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Abstract: Oral or gastrointestinal mucositis is a frequent phenomenon in cancer patients 

receiving chemotherapy or radiotherapy. In addition, several clinical investigations have 

demonstrated in recent years that riboflavin laurate has the potential to protect the patients 

from the disease induced by chemotherapy or radiotherapy. In our studies, it is observed 

that riboflavin laurate can ameliorate either chemotherapy- or radiotherapy-induced 

toxicities on Helf cells, and the effect is greater than that of riboflavin. In addition, 

riboflavin laurate is able to transport through the Caco-2 cell monolayer as the prototype, 

indicating the protective effects may be produced by the prototype of riboflavin laurate, 

rather than simply by the released riboflavin. 

Keywords: riboflavin laurate; oral or gastrointestinal mucositis; chemotherapy or 

radiotherapy; Caco-2 cell monolayer 
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1. Introduction 

Riboflavin (RF) or vitamin B2 (Figure 1) is indispensable and important for normal cellular 

functions, growth and development in all aerobic forms of life [1]. Flavin adenine mononucleotide 

(FMN) and Flavin adenine dinucleotide (FAD) are the two major precursors, participating in a myriad 

of biochemical reactions, including carbohydrate, lipid and amino acid metabolism [2–4]. However, 

humans are not able to synthesize riboflavin by themselves, and must incorporate it as a micronutrient 

from their diet [5], so they are vulnerable to develop riboflavin deficiency, especially susceptible are 

those who work in the wild for a long time, such as soldiers and explorers. Nevertheless, riboflavin 

deficiency may lead to a variety of clinical abnormalities, like skin inflammation, oral mucositis and  

scrotitis [6,7].  

Figure 1. The chemical structures of riboflavin and riboflavin laurate. 

 

Riboflavin laurate (RL) (Figure 1), designed as a new sustained-release and oil preparation of 

riboflavin, has been widely used as an army medication for riboflavin deficiency in various diseases 

for decades. In addition, current views merely consider that riboflavin, not free riboflavin laurate, is 

released and transported from intramuscular injection site to whole body, thereby producing sustained 

clinical effects (Figure 2). Until recent years, several research groups demonstrated undoubtedly that 

riboflavin laurate shown the potential to protect the patients from the oral or gastrointestinal mucositis 

induced by chemotherapy or radiotherapy in clinic [8–10]. Interestingly, either via oral or injection, 

riboflavin could not be perfectly capable. Based on clinical phenomenon, we assume that riboflavin 

laurate could play a stronger role in the prevention and treatment than riboflavin. 

However, as little is known about the preventive effect at the cellular level, we investigated the 

possible role of riboflavin laurate in ameliorating chemotherapy or radiotherapy induced toxicities  

in vitro. In addition, to determine whether riboflavin laurate can release and transport across the cell 

membrane as the free type, we established the human colon carcinoma cell line (Caco-2) model to 

screen the transport properties of the promising drugs [11,12], ultimately, to illuminate what the 

leading contributor to oral or gastrointestinal mucositis is. 
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Figure 2. How does the riboflavin laurate transport across the Caco-2 cell monolayer? 

Current views merely consider that riboflavin, not the free riboflavin laurate, is released to 

the body over time, when it is injected into the muscle. Caco-2 model is established to 

demonstrate the transport mechanisms, illuminating whether riboflavin laurate could 

transport as the prototype. 

 

2. Results and Discussion 

2.1. The Protective Properties of Chemotherapy, Radiotherapy-Induced Toxicity on Helf Cells 

In our results, riboflavin laurate (0.2, 0.4, 2, 10, 50 μmol/L) exhibited the high protective properties 

on cisplatin (CP) (5 µmol/L)-induced the human embryonic lung fibroblasts (Helf cells), and the 

effects were concentration dependent. Apart from this finding, to our surprise, we observed that the 

cells, exposed to the higher concentration of riboflavin laurate (10, 50 μmol/L), proliferated greater as 

compared with the control group (p < 0.001) (Figure 3A). To confirm the conclusion, a further 

experiment was designed to examine the proliferative implications of riboflavin laurate and riboflavin 

on the normal Helf cells, and our data indicated that either riboflavin laurate or riboflavin can promote 

the normal Helf cells to grow. Furthermore, riboflavin laurate had better proliferative effect than 

riboflavin (p < 0.05), and the proliferative rate of riboflavin laurate (50 μmol/L) was up to 20.14% 

