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Abstract: The vibrational nonlinear dynamics of HOBr in the bending and O–Br stretching 

coordinates with anharmonicity and Fermi 2:1 coupling are studied with dynamical 

potentials in this article. The result shows that the H–O stretching vibration mode has 

significantly different effects on the coupling between the O–Br stretching mode and the 

H–O–Br bending mode under different Polyad numbers. The dynamical potentials and the 

corresponding phase space trajectories are obtained when the Polyad number is 27, for 

instance, and the fixed points in the dynamical potentials of HOBr are shown to govern the 

various quantal environments in which the vibrational states lie. Furthermore, it is also 

found that the quantal environments could be identified by the numerical values of action 

integrals, which is consistent with former research. 

Keywords: HOBr; highly excited vibrational state; geometrical shape of dynamical 

potential; phase space trajectory 

 

  

OPEN ACCESS



Int. J. Mol. Sci. 2013, 14 5251 

 

 

1. Introduction 

Atmospheric pollution has caused widespread concern because it has led to not only a lot of 

diseases but also serious damage to the ecological balance. HOBr is a very unstable oxidizing 

substance in the atmosphere. Radical generation of Bromine (Br) is caused by the O–Br bond breaking 

in highly excited vibrations of HOBr molecules. It is known that photolysis of the refrigerator 

refrigerant Freon produces bromine (Br), which leads to the destruction of atmospheric O3 [1]. It has 

been shown that OH radicals and halogen atoms are the main sources of the formation of 

photochemical smog, and, therefore, the study of the dynamical properties of HOBr molecules in 

highly excited vibration has attracted a lot of attention. 

The dynamics of bending and OBr stretching vibration of HOBr molecules have already been fully 

studied, and the main research methods are the first principle calculations or semi-classical  

methods [2–9]. Compared with the first-principle calculation, the semi-classical method can provide a 

more intuitive physical image and avoid the tedious calculations. Fruitful achievements of the research 

of highly excited vibration have been obtained by semi-classical methods, and some important 

conclusions provide a way to understand molecular dynamics characteristics [6,7]. In recent years, a 

new semi-classical method “dynamics potential” [5–7] has been proposed and applied to study highly 

excited vibrational molecular states. Applications of a dynamical potential phase and space analysis 

could both verify the conclusion of the first-principle method and give detailed physical pictures, including 

molecular isomerization [10], chaotic dynamics, dissociation dynamics [11–13] and other information.  

In this work, the dynamic potentials of highly excited vibrational states of HOBr in bending and of 

O–Br stretching coordinates with anharmonic resonance and Fermi coupling will be shown. The effect 

of the H–O stretching vibration mode on the O–Br stretching mode and the H–O–Br bending mode 

under different Polyad numbers will be investigated and the dynamical potentials, including the 

corresponding phase space trajectories will also be studied, which is helpful to understand the 

dynamics of highly excited vibrational states. 

2. The Semi-Classical Hamiltonian of the HOBr System 

The dynamical properties of highly excited vibrational states of HOBr in the energy region of  

5 × 103–2.5 × 104 cm−1 are abundant and are the focus of this work [2,9,13]. The HOBr vibration 

Hamiltonian in the energy region and its corresponding coefficient can be obtained [2,13] as follows: 
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The corresponding coefficients are shown in Table 1, where the Subscripts 1, 2, and 3, respectively, 

correspond to the H–O stretching vibration mode, the mode of the bending vibration between the angle 

of H–O and O–Br, and the O–Br bond stretching vibration mode. The values a+ and a are the creation 

and the destruction operators, which represent the increase or decrease of the vibration mode 

corresponding to the quantum number. The value n indicates the quantum number of the vibration 

modes (for convenience, hereinafter we also use n to denote the corresponding vibration modes, which 

will be indicated with a q in the position coordinates and the momentum coordinates will be indicated 

with a p). The value ω is the corresponding harmonic vibration coefficient, while x, y, z denote the 

nonlinear coupling coefficients among the different modes. Strong 2:1 Fermi resonance coupling exists 

between the n2 and n3 mode in HOBr and is observed in reference [2,3], and the strength of this 

resonance is related to the quantum numbers of the three modes. Based on the above-mentioned 

reasons, k represents the Fermi resonance strength coefficient in Hamiltonian between the bending 

vibration and O–Br stretching vibration. 

