 2000 rpm for 5 min. Supernatant was aspirated and cells were then suspended in 200 

and allowed to grow to log ained with 10 μL of Annexin V-FITC and 5 min. Supernatant was aspirated 

and cell (Medical & Biological Laboratories, Co., Woburn, MA, USA). The effects of siRNA ADRM1 

on the cell cycle were assessed using Nim-DAPI staining (NPE Systems, Pembroke Pines, FL, USA). 

Flow cytometry was performed using a CellQuanta (Beckman Coulter, Brea, CA, USA) flow machine, 

and the results were analyzed using Flow Jo software (version 7.6.5; Tree Star Inc., Ashland, OR, 

USA, 2011).  

3.6. Soft Agar Assay for Colony Formation 

ES2, ES2A1, OAW42, and siRNA-treated (ADRM1 siRNA and non-targeting control siRNA) 

OAW42 cells were counted and seeded in triplicate to 10,000 cells per well in a 24-well culture dish 

containing 0.4% low-melting agarose over a 0.6% agarose layer, both in culture medium, and 

incubated for 3–5 weeks at 37 °C. Colonies were stained with 10% Neutral Red (Fisher Scientific, 

Waltham, MA, USA) and counted. Standard deviations were calculated from triplicate experiments 

and shown in bar graphs. Experiment was repeated twice to confirm findings. Knock-down of ADRM1 

in cells from siRNA experiments was confirmed by Western Blot with protein lysates isolated seven 

days after seeding.  

3.7. Antibodies and Western Blotting 

Transfected and untransfected cells were isolated two days after transfection. Cells were washed in 

PBS and lysed at 4 °C in lysis buffer. Insoluble material was cleared by centrifugation at 10,000× g for 

10 min. Protein was quantitated using BCA (Pierce Biochemicals, Rockford, IL, USA), resolved by 

SDS-PAGE, and transferred to nitrocellulose membranes (Invitrogen, Carlsbad, CA, USA). ADRM1, 

MNAT1, and ST1A3 were detected, respectively with antibodies to ADRM1 monoclonal 3C6, MNAT1 

anti-MNAT antibody produced in rabbit, ST1A3 anti-SULT1A1 monoclonal 1F8 (Sigma-Aldrich,  

St. Louis, MO, USA). Monoclonal Anti-HAX1 antibody produced in mouse was purchased from  

BD Biosciences, San Jose, CA, USA. Detection was performed using chemifluorescent reagent 

(SuperSignal West Pico Chemiluminescent Substrate, Thermo Scientific, Rockford, IL, USA). 

Antialpha-tubulin mouse antibody (Calbiochem, San Diego, CA, USA) 0.1 μg/mL was used as a 

loading control. 

3.8. RNA Interference 

Four interfering RNAs specific for ADRM1 were purchased from Dharmacon (ThermoFisher 

Scientific, Lafayette, CO, USA) as a Smartpool in addition to two non-targeting siRNA oligos to use 
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as a controls. Transfection was performed using 0.4% Dharmafect transfection reagent and 10 nM 

siRNA according to the manufacturer (Dharmacon, Lafayette, CO, USA). OAW42 cells were seeded 

and transfected at 60% confluency in antibiotic-free media (DMEM (Cellgro, Lawrence KS, USA) 

supplemented with 1% L-glutamine, 0.91 μg/mL bovine insulin, 4.5 g/1 L glucose, and 3.7 g/L sodium 

bicarbonate). After 24 h at 37 °C, growth media with 10% fetal bovine serum and antibiotic was 

added. Knock-down of ADRM1 was confirmed by Western Blot at day 2, 3, 4, and 7 after transfection.  

3.9. Plasmid Constructs and Transfection 

The ADRM1 Ultimate Human ORF Clone from IOH13967 was purchased from Invitrogen 

(Carlsbad, CA, USA) and cloning and transfection were performed following Invitrogen’s protocol for 

transfection of a mammalian expression clone. Kanamycin resistant IOH13967 clones were isolated. 

The plasmid DNA was subcloned into amp-resistant pcDNA 6.2/V5-DEST Mammalian expression 

vector. True expression clone was confirmed by testing ampicillin resistance and chloramphenicol 

sensitivity. Pure DNA was isolated with the Purelink HQ kit and the clone was sequenced to confirm it 

was in frame. Ovarian cell line ES2 was tested for Blasticidin sensitivity and a concentration of  

0.015 mg/mL Blasticidin kills all ES2 parental cells. ES2 was transfected with the ADRM1 expression 

vector with lipofectamine. Blasticidin-resistant clones grown in 0.015 mg/mL Blasticidin were tested 

for increased ADRM1 expression by Western blot. The highest ADRM1 expressing clone ES2A1 was 

used in experiments in this study.  

3.10. Scratch Test 

For the scratch assay, OAW42 cells treated with ADRM1-specific RNAi, non-targeting RNAi, and 

Dharmafect only (parental), were grown in complete growth medium until 90%–100% confluency was 

reached. A 3 mm cross-wound was introduced across the diameter of each plate. Cell migration was 

observed by microscopy and photographed at 24 h, 48 h, 72 h and 96 h later. 