(Figure 3B). In another study, the cells induced by CP (5 µmol/L) for 5 h, were incubated with the 

fresh medium containing riboflavin laurate or riboflavin (0.4, 2, 10, 50 µmol/L), and cellular viabilities 

were determined after 72 h. Compared with CP-induced group, we could know that riboflavin laurate 

and riboflavin also ameliorated CP-induced toxicities on Helf cells. Importantly, the protection of 

riboflavin laurate was greater than that of riboflavin (p < 0.05) (Figure 3C). Then the cells were 

incubated with the medium containing CP (5 µmol/L) and riboflavin laurate (0.4, 2, 10, 50 µmol/L) or 

riboflavin (0.4, 2, 10, 50 µmol/L) until 72 h. An interesting observation was readily apparent that 

riboflavin with low concentrations had a similar protective effect to riboflavin laurate, yet high 

concentrations of riboflavin laurate shown the better and stronger protection (p < 0.05) (Figure 3D). 
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Figure 3. The protective and therapeutic properties of chemotherapy-induced toxicity on 

Helf cells. (A) Riboflavin laurate (0.2, 0.4, 2, 10, 50 μmol/L ) exhibit the high protective 

properties on CP-induced Helf cells; (B) The effects of different concentrations of 

riboflavin laurate and riboflavin on the normal Helf cells; (C) The preventive effects of 

riboflavin laurate and riboflavin on the Helf cells induced by CP (5 µmol/L) for 5 h;  

(D) The preventive effects of riboflavin laurate and riboflavin on the Helf cells induced by 

CP (5 µmol/L) for 72 h.  

 

The Helf cells under different 6°Co-γ radiative treatments (0Gy, 2Gy, 4Gy, 8Gy, 16Gy), caused 

major damage as evidenced by down-regulation of cellular viability in 6°Co-γ radiative treated groups 

with respect to the control group (0Gy). After the exposure of different radiative dosages of 6°Co-γ, the 

cells were incubated in medium containing riboflavin laurate or riboflavin (20, 50, 100 nmol/L).  

From these results, it not only further confirmed that either riboflavin laurate or riboflavin could 

promote the growth of normal Helf cells, also decreased the damage of 6°Co-γ radiations (p < 0.05), 

and the both effects were concentration dependent (Figure 4A,B). Additionally, when the supplements 

were in low concentration, riboflavin contained the same protective effect as riboflavin laurate. 

However, the DRF of riboflavin laurate (100 nmol/L) was 3.124 and was larger than that of riboflavin 

(Table 1), indicating the effect of riboflavin laurate in ameliorating radiotherapy-induced toxicities was 

greater as compared with that of riboflavin. 
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Figure 4. The protective and therapeutic properties of radiotherapy-induced toxicity on 

Helf cells. (A) The effects of riboflavin laurate on cell exposed by different radiative 

dosages of 6°Co-γ; (B) The effects of riboflavin on cell exposed by different radiative 

dosages of 6°Co-γ.  

 

Table 1. Determinations of dose reduction factor (DRF) on Helf cells treated with 

riboflavin or riboflavin laurate. 

Group y = ax + b D90 (Gy) DRF 

Control y = −0.0218x + 0.965 2.982 1.000 

Riboflavin (20 nmol/L) y = −0.0249x + 1.090 7.631 2.559 

Riboflavin (50 nmol/L) y = −0.0271x + 1.112 7.823 2.624 

Riboflavin (100 nmol/L) y = −0.0305x + 1.163 8.623 2.892 

Riboflavin laurate (20 nmol/L) y = −0.0270x + 1.100 7.407 2.484 
Riboflavin laurate (50 nmol/L) y = −0.0276x + 1.116 7.826 2.625 
Riboflavin laurate (100 nmol/L) y = −0.0335x + 1.212 9.313 3.124 

2.2. Transport Characteristics of Riboflavin Laurate by Caco-2 Cell Monolayer 

2.2.1. Measurements of Caco-2 Cell Monolayer Integrity 

After being seeded for 21 days, we could see the confluent monolayers of Caco-2 cells,  

using an inverted light microscope. Then every monolayer was assessed by means of TEER 

measurements, and all of the monolayers of TEER reached 500 Ω × cm2. At the same time, sodium 

fluorescein solutions (2.0 mg/mL) were added on the apical side and incubated for 60 min, and the 

samples were detected by Multilabel Plate Reader. The Papp of sodium fluorescein was  

(0.284 ± 0.042) × 10−6 < 0.5 × 10−6 (cm/s). 

In summary, all of the results indicated that Caco-2 cell monolayers were established. 

