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Abstract: Hepatitis C virus (HCV) infects approximately 3% of the world’s population. 

Currently licensed treatment of HCV chronic infection with pegylated-interferon-α and 

ribavirin, is not fully effective against all HCV genotypes and is associated to severe side 

effects. Thus, development of novel therapeutics and identification of new targets for 

treatment of HCV infection is necessary. Current opinion is orienting to target antiviral 

drug discovery to the host cell pathways on which the virus relies, instead of against viral 

structures. Many intracellular signaling pathways manipulated by HCV for its own 

replication are finely regulated by the oxido-reductive (redox) state of the host cell. At the 

same time, HCV induces oxidative stress that has been found to affect both virus 

replication as well as progression and severity of HCV infection. A dual role, positive or 

negative, for the host cell oxidized conditions on HCV replication has been reported so far. 

This review examines current information about the effect of oxidative stress on HCV life 

cycle and the main redox-regulated intracellular pathways activated during HCV infection 

and involved in its replication. 
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1. Introduction 

According to evaluations of the World Health Organization (WHO), hepatitis C virus (HCV) 

currently infects at least 130 million people worldwide, which is about 3% of the global population [1]. 

Following acute HCV infection, a chronic state is established in as many as 80% of infected 

individuals. Although many subjects carrying the virus remain asymptomatic, chronicity is often 

accompanied by altered liver function and progressive liver disease that culminates in cirrhosis and 

hepatocellular carcinoma in up to 20% of chronically infected individuals [2]. 

HCV is a positive-sense single stranded RNA virus of the Flaviviridae family. The HCV genome is 

about 9.6 kb in length and consists of the 5' untranslated region (UTR), the structural (core, E1 and E2) 

and non-structural (p7, NS2, NS3, NS4 A/B, NS5 A/B) proteins and the 3' UTR. HCV binds to the 

CD81 and/or SR-BI receptors, enters the cell through clathrin-mediated endocytosis and is uncoated, 

releasing the RNA genome into the cytoplasm. The positive-sense RNA first serves as a messenger 

RNA for translation of a single large polyprotein that is proteolytically cleaved, by host and viral 

peptidases, to generate individual proteins. Subsequently, HCV RNA acts as a template for viral 

genome replication, mediated by virus encoded RNA-dependent RNA polymerase, NS5B, in 

cooperation with NS5A and other viral proteins. The virus replication complex is localized to the 

membranous web that is formed by modified membranes of the ER and Golgi. After encapsidation of 

the viral genome, virions are exported through the host secretory pathway. For recent reviews on the 

HCV life cycle see [3,4]. 

Current therapy of chronic hepatitis C is based on a combination of PEG-interferon (PEG-IFN)-α 

and ribavirin. This combination therapy is not fully effective, as it achieves a sustained virological 

response (SVR) in less than half of treated patients with HCV genotype 1 and about 80% of those with 

genotype 2, and causes severe side effects [5–7]. Recent approval, in Europe and in the United States, 

of the two new drugs targeting the HCV protease (telaprevir and boceprevir) produced an increased 

SVR rate to 70%–80% in triple combination therapy with PEG-IFN-α and ribavirin [8]. However triple 

combination treatment has limitations in partial non-responders and null responders to a prior course of 

PEG-IFN-α and ribavirin [9–12] and has more severe side effects. 

From the above, a pressing need exists for the development of new and alternative therapeutic 

strategies to combat HCV infection. To circumvent the onset of drug resistance, a major obstacle to 

therapeutic success, it seems to be particularly important to approach viral infection therapy by 

considering the interactions between virus and host cells. In fact, current opinion is to target antiviral 

drug discovery to the host cell pathways on which the virus relies, instead of against viral structures, in 

order to decrease the likelihood of acquiring drug resistance [13,14]. 

