Supplementary Information

Figure S1. Alignment of amino acids sequences from RNAse IIIa (top) RNAse IIIb (bottom) domains of insect Dcr2 proteins. The conserved and similar amino acid residues are labeled in black and grey backgrounds respectively. Red and blue arrowheads indicate catalytic residues of Dcr 2 proteins. The figures in the parentheses indicate the percent identity of that protein to the respective domain of AyDcr 2 . The accession numbers for various protein sequences used in the alignment are provided in Table S2.

AyDer 2
Apder2 (96.2\%)
Teder2(51.6\%)
Bmder2(47.2\%)
Amder2 (54.4\%)
Dmder2 (38.8\%)
AyDer 2
Apder 2
Tcder2
Bmder2
Amder 2
Dmder 2
AyDer 2
Apder2
Teder2
Bmder2
Amder 2
Dmder2
AyDer 2
Apder 2
Tcder2
Bmder 2
Amder2
Dmder2

Figure S2. Alignment of amino acids sequences from insect R2d2 proteins. The conserved and similar amino acid residues are labeled in black and grey backgrounds respectively. The accession numbers for various protein sequences used in the alignment are provided in Table S2.

Figure S3. Alignment of amino acids sequences from insect Ago2 proteins. The conserved and similar amino acid residues are labeled in black and grey backgrounds respectively. The accession numbers for various protein sequences used in the alignment are provided in Table S2.

Figure S3. Cont.

Figure S3. Cont.

Figure S4. Sid1 protein in A. glycines. Italicized and underlined residues at amino-terminal indicate the secretion signal peptide (SignalP). Amino acid residues in black background indicate transmembrane domains (total 11).

[^0]Figure S5. Alignment of amino acids sequences from insect Sid1 proteins. The conserved and similar amino acid residues are labeled in black and grey backgrounds respectively. The accession numbers for various protein sequences used in the alignment are provided in Table S2.

Figure S5. Cont.

Table S1. Scanprosite hit scores for various domains in insect Dcr2 proteins.

Domains	Dcr2 proteins				
	AyDcr2	ApDcr2	TcDcr2	BmDcr2	DmDcr2
Helicase (a)	19.5	19.7	22.2	21.4	18.7
Helicase (b)	14.0	13.6	12.1	12.6	12.1
Dicer_DSRBF	27.0	26.1	24.8	23.5	24.9
PAZ	17.3	18.4	17.2	11.9	8.7
RNase III (a)	20.1	19.6	23.9	21.3	18.4
RNase III (b)	35.5	34.0	36.9	34.7	31.1
DSRBD	10.0	9.6	-	9.1	9.7

Table S2. GenBank accession numbers for various protein sequences used in various analyses.

Name	Accession \#
ApDcr2	XP_003240110.1
AmDcr2	XR_120636.1
BmDcr2	NP_001180543.1
CeDcr2	NP_498761.1
DmDcr2	NP_523778.2
TcDcr2	NP_001107840.1
ApR2d2	NP_001155644.1
AmR2d2	XP_001121349.2
BmR2d2	NP_001182007.1
CrRde4	NP_499265.1
TcR2d2	NP_001128425.1
DmR2d2	NP_609152.1
PhR2d2	XP_002430935.1
ApAgo2	XP_001944852.2
AmAgo2	XP_395048.4
BmAgo2	NP_001036995.2
CeAgo2	NP_871992.1
DmAgo2	NP_648775.1
PhAgo2	XP_002422648.1
TcAgo2a	NP_001107842.1
TcAgo2b	NP_00107828.1
AgSid1	ABP98803.1
ApSid1	XP_001951907.1
AmSid1	XP_395167.4
BmSid1a	NP_001106735.1
BmSid1b	BAF95807.1
BmSid1c	NP_001106736.1
CeSid1	NP_504382.2
NlSid1	ADI88514.1
PhSid1	XP_002430777.1
TcSid1a	NP_001099012.1
TcSid1b	NP_001103253.1
TcSid1c	NP_001099128.1

Table S3. qPCR primer sequences and product length.

Name	Primer sequences	Product length (bp)
$A y D c r 2$	GAGATTTCCTGACTCTTTAGC	100
	CCGATTGCCGAATAACAA	
	AATCTGAAGACGCACATC	135
AyAgo2	TAGCCGCATACTCTTGTA	93
	GAATCGTCAATCGTCATT	165

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

[^0]: MWKPIFVIIFGLSSVWSELFSENVERYGSNDLIPIVLKGNYSQNYPQI INNTMSYLFLYD YLPNSTFEPPRVKVTLIEPEDNSIVDPLIVVVRHRSGVISWQLPYIEKQQEIKYYKAAHI LCPLLSASNNESRIVVSVSTNSINNITFILRLDIQKSFNVLLNQEVSFNLSPSEPVYYYY SFKQNSSMVLLHVKSDDSICMTLSIQNSSCPVFDSLETVQYDGLRQTVSKTGGIIISKDE YPLGLFIVFVVHSDDSACHQGNYQAINFRTKSINFVVKPTVDFNYQIINCLIVIVIFIFI LVFTTFEYHTKGDDLKTIDIIQEEPSTSICSTPVNIQPDNVSYDSSLDETDIDILKSPEP WKDLIRTKACLYVSDLSKKDHRILKAKSRLYVVNL ITVAVFYSLPVTQLVFTSQKMLIET GNQDLCYYNELCSHSFILGPWKF SDFNHIESNIGYIFFGLLFILITYKRECVNIPNKKFG IPNHYGLYYAMGSALAMEGLMSACYHVCPNHSNFQFDTSFMYVICMLSMIKIYQTRHPDI NANAYLVEGVLALVI ILGLTGIMYEGPI LFVLFTCLHLIMIFWLSAQIYYMGRWKLDKKT PKRFLNHIMTAPNPCRPKYPNRMVLLSFGILINLGLAVSHWI IKFGNEGNYLLILEMVNL ILYLSEYIVMKLISKEKLHEWPLLYILLAVIFWSASLYFYVHKSSSWTLSAAESRTYNTP CTFMDFYDNHDIWHELSAISLELSEMVLETLDDDVNSKPTATIPVF