Subsequently, transport experiments could be performed. 

2.2.2. Transport across Caco-2 Cell Monolayer 

Using the Caco-2 cell monolayer, we known that riboflavin laurate can transport as the prototype, 

and the transport was linear with time and concentration-dependent. In addition, the cumulative 
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amount transported of riboflavin laurate (10 mmol/L, 25 mmol/L, 50 mmol/L) in different directions 

(AP-BL and BL-AP) was shown in Figure 5A and B, respectively. By comparison, we found that the 

total transported amount of riboflavin laurate in the apical to basolateral was significantly lower than 

that of transport in the basolateral to apical (p < 0.05) (Figure 5C and Table 2). From the results of 

Table 2, the Papp of riboflavin laurate (10, 25, 50 mmol/L) in the apical to the basolateral direction  

(Papp (AP-BL)) was (4.417~4.495) × 10−6 cm/s and percent transport (%T) was between 5.34 and 

5.44, indicating riboflavin laurate had a substantial transport across the cell membrane. On the other 

hand, on account of the result that Papp (AP-BL) was lower than the Papp (BL-AP) (ranged from  

5.357 × 10−6 cm/s to 10.35 × 10−6 cm/s), their EfR of riboflavin laurate was between 1.213 and 2.303, 

manifesting the transport of riboflavin laurate may follow an efflux factor.  

Figure 5. The influence of transport directions and concentrations of riboflavin laurate on 

transport across the Caco-2 cell monolayer. (A) The influence of AP-BL of riboflavin 

laurate (10, 25, 50 mmol/L) on cumulative amount transported over time; (B) The 

influence of BL-AP of riboflavin laurate (10, 25, 50 mmol/L) on cumulative amount 

transported over time; (C) The total amount transported of riboflavin laurate  

(10, 25, 50 mmol/L) of transport directions. 
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Table 2. The coefficients (Papp, %T, and EfR) of different concentrations of riboflavin 

laurate transport across the Caco-2 cell monolayer. 

Concentration 
AP-BL BL-AP 

EfR 
Papp (10−6, cm/s) %T Papp (10−6, cm/s) %T 

10(mmol/L) 4.4173 ± 0.7591 5.34 ± 0.92 5.357 ± 0.2442 6.48 ± 0.30 1.213 
25(mmol/L) 4.4431 ± 0.0003 5.37 ± 0.06 6.004 ± 0.0440 7.26 ± 0.05 1.351 
50(mmol/L) 4.4947 ± 0.2530 5.44 ± 0.31 10.35 ± 0.5057 12.52 ± 0.61 2.303 

As is known to us, this is a frequent phenomenon in cancer patients receiving chemotherapy or 

radiotherapy, many of whom develop oral or gastrointestinal mucositis and suffer from painful and 

deep mucosal ulcer [13,14]. Hence, amelioration or relieving the pain of oral or gastrointestinal 

mucositis is one of the important clinical challenges in the cancer therapy area [15]. 

In recent years, the importance of riboflavin laurate on nutrition, especially in cancer patients, has 

been largely appreciated. With the increasing investigations of riboflavin laurate, more and more 

evidences indicate that riboflavin laurate could prevent and therapy the oral or gastrointestinal 

mucositis induced by chemotherapy or radiotherapy, and the contribution may result from antioxidant 

activity of riboflavin laurate, which attenuates the chemotherapy or radiotherapy-induced increase in 

apoptotic indices, with a decrease in oxidative burden, increased Bcl-2/Bax, and improved functional 

and structural integrities. 

Designed as a sustained-release preparation, riboflavin laurate produces sustained therapeutic and 

preventive effect of unrecognized deficiency of this micronutrient. Allegedly, the finding helps us 

address the problems that riboflavin can not be synthesized in the body, and an easily deficiency 

syndrome is recurrent. 

In our study, we want to demonstrate the effects of riboflavin laurate in preventing oral or 

gastrointestinal mucositis induced by chemotherapy or radiotherapy at the cellular level, so the Helf 

cell is used, which can provide a useful model to study components with toxicity or antioxidant 

activity. To date, CP is a prominent and effective broad spectrum anticancer drug, which is widely 

used as a therapy for head and neck, breast, lung, prostate and cervix cancer. However, despite being 

an effective anticancer agent, CP is limited in the clinical usage by various side effects, for example, 

oral or gastrointestinal mucositis is one of the most important adverse reactions [16,17]. 