It is known that many cellular proteins involved in a wide range of signaling pathways that are 

manipulated by HCV, to promote its own replication [15–18], are influenced by the intracellular redox 

state [19–21]. The redox state of a cell results from an equilibrium between the production of reactive 

oxygen/nitrogen species (ROS/RNS) and the anti-oxidative defenses (antioxidant molecules and 
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enzymes) [21]. An imbalance towards pro-oxidative conditions is referred to as oxidative stress. The 

intracellular thiols are an important class of antioxidant molecules, with glutathione (GSH) being the 

most abundant. In cells, GSH can be free or bound to proteins. Free GSH exists mainly in its reduced 

form (GSH), which can be transformed to the oxidized gluthatione (GSSG) during oxidative stress and 

it can be reverted to the reduced form by the enzyme GSH reductase. The ratio between GSH/GSSG is 

considered an index of the antioxidant capacity of the cell [22]. The reduced form of glutathione is an 

important radical scavenger that directly neutralizes a variety of reactive molecules (such as 

superoxide anion and hydroxyl radicals) [23]. In addition to its role as a redox buffer, GSH can form 

mixed disulfides (GSSR) with protein thiols (S-glutathionylation), thus protecting cysteine residues of 

proteins from irreversible oxidation events. Moreover, S-glutathionylation may alter protein function 

and is actually considered to be involved in signal transduction [24,25]. It has been demonstrated that 

infections by several viruses, including HCV, are frequently characterized by host-cell redox changes, 

characteristic of oxidative stress, that affect the efficacy of viral replication [26–33]. 

This review presents a summary of the current knowledge about redox regulation of HCV life cycle 

and discusses some of main redox regulated intracellular pathways activated during HCV infection and 

involved in its replication. 

2. HCV Infection Induces Oxidative Stress 

Increased oxidative stress is a hallmark of HCV infection (reviewed in [28,29,33]). Clinical studies 

have shown that HCV patients have elevated levels of reactive aldehydes produced by lipid 

peroxidation, such as malondialdehyde and 4-hydroxy-2-nonenal, in their serum, peripheral blood 

mononuclear cells and liver [34,35]. Liver levels of 8-hydroxydeoxyguanosine, a marker of oxidative 

damage, are also elevated [34,36]. Furthermore, an increased glutathione turnover in the liver, blood 

and lymphatic system has been suggested by the observation of decreased ratio between  

GSH/GSSG [34,37–39].  

Usually, viruses induce an inflammatory response at the site of infection, where release of ROS by 

immune cells acts as non-specific toxins, kills pathogens and injuries adjacent cells. In the case of 

persistent infections, chronic inflammation results in overwhelming production of ROS that induces 

tissues damage and predispose to disease induction [40]. However, although inflammation is an 

important source of ROS during chronic infection [41,42], HCV infected patients with minimum or no 

liver disease showed markers of oxidative stress [43] and HCV transgenic mice exhibited signs of 

increased oxidative damage in the absence of inflammation [44]. These evidences suggest that HCV 

may directly promote oxidative stress in hepatocytes (Figure 1). Actually, numerous in vitro studies 

have shown that not only HCV replication, but also expression of the HCV structural and  

non-structural proteins, directly act as inducers of oxidative stress, mainly through mitochondrial 

dysfunction of hepatocytes and endoplasmic reticulum (ER) stress [45–52]. In particular, direct 

interaction of the structural HCV core protein with mitochondria decreases the mitochondrial NADPH 

levels, reduces the activity of the electron transport complex I and increases generation of  

ROS [45–47]; the non-structural proteins NS5A [49,50], NS4B [50] and the structural glycoproteins 

E1 and E2 [51] induce ROS production by ER stress. Recently, it has been demonstrated that 

hepatocyte NAD(P)H oxidase (Nox) proteins 1 and 4 represent another prominent source of ROS 
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during HCV infection [53,54], as they were found significantly elevated both in HCV infected cells 

and in the liver of HCV-infected patients [53]. In addition, HCV replication may induce impairment of 

host cell antioxidant defenses [55–58], and directly alter the endogenous levels of GSH [53,56,59] 

(Table 1). Although in vivo studies reported a decreased hepatic GSH content in HCV chronically 

infected patients [34,38,40], however studies in vitro showed conflicting results about the effect of 

