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Abstract: Novel magnetic-antimicrobial-fluorescent multifunctional hybrid microspheres with 

well-defined nanostructure were synthesized by the aid of a poly(glycidyl methacrylate) 

(PGMA) template. The hybrid microspheres were fully characterized by scanning electron 

microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared 

(FTIR), X-ray diffraction (XRD) and digital fluorescence microscope. The as-synthesized 

microspheres PGMA, amino-modified PGMA (NH2-PGMA) and magnetic PGMA 

(M-PGMA) have a spherical shape with a smooth surface and fine monodispersity. 

M-PGMA microspheres are super-paramagnetic, and their saturated magnetic field is  

4.608 emu·g−1, which made M-PGMA efficiently separable from aqueous solution by an 

external magnetic field. After poly(haxemethylene guanidine hydrochloride) (PHGH) 

functionalization, the resultant microspheres exhibit excellent antibacterial performance 

against both Gram-positive and Gram-negative bacteria. The fluorescence feature 

originating from the quantum dot CdTe endowed the hybrid microspheres with biological 

functions, such as targeted localization and biological monitoring functions. Combination of 

magnetism, antibiosis and fluorescence into one single hybrid microsphere opens up  

the possibility of the extensive study of multifunctional materials and widens the  

potential applications. 
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1. Introduction 