Table 1. The coefficient of HOBr molecular vibration Hamiltonian. 

Parameter name 
Parameter values 

(cm−1) 
Parameter name 

Parameter values 
(cm−1) 

ω1 3769.5381 z1333 0.0121 
ω2 1187.7106 z2333 −0.0015 
ω3 622.3722 z3333 −0.0006 
x11 −70.7877 z11112 0.3505 
x12 −26.8651 z11122 −0.6569 
x13 10.3315 z11222 0.2578 
x22 −5.4432 z11223 0.0326 
x23 −3.7702 z12222 −0.0202 
x33 −3.5507 z22233 0.0033 
y113 −3.4216 z22333 −0.0017 
y122 −1.1955 k1 0.8717 
y133 −0.9150 k2 −0.3183 
y223 −0.6071 k3 −0.1935 
z1133 0.2036 k22 −0.0170 

Besides the conserved quantities of the n1, considering the 2:1 Fermi resonance, 2n2 + n3 is also a 

conserved quantity as a whole, which is called the Polyad number (P number). It is known that 

Equation (1) is available to study the dynamical properties of highly excited vibrational states of HOBr 

in the region of n1 ≤ 7, P ≤ 31 [9]. 

It is also easy to semi-classify the second quantization Hamiltonian (1), which is useful in the 

further analysis. The coset space SU(2)/U(1) [14] can be used as the representing space of HOBr’s 

Hamiltonian, so it can be rewritten using the bending coordinates (q2, p2) as follows: 
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With the coordinates (q3, p3), the Hamiltonian can be written as: 
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With the semi-classical Hamiltonian, the above-mentioned can further be used to obtain the 

dynamics potential and, in this way, we can study the dynamic nature of the HOBr’s highly excited  

vibrational states.  

3. The Dynamics Potential of Highly Excited Vibration of HOBr 

The dynamical potential of H (qi, pi, P) is the effective environment in which the qi coordinate stays 

for each P in a certain molecule. This is achieved by calculating the maximal and minimal energies by 

varying pi for each qi under the condition that n2 and n3 are nonnegative. The dynamical potential 

composed of these maximal and minimal energies as a function of qi is represented by a closed curve 

in which the quantal levels are enclosed. The dynamical potential also defines the qi region for each 
level it encloses. Furthermore, the points in the dynamical potential corresponding to 0iH q    are 

fixed points in the dynamical space [5]. In this section, two main parts will be addressed as follows:  

(1) the dynamical potential influences of the H–O stretching model on the H–O–B bending model and 

the O–Br stretching model and (2) for instance, the phase space trajectories, the action integrals, and 

quantal environments of all energy levels in the dynamical potentials when P is equal to 27 will  

be studied. 

3.1. The Study of Dynamical Potentials and Their Characteristics of Different Quantum Numbers n1 

Corresponding to Typical Polyad Numbers in HOBr 

The dynamical potentials of HOBr (in coordinates q2, q3,) with n1 = 0,1,2,3 of different P numbers 

is considered, and their levels can be calculated with the aforementioned Hamiltonian (ground state 

from the potential energy at the bottom of 2764.0 cm−1). It is found that the dynamical potentials are 

different for small and large P numbers. The dynamical potential is shown as follows (the path marked 

by the fixed point is in accordance with the literature [13]) when P is equal to 15: 