HCV on intracellular GSH as well as on the enzymes regulating GSH homeostasis [55,60–62]. In this 

regard, Roe and collaborators [59] reported a significant raise of GSSG in HCV infected cells; 

conversely, increased GSH concentration was demonstrated by de Mochel et al. [53] using same  

in vitro infection system. Analogous contradiction has been described for the effect of HCV on the 

activity of NF-E2-related factor 2 (Nrf2), a central regulator of the enzymes of glutathione  

homeostasis [63,64]. Recently, two studies, performed by Burdette et al. [60] and Ivanov et al. [61] 

reported activation of Nrf2 pathway, respectively in HCV infected Huh-7 cells and in cells expressing 

the individual viral proteins. Conversely, Carvajal-Yepes and collaborators [62] demonstrated 

suppression of this pathway upon transfection of cells with HCV clones. The apparently disparate 

effects on GSH by HCV may be due to different experimental systems used (HCV transfected versus 

infected cell cultures). However, it has to be considered that viruses producing chronic infections, such 

as HIV and HCV, cause significant changes of GSH levels only after chronic infection is well 

established [27,65]. So, it has been proposed [61] that data by Burdette et al. [60] and by  

Ivanov et al. [61] may be representative of the acute phase of HCV infection, when the cells enhance 

the expression of antioxidant genes to protect themselves against the virus induced oxidative stress. In 

contrast, data from the study of Carvajal-Yepes [62] could be related to chronic virus infection. Further 

studies about the changes of GSH levels during HCV acute and chronic infections are required to 

clarify this point. 

Figure 1. Schematic representation of ROS sources during Hepatitis C virus (HCV) 

infection and redox mechanisms for activation of MAPKs and PI3K/Akt. 
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Table 1. Mechanisms of oxidative stress induction by HCV infection and viral proteins involved. 

Source of ROS/RNS HCV proteins References 

Transcriptional up-regulation of iNOS core, NS3 [47] 
Activation of Nox2 in PBMCs NS3 [41] 

GSH depletion Core [56] 
Increased production of mitochondrial ROS by the 

electron transport chain 
Core [45] 

Activation of Nox2 in Kupffer cells HCV [29,40] 
Endoplasmic reticulum stress (ER stress) NS4B, NS5A, E1, E2 [49–51] 
Increase of proinflammatory cytokines HCV, core [54] 

Activation of Nox1 and 4 proteins in hepatocytes HCV [53,54] 

3. Oxidative Stress Affects HCV Replication 

HCV related oxidative stress is involved in the development of liver injury, and in the progression 

of liver disease towards fibrosis, cirrhosis and HCC [28,29,66,67]. Therefore, antioxidants have been 

proposed as new potential treatment of HCV patients. For example, in a phase I clinical trial testing a 

combination of seven different antioxidants, 44% of the patients had normalization of liver enzymes 

levels and 36.1% of the treated patients had histological improvement [68]. Alongside this positive 

effect of the anti-oxidants, however, it remains unclear how modulation of oxidative stress can affect 

HCV replication. In general, treatment with drugs that amplify the effects of endogenous ROS, 

generated during normal cellular metabolism or in response to HCV, has suppressive effect on HCV 

replication. Using replicon cells (that are human hepatoma cell lines constitutively replicating HCV 

RNA but not producing infectious virus particles), Choi and collaborators found that H2O2 and  

t-butylhydroperoxide (t-BOOH), which generates low levels of intracellular ROS, reduced HCV RNA 

by a mechanism involving the disruption of HCV replication complex on cell membranes [69,70]. 

Similar suppression of intracellular HCV was obtained upon ROS induction with glucose oxidase 

(GO) transfection in cell lines [71]. In addition, modulation of intracellular glutathione, by arsenic 

trioxide or by BSO, negatively affected HCV replication in vitro, either in replicon cells as well as in 

cells infected with HCV infectious clone (JFH1-infected cells) [71,72]. According to the  

above-reported negative effect of oxidative stress on HCV in vitro, some anti-oxidants (such as 

vitamins A, vitamin E and resveratrol) have been shown to enhance HCV replication in replicon 

model, with yet unknown mechanisms [73,74]. On the other side, opposite effect of some antioxidant 

treatments on HCV has also been reported. For examples, N-acetylcysteine (NAC) [75], pyrrolidine 

dithiocarbamate (PDTC) [76,77], sylimarin [78,79], naringerin [80–82], quercetin [82,83],  

curcumin [84] and also the acetylsalicylic acid (ASA) [77], have been found to decrease HCV 

replication and HCV proteins level in vitro. In addition, transient transfection of the anti-oxidant 

enzyme, Mn-superoxide dismutase, in replicon cells lowered viral replication [76]. The steps in virus 

life cycle targeted by these antioxidants and the mechanisms related to their action are mostly 

unknown, although in some cases they have been described. As examples, PDTC is reported to act 

through inhibition of MAPK pathways [76]; sylimarin inhibits virus entry and infectious virions 

production into culture supernatants through the inhibition of microsomal triglyceride transfer protein 