In addition, the Caco-2 cell monolayer is a well-established model for screening the transport, 

intestinal absorption and metabolism properties of new drugs [18]. Therefore, using the model, we first 

investigate whether riboflavin laurate could transport across Caco-2 cell monolayer as the prototype 

and illuminate the transport characteristics of riboflavin laurate, helping us clearly understand what the 

active ingredient ameliorating or relieving the pain of oral or gastrointestinal mucositis is. 

Based on our results, riboflavin laurate indeed shows the protective and therapeutic effects on the 

chemotherapy or radiotherapy- induced Helf cells successfully. Intriguingly, the perfect influence is 

greater than that of riboflavin, particularly on the chemotherapy-induced toxicities. Fortunately, the 

findings are in accordance with previous clinical investigations that riboflavin laurate is mainly used to 

prevent cancer patients from oral ulcers after chemotherapy, and the oral riboflavin can not produce 

the prefect therapeutic effect.  
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On the other hand, the data from transport experiments by Caco-2 cell monolayer, suggest that 

riboflavin laurate could release and transport across the cell membrane, not only via passive 

transcellular transport, but also through active efflux (Figure 6). Although the transport mechanisms 

are complex, it is clearly feasible and worth research attention, that riboflavin laurate can transport as 

the prototype, which may be the reason of the effects on oral mucositis induced by chemotherapy  

or radiotherapy. 

Figure 6. The transport mechanisms of riboflavin laurate across Caco-2 cell monolayer. 

Riboflavin laurate can transport as the prototype, and the transport mechanisms are 

complex, not only via passive transcellular transport, also through active efflux. 

 

3. Experimental Section  

3.1. Materials 

Helf cell and Caco-2 cell were obtained from Cell Resource Center, IBMS, PUMC. Riboflavin 

laurate and riboflavin were endowed by SHENZHEN SALUBRIS PHARMACEUTICALS CO., LTD. 

Sodium fluorescein and Thiazolyl Blue Tetrazolium Bromide (MTT) were purchased from Sigma 

company. Millicell cell culture inserts (MA, 01812) and Millicell ERS were from Millipore 

Corporation, USA. Cell culture medium and reagents were from Gibco Laboratories. HPLC (L-7000) 

was from Hitachi, Japan. Multiskan Ascent Plate Reader was bought from Thermo Scientific, Finland. 
6°Co-γ facility was provided by Beijing Institute of Radiation Medicine. Multilabel Plate Reader 2030 

was purchased from PerkinElmer, USA.  

3.2. Methods 

3.2.1. Riboflavin Laurate Ameliorates Chemotherapy, Radiotherapy-Induced Toxicities 

In this study, Helf cells were seeded into 96 well plates at an appropriate density (3000 cells per 

well) in 100 µL DMEM containing 10% FBS. And the culture plates were kept in a 37 °C humidified 
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atmosphere containing 95% air and 5% CO2. The next day, the cells were treated with the following 

combinations: CP group, riboflavin laurate–CP group, riboflavin–CP group and control group. Before 

the incubation period with different concentrations of riboflavin laurate or riboflavin, CP (5 µmol/L) 

was supplemented into three former groups for 5 h, then the medium was removed and the cells were 

incubated in 200 µL DMEM medium containing riboflavin laurate (0.4, 2, 10, 50 µmol/L) or riboflavin 

(0.4, 2, 10, 50 µmol/L), and CP group was replaced by the same volume of blank DMEM medium. 

The control group received no treatment. After 72 h, the medium was removed and the 100 µL MTT 

solution (0.5 mg/mL in medium) was added to the culture plates. Then, incubating for 4h at 37 °C, the 

MTT reaction medium was removed away and formazan blue was solubilized by 200 µl of DMSO. 

Finally, values of absorbance were detected by Multiskan Ascent at 570 nm [19–21]. 

According to the above method, Helf cells were planted onto five culture plates. The cells of five 

culture plates were exposed to different 6°Co-γ radiative treatments: 0Gy, 2Gy, 4Gy, 8Gy, 16Gy. For 

our purpose, the cells of every culture plate were divided into seven groups: control group and three 

groups of riboflavin laurate (20, 50, 100 nmol/L) and three groups of riboflavin (20, 50,100 nmol/L). 

Before incubated in medium containing riboflavin laurate or riboflavin, cells were exposed by different 

radiative dosages of 6°Co-γ. After the exposure period, cellular viability was determined by MTT test. 

The cellular viability of control group (0Gy) served as survival fraction 1, then the survival fractions 

and the linear equations would be determined, “y” is the survival fraction and “x” is dose of radiation. 