Figure 1 shows that when n1 is equal to 0,1,2,3, the dynamical potentials in the q2 coordinates are 

all simple inverse Morse potentials, which shows that the n1 mode has little effect on the dynamical 

potentials of the q2 coordinates. In the theory of the dynamical potential [9] it is noted that, for an 

inverse Morse potential, the stability of the lowest energy level is the worst in the inverted Morse 

potential corresponding to a certain P, which indicates that H–O stretching has no influence on the 

stability of the energy level corresponding to the H–O–Br bending vibration mode under the same P 

number. In the sense of the geometrical shape of the dynamical potential, it is found that the top of 

dynamical potentials only gradually flattens with the increase of n1, which shows that the n1 mode has 

almost no significant effect on the coupling of n2 and n3. In contrast, the dynamical potentials of HOBr 

in the q3 coordinate consist of an inverted Morse potential and a positive Morse potential, and with the 

increase of n1, the top of the inverted Morse potential gradually flattens and the positive Morse 

potential wells become deeper, which shows that the dynamical potential is turning into an almost pure 

positive Morse potential, especially when n1 is equal to three. As a result, the stability of the high 

energy levels becomes worse while the original fixed-point still remains the same. All the above 

phenomena show that, although the n1 mode is not coupled with the n2 and n3, it still has some effect 

on the resonant coupling of the other two modes, and this impact is reflected in the stability of the 

stretching mode (when n1 is equal to three, this impact is particularly evident). Or said differently, the 
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H–O stretching mode has an important influence on the dynamics of the other degrees of freedom. 

According to qualitative analysis, this is because the intramolecular vibrational relaxation (IVR), 

caused by the resonance between n2 and n3, which enhances the stability of the energy levels [9], is 

weakened in the high-energy region. In the previous literature, the uncoupling modes in molecules 

have hardly ever been considered in the study of molecular dynamical behavior, and in this work, it is 

shown that the previous cognition maybe not comprehensive [2,3].  

Figure 1. The dynamical potentials of HOBr (P = 15) with n1 = 0,1,2,3. The energy levels 

included in the P number are represented by the lines. 
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Figure 1. Cont. 

For larger P numbers, the change of the dynamical potentials is much more complicated. The 

dynamical potentials are shown as follows when P is, for instance, equal to 27: 

When n1 is equal to three, the geometrical shape of the dynamical potentials of both q2 and q3 

becomes increasingly complex and the number of the potential wells also increases. There are two 

inverted Morse in the q2 dynamical potentials, yet there are two positive Morse in the q3 dynamical 

potentials. This shows that with the increase of the n1 mode, the dynamical potential system consists of 

n2 and n3, which makes it more complex. This conclusion confirms once again that the n1 mode has 

some effect on the dynamical behavior of the other mutually coupled resonance modes and that this 

effect is more apparent compared with the case of P = 15, which shows that the uncoupling mode 

becomes much more important to the molecular dynamics behaviors with Polyad number. 

Figure 2 also shows that the q2 dynamical potential with n1 = 3 is more complex than the one with 

n1 = 0,1,2 and that the [B2] fixed point appears. This fixed point leads to the vibration modes 

corresponding to the highest three energy levels in the dynamical potential becoming localized 

vibrational when n1 is equal to three (in the two inverted Morse potentials). In addition, the fixed 

points of the dynamical potentials in q3 remain the same, but when n1 is equal to three, the vibration 

mode corresponding to the low energy level becomes localized vibrational (in the two positive Morse 

potentials). Compared with the dynamical potentials when P is equal to 15, it is obvious that the effect 

of n1 on n2 (or n3’s resonant coupling) is closely related to the value of the P number. The general 

conclusion is that n1 has little effect on the geometrical shape of the dynamical potential of q2, q3 when 

the P number is small, however, this effect becomes larger when the P number is larger. 

In the above-mentioned study, it was found that although the H–O stretching mode was not coupled 

with the H–O–Br bending mode and the O–Br stretching mode, it still affected the resonant coupling 

of the two modes, thereby affecting the dynamics of HOBr. It is elucidated with qualitative analysis 

that the geometrical shape of the dynamical potentials and the corresponding fixed points are sensitive 

to the change of the H–O stretching mode in the sense of geometry. However, this phenomenon and 

the related explanation should be verified in further studies of other molecular systems. 
  