(MTP) activity and apolipoprotein B secretion [78]; naringerin blocks virus assembly, partly by the 
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activation of PPARα, and consequent decrease in VLDL production [80]. Few clinical studies 

describing the effect of antioxidant supplementation on HCV titer are available and have yielded so far 

inconsistent results [68,85,86]. This lack of a clear correlation between oxidative stress and HCV 

replication remains an open question and may in part be explained by the fact that the same antioxidant 

molecules can display pro- or anti-oxidant functions, depending on their own oxidative status, which in 

turn reflects the specific redox potential of the microenvironment [87,88]. In support of these 

considerations, Wang and collaborators found that pre-treatment of mice with NAC, a GSH precursor, 

prevents liver from acute ethanol-induced damage, via counteracting ethanol-induced oxidative stress; 

whereas, when administered after ethanol, NAC behaves as a pro-oxidant and exacerbates acute 

ethanol-induced liver damage [89]. Furthermore, we have shown that resveratrol (RV) can decrease 

GSH in a different virus and cell system, thus functioning as oxidant molecule [90]. This fact has been 

explained considering that, although RV can quench reactive free radicals by donating hydrogen 

atoms, this process generates also phenoxyl radicals that can oxidize GSH to GS•. Moreover, oxidation 

of the RV-phenoxyl radical produces an RV-quinone form, which can alkylate GSH, further 

diminishing the intracellular concentrations of free GSH [91]. A similar behaviour has been shown by 

vitamin E (tocopherol), a chain-breaking antioxidants that interferes with radical chain propagation by 

trapping radicals. During its metabolism, vitamin E is converted into tocopheroxyl radical with low 

reactivity that needs to be removed by a secondary antioxidant, such as ascorbic acid (vitamin C). If 

the removal of tocopheroxyl radical by a secondary antioxidant is delayed, it may promote lipid 

peroxidation, functioning as pro-oxidant [92].  

Therefore antioxidants are considered intriguing molecules to be used as antivirals. However most 

of the studies so far available, evaluate the antiviral potential of antioxidant molecules, without 

concurrent measure of their effect on the cellular redox state, which could be the reason behind 

reported controversies in literature. 

4. Redox-Regulated Signaling Pathways: MAPK and PI3K/Akt Signaling Pathways Are Critical 

Controllers of HCV Replication 

An abundance of scientific literature exists demonstrating that oxidative stress influences several 

signaling pathways [25,93–95], among which the two mostly affected, MAPK (Mitogen Activated 

Protein Kinase) and PI3K/Akt pathways, have a pivotal role on replication of several viruses, such as 

influenza A virus [96–98], HIV [99], human cytomegalovirus [100], varicella-zoster [101] and also 

HCV [15,17]. MAP kinases (comprising the three best characterized members ERK, JNK and p38 

MAPK) and Akt are activated by general induction of intracellular ROS [93,94,102] and are inhibited 

by the antioxidants [17,76,103]. Moreover, exposure of cells to exogenous H2O2, that mimic oxidative 

stress, also leads to activation of MAPK and PI3K/Akt pathways in multiple cell types (vascular 

smooth muscle cell, cardiac myocytes, A431 cell, CHO cell line, hepatocytes) [94,104–109].  

Different mechanisms have been proposed for activation of the two pathways in response to  

ROS [19,25,93–95] (Figure 1). In normal redox conditions, thioredoxin (TRX) association with ASK1, 

the MAKKK for JNK and p38, maintains the pathways inactive [110,111]; upon oxidative stress thiol 

modification of TRX, promotes its dissociation from ASK1 [93,94] thus activating p38 and JNK [112]. 

A second proposed mechanism involves ROS induced oligomerization of glutathione-S-transferase Pi 
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(GSTp), resulting in its dissociation from the complex with JNK and the subsequent activation of the 

pathway [113]. A further mechanism for activation of MAPK and Akt is by degrading the protein 

tyrosine phosphatases, PtPases, that maintain the pathways in inactive state [19,25]. An example of 

this latter is oxidation and consequent inactivation of PTEN, a negative regulator of Akt that results in 

PI3K/Akt activation [114,115]. 

It is known that during its life cycle, HCV activates MAPK and Akt pathways that have a role in the 

pathogenesis of inflammation, fibrosis, HCC [116–120] and in viral immune evasion strategies 

occurring during HCV infection [17,121]. With regard to the role of MAPK cascades in HCV 

replication, virus binding to the CD81 receptor has been shown to activate the Raf/MEK/ERK pathway 

that was necessary for post-entry events [122]. Consistently, it has recently been proposed that the 

blockade of ERK cascade with the inhibitor of MEK 1/2 (U0126) prevents HCV assembly and virion 

release [16,123]. Furthermore, the inhibitors of JNK and p38MAPK (SP600125 and SB203580 

respectively) blocked HCV replication in replicon systems, suggesting that these kinases are tightly 

involved in positive control of HCV life cycle [76]. However, some authors suggested a negative role 

of ERK1/2 pathway on HCV in vitro, as activation of this pathway was shown to suppress viral 

replication in replicon system, whereas its inhibition promoted HCV replication [124–126]. The 

discrepancies on the effects of the diverse cascades of the MAPK pathway (ERK, JNK and p38) on 

HCV replication, are probably due to the different in vitro system used by the authors, therefore further 

research would need to elucidate this issue. 

With regard to the role of PI3K/Akt pathway several reports have shown that it is activated by  

HCV [15,119,120] and that this event is critical for viral replication, as suggested by studies with small 

interfering RNA (siRNA) [127] or compounds that specifically block Akt activity [18,84,127]. Among 

these latter, triciribine, that blocks Akt activity without affecting its upstream activators, was found to 

inhibit both basal HCV replication, as well as that enhanced by epithelial growth factor  

(EGF) [127]. Conversely, little is known about the steps of HCV replication cycle influenced by 

PI3K/Akt. Recently, Liu et al. [18] demonstrated that HCV rapidly and transiently activated Akt, to 

enhance its entry into the cells, via the interaction between HCV E2 envelope protein and its  

co-receptors, CD81 and claudin-1. Interestingly, PI3K/Akt pathway positively affects HCV replication 

by modulating lipid metabolism; the mechanisms involve enhanced expression of SREBP-1 (sterol 

regulatory element binding protein-1) [84], an important transcription factor of lipogenic gene 

expression, and inhibition of the AMPK (AMP-activated protein kinase) activity [128], that results in 

stimulation of cholesterol and triglyceride synthesis. Increasing evidences show that HCV is critically 

dependent on cellular lipids throughout its life cycle [4,129,130]. In fact viral RNA replication 

complexes localize to lipid rafts (membranous structures derived from the ER) rich in sphingomyelin 

and cholesterol [131]; moreover a crucial role for lipid droplets (LDs) in HCV assembly has also been 

demonstrated [132].  

On the basis of all the above reported data it could be reasonably speculated that PI3K/Akt 

pathway, through modulation of hepatic lipid metabolism, could have a role both in early and late 

stages of HCV life cycle. However, further investigations would need to disclose the exact steps of 

HCV life cycle influenced by Akt pathway.  
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5. Conclusions 

Although HCV induces oxidative stress in host cells, all current revised literature points to a dual 

role of the host cell oxidized conditions on HCV replication. Several studies are in favor of a positive 

control of HCV replication by oxidative stress; however, it cannot be ruled out that virus induced 

oxidative stress can negatively modulate its own replication. This could be a mechanism to control the 

interaction at equilibrium between virus and host cell, which is the basis for establishment of 

chronicity. Although much has yet to be disclosed, the redox-mediated host cell mechanisms so far 

identified, together with those that will be further recognized, could uncover new effective approaches 

for HCV treatment. 
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