Then the dose reduction factor (DRF) was calculated by the following formula:  

DRF = D90 of riboflavin laurate or riboflavin group/D90 of control group. 

3.2.2. Transport Studies Performed by Caco-2 cell Monolayer 

Caco-2 cells were seeded onto Millicell cell culture inserts (1.12 cm2 surface area, 0.4 µm pore size) 

in 12-well plates at a seeding density of 1 × 105 cells/cm2. MEM Alpha Modification Medium, 

supplemented with 10% fetal bovine serum, 1% L-Glutamine as well as with 1% nonessential amino 

acids, was used as culture medium. Cell cultures were kept at 37 °C in an atmosphere of 95% air and 

5% CO2. Cell medium was changed every day until 21 days [22,23].  

Prior to experiments, the integrity of the monolayer was ensured by an inverted light microscope 

and transepithelial electric resistance (TEER) measurements. In addition, the permeability of sodium 

fluorescein (marker for barrier integrity) was measured before the transport experiments [24]. 

Transport experiments were performed as described previously [25], using PBS buffer (pH 7.4,  

37 °C) as the transport medium. In our research, to study the apical to basolateral transport, 1.5 mL of 

the medium was added to the basolateral chamber (receptor) of the Millicell cell culture inserts and 

then 0.5 mL of the transport medium with riboflavin laurate (10, 25, 50 mmol/L) was added to the 

apical side (donor). By contrast, the basolateral to apical transport was initiated with 1.5 mL of the 

transport medium containing riboflavin laurate (10, 25, 50 mmol/L) in the basolateral side (donor), and 

0.5 mL of the medium in the apical side (receptor). Thereafter, samples (100 µL) were taken out from 

the receiver side at 0.5, 1.0, 1.5, 2.0 and 3.0 h, and the equivalent volume of fresh transport medium 

was supplemented. Finally, all the samples were analyzed by HPLC system [26,27], and free riboflavin 

laurate was measured by the method developed in our lab.  
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Chromatographic separation was performed on a C18 column (ODS250, DIKMA). The mobile 

phase A (Solvent A) was water, while the mobile phase B (Solvent B) was methanol. The elution 

profile (1.0 mL/min) was as follows: 0–1 min, isocratic elution, 80% solvent A/ 20% solvent B;  

1–6 min, linear gradient from 80% solvent A/ 20% solvent B to 40% solvent A/ 60% solvent B;  

6–10 min, linear gradient elution, from 40% solvent A/ 60% solvent B to 30% solvent A/ 70% solvent 

B; 10–15 min, mobile phase restore to 80% solvent A/ 20% solvent B. UV-VIS detection wavelength 

was 375 nm, and the whole HPLC system was stable at 30 °C. 

In our experiment, the standard curve equation was Y = 2903.4X + 175.99, R2 = 0.9951. 

Additionally, the experimental method provided suitable precision, accuracy and limit of detection 

(LOD). Therefore, the HPLC-UV system was a creditable method for rapid analysis of riboflavin laurate. 

Then, the apparent permeability coefficient (Papp), percent transport (%T) and the efflux ratio 

(EfR) were determined [28]. Papp, %T and EfR were calculated as follows:  

Papp = dQ/(dt × A × C0) 

%T = C(Receptor)/C(Donor) 

EfR = Papp (BL-AP)/Papp (AP-BL) 

Where, dQ/dt is the rate of appearance of riboflavin laurate on the receptor side; C0 is the test 

compound initial concentration on the donor side; A is the surface area of the Millicell cell culture 

inserts; C(Receptor) is cumulative concentration on the receptor side; C(Donor) is initial concentration 

on the donor side.  

3.3. Statistics 

Data were expressed as mean ± SD. The t-test was used for statistical analysis and statistical 

significance was defined (* p < 0.05; ** p < 0.01; *** p < 0.001). 

4. Conclusions  

Riboflavin laurate promises to have potential in the protection of patients from the oral or 

gastrointestinal mucositis induced by chemotherapy or radiotherapy at the cellular level. In addition, 

the protective effects may be produced by the prototype of riboflavin laurate, rather than simply by the 

released riboflavin. 

In conclusion, we believe the promising drug, riboflavin laurate, will be widely needed by cancer 

patients receiving chemotherapy or radiotherapy, especially as many of them have developed 

mucositis. However, further researches should be considered to aim at investigating the therapeutic 

mechanisms of riboflavin laurate on oral or gastrointestinal mucositis, and in describing the definite 

transport characteristics of the promising drug. 
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