Int. J. Mol. Sci. 2013, 14 5257 

 

 

Figure 2. The dynamical potentials of HOBr (P = 27) with n1 = 0,1,2,3. The energy levels 

included in the P number are represented by the lines.  
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3.2. The Nature and Quantal Environment of the Level of a Specific Polyad Number (P = 27) 

The qualitatively different quantum number n1 of the HOBr system corresponding to dynamical 

potentials and characteristics are discussed in the previous section. Next we will discuss quantitatively 

the dynamical potentials of the specific P numbers with the analysis of the phase space trajectories and 

the action integral of every energy level. For instance, the dynamical potentials of HOBr with P = 27 

are shown in Figure 3a,b in q2 and q3 coordinates, where the horizontal lines show the energy levels 

sharing the designated P. The reason why the case of P = 27 is singled out for discussion is that this 

case is quite representative and possesses the most fruitful characteristics. The dynamic potentials 

obtained when n1 is equal to three are as follows: 

Figure 3. The dynamical potentials in q2 (a) and q3 (b) coordinates for HOBr with P = 27. 

The horizontal lines show the quantal states, L0–L13. [B], [R], [R*] are the stable and 

unstable fixed points, respectively. 

 

The energy is with respect to the ground state which is 2764.0 cm−1 above the bottom of the 

potential well, and the points in Figure 3 designated by [B], [R], [R*] are stable fixed points where 
both / iH q   and / iH p   (i = 2 or 3) are zero [10–13]. It is noted that [R23] is stable for the upper 

realm of the dynamical potential because the potential curve is inverse (upside down) and low energy 

regions have a positive potential at the bottom, which indicates that [R23*] is a stable fixed point. 

Similarly, in Figure 3a, [B2] is also a stable fixed point. Generally, dynamical potentials are considered 

to be able to find all of the fixed points by the two coordinates, and it is easy to find fixed points from 

intuitive geometry with the dynamics potential, which provides a convenient way to study the 

dynamics of a system. 

To further quantitatively analyze the features of related energy levels, the representative trajectories 

of phase space in pi − qi of each energy level is obtained. From the geometric properties of the pattern, 

the trajectory of phase space can be classified into different sets. It is found that the trajectories of  

L0–L1, L2, L3, L4–L8, L9–L13 in q2 coordinates constitute a class and the ones of  

the L0–L1, L2, L3, L4–L6, L7–L13 corresponding levels, respectively, constitute a class in  

q3 coordinates. They are partly shown in Figures 4 and 5: 
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Figure 4. The trajectories of phase space of L1, L2, L3, L5, L7, L9 (q2 coordinates). 

  

 

Figure 5. The trajectories of phase space of L1, L2, L3, L5, L7, L9 (q3 coordinates). 
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In Figure 4, L0–L2 are in inverted Morse potentials and the area of the trajectory of the phase space 

increases with the reduction of energy. L3–L13 are in a positive Morse potential and the area of the 

trajectory of the phase space decreases with the reduction of energy. It is also found that the trajectory 

of the phase space of L2 is divided into two separate trajectories, of which L2 is located at the  

double-well potential in the dynamical potential shown in Figure 3.  

In Figure 5, L0–L6 are in inverted Morse potentials and the area of the phase diagram increases 

with the reduction of energy. L7–L13 are in the positive Morse potential and the area of the phase 

diagram decreases with the reduction of energy. The trajectories of the phase space of L0–L1 are 

composed of two symmetrical parts (the upper one and lower one) because there is a positive and 

negative direction of momentum, and particularly, the trajectory of the phase space of L2 is composed 

of four symmetrical parts due to a multiplied effect of positive/negative directions of momentum on 

the energy level located in the double-well potential (Figure 3a). There is some difference in the phase 

space of L3, and it is shown that the trajectory is composed of three parts caused by an approximate 

harmonic vibration. Similarly, there are two parts of the trajectory in the phase space of L7–L13 

because they are located in the two potential wells. Through the above-mentioned analysis, we found 

that the trajectories of the phase space can more intuitively reflect the dynamical characteristics of the 

vibration mode. 

In order to study the quantal environment of each energy level, the calculation of the action integral 

of the phase space trajectories (quantum number) is needed and the corresponding formula is  

as follows: 

1
Action integral =

2 i ip dq

   (4)

The results are shown in Table 2: 

Table 2. The action integrals of the levels corresponding to P = 27, n = 3. 

State 
label 

Action integral 
in(q2, p2) space 

Difference of the 
action integrals the 
neighboring levels 

State 
label  

Action integral 
in(q3, p3) space 

Difference of the 
action integrals the 
neighboring levels 

L0 0.20 / L0 0.39 / 

L1 0.61 0.41 L1 1.21 0.82 
L2 1.64 1.03 L2 3.27 2.06 
L3 10.83 / L3 5.32 2.05 
L4 9.45 1.38 L4 8.08 2.76 
L5 8.29 1.14 L5 10.41 2.33 
L6 7.18 1.11 L6 12.70 2.29 
L7 6.12 1.06 L7 12.27 / 
L8 5.13 0.99 L8 10.27 2.00 
L9 4.19 0.94 L9 8.37 1.90 
L10 3.19 1.00 L10 6.39 1.98 

L11 2.19 1.00 L11 4.37 2.02 

L12 1.18 1.01 L12 2.37 2.00 

L13 0.19 0.99 L13 0.37 2.00 
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Table 2 shows the action integrals for the levels corresponding to P = 27, calculated from the 

trajectories of the phase space in (q2, p2) and (q3, p3). From the action integrals calculated from  

(q2, p2), the levels can be grouped into two subsets: L0 to L2 and L3 to L13. For the former ones, the 

action integral increases almost in a constant with the decline of energy levels due to the  

inverse-Morse well where they are located, and for the latter ones [15], the action integral decreases 

(also almost in a constant) with the decline of energy levels due to the positive Morse well where they 

are located. From the action integrals calculated from (q3, p3), the levels can be grouped into two 

subsets, also with constant increment (decrement) in their action integrals: L0 to L6 and L7 to L13.  

For the former ones, the action integral increases with the decline of energy levels due to the  

inverse-Morse well where they are located, but with minor deviation on L2, and for the latter ones, the 

action integral decreases with the decline of energy levels due to the positive Morse wells where they 

are located. The constant action integral increment/decrement demonstrates the compatibility of our 

classical treatment with the quantized levels and also shows that the levels stay in various dynamical 

environments, which are defined essentially by the classical fixed points though these energies belong 

to the same Polyad number. In addition, from the view of the (q2, p2) space, the difference between 

adjacent energy levels’ action integrals is almost always the same (approximately equal to one, but the 

L1 is an exception and should be further studied in the future). This value is equal to two if in the view 

of (q2, p2) because P = 2n2 + n3, which is also shown in Table 2. From the above results, it is elucidated 

that the action integral differential of adjacent energy levels nearly doubles that of (q2, p2), which 

corresponds exactly with the system of 2:1 Fermi resonance. The dynamics potential is actually the 

same as the trajectory connecting each fixed point, depicting the restrictive conditions in which 

individual energy levels are located. 

4. Conclusions and Remarks 

The highly excited vibrational state is hard to study using the quantum mechanical calculation 

because of its nonlinear interactions, but it is full of important information. The algebraic Hamiltonian, 

action integral and dynamical potential can bring direct physical pictures into the geometric sense of 

this research field. It is well known that the effective Hamiltonians with a single resonant interaction 

only are completely integrable systems and that the quantization can be done by the quantization of 

action integrals [16,17]. However, as an alternative method, the dynamical potential can lead to most 

inferences being drawn by the quantal wave function algorithm. The subtle behavior of the state wave 

functions that show a drastic change of mode character in a set of states sharing a common Polyad 

number is found to be related to the unstable region/fixed point in the dynamical space. This approach 

is global in the sense that the focus is on a set of levels instead of individual ones, which is different 

from traditional semi-classical methods, but, nevertheless, it should be noted that our approach is but 

one branch in the field of algebraic approaches to molecular vibrational dynamics. With the methods 

mentioned above using HOBr, it is not difficult to extend our subjects to other integrable and 

nonintegrable systems (such as O3, NO2, CS2, C2H2 and so on), including their dissociation, 

isomerization and dynamical symmetry. These conclusions are helpful and significant for us to 

understand the dynamics of molecular highly excited vibrational dynamics. 
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