3.11. Cell Growth and Protein Extraction 

OAW42 ovarian cell lines were independently grown in eighteen 100 mm regular Petri dishes in 

complete medium for 24 h and then each of six OAW42 ovarian cell lines were treated either with  

10 nM ADRM1-specific RNAi or non-targeting RNAi (scrambled RNAi) and the control cells with 

only 0.4% of Dharmafect transfection reagent (parental) in antibiotic-free medium. After 24 h, cells 

were incubated in complete medium for another 24 h. Then, cells were washed two times with  

low-serum medium at 4 °C, followed by 2 times with PBS at 4 °C, and directly lysed in 0.3 mL of ice 

cold labeling buffer (7 M urea, 2 M thiourea, 4% CHAPS and 20 mM Tris-HCl, pH 8.8) and then 

briefly sonicated in Bioruptor (Diagenade) on ice cold water bath for 30 s on and 1 min off for a total 

six times at high settings. Cell lysates were centrifuged at 13,500 rpm for 15 min at 4 °C and extracted 

proteins were stored at −80 °C. 
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3.12. DIGE Labeling, Analysis and Mass Spectrometry 

DIGE labeling, analysis and mass spectrometry were performed as described previously [27]. 

Briefly, protein extracts used for the dige experiments were cleaned using the methanol/chloroform 

method and protein pellets were resuspended in the labeling buffer and centrifuged. For the dige 

analysis, protein samples were labeled with the N-hydroxysuccinimidyl ester derivates of Cy2, 3 and 5 

Dyes according to the manufactures protocol (GE Healthcare, Piscataway, NJ, USA) for 30 min on ice 

water in the dark and then excess Cy Dyes were quenched by adding 10 mM Lysine solution and 

incubated 10 min. Briefly, 50 micrograms of protein from each experimental group repeated 6 times 

(ADRM1-specific RNAi, non-targeting RNAi treated, and control cells) were labeled with the  

400 pmol of Cy3 and Cy5 Dyes, respectively, to avoid any Cy Dye labeling biases. Internal standard 

sample was prepared by pooling equal (25 micrograms) amount of proteins from all eighteen samples 

and labeled with the 400 pmol of Cy2. After the labeling, 50 micrograms of Cy2, Cy3 and Cy5 labeled 

samples were combined with the 300 micrograms of unlabeled protein mix from the all samples and 

the rehydration solution was added (7 M urea, 2 M thiourea, 4% CHAPS, 1% DTT. 0.5% pH 4–7 IPG 

buffer, 5% glycerol, 10% isopropanol). Samples were incubated for another 20 min, briefly 

centrifuged for 5 min at 11,000 rpm and then applied to 24 cm pH 4–7 IPG strips (GE Healthcare), 

passively rehydrated overnight at room temperature. Proteins were focused according with the 

following steps at 200 V (hold) for 2 h, 500 V (hold) for 2 h, 1500 V (gradient) for 2 h, 8000 V 

(gradient) for 4 h 30 min and 8000 V (hold) for 6 h 30 min for the total of 77,000 Vh. After the IEF, 

IPG strips were equilibrated in a 10 mL of reducing solution (50 mM Tris-HCl, pH 8.8, 6 M urea, 30% 

glycerol, 2% SDS, 1% DTT, 0.002% bromophenol blue) for 15 min and then a second equilibration 

step was followed with 4.5% (w/v) iodoacetamide in the same solution without DTT. After reduction 

and alkylation of proteins, IPG strips were placed on the top of the 12.5% SDS polyacrylamide gels 

and sealed with the 1% agarose solution. A second dimension SDS gel electrophoresis was run in 

Ettan DALTtwelve system (GE healthcare) at 50 V for 3 h at 24 °C and then continued at 1 W per gel 

at 24 °C for overnight until bromphenol blue runs out of the gels. The next day, gels were scanned 

using the Typhoon Trio Variable Mode Imager (GE Healthcare) at 100 micron resolution using  

488 nm laser/520BP40 filter for Cy2, 532 nm laser/580BP30 nm filter for Cy3, 633 nm laser/670BP30 

for filter Cy5. Gel images were cropped using Image Quant Software (GE Healthcare, Piscataway, NJ, 

USA). The Decyder 2D Differential Analysis software (version 6.5; GE Healthcare: Piscataway, NJ, 

USA) was used for the identification of statistically significantly differentially expressed proteins. 

After the analysis, proteins of interests were selected based on the fold changes and student’s t test. 

Gels were fixed and then stained by Sypro-Ruby. Sypro-Ruby stained images were re-matched to the 

dige images and protein spots were picked from three gels using the Ettan Spot Picker (GE Healthcare) 

and digested with modified trypsin (Trypsin Gold, Mass Spectrometry grade, Promega, (Madison, WI, 

USA) using the ProGest protein Digestion Robotic Station system (Genomic Solutions, Inc, 

(Marlborough, MA, USA). MALDI-TOF/TOF mass spectrometry analysis was performed on an 

Ultraflex TOF/TOF instrument (Bruker Daltonics, Bremen, Germany) [28]. 
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4. Conclusions 

Thus this study provides evidence that ADRM1 plays a role in ADRM1-amplified ovarian cancer. 

The results indicate that amplified ADRM1 is involved in cell proliferation, migration and survival in 

ovarian cancer cells, supporting a role as an oncogene and novel therapeutic target for ovarian cancer. 

Because ADRM1 is a proteasomal ubiquitin receptor, future work may focus on the susceptibility to 

proteasome inhibitors in ADRM1-amplified ovarian cancer. Additionally, small molecule inhibitors 

targeting ADRM1 directly may represent a novel beneficial therapy for 20q13-amplified ovarian 

cancer, and may act through altering regulation of multiple ovarian cancer targets including HSP90s, 

MNAT1 and respective cyclins, ST1A3 and hormone levels, and HAX1 and apoptosis.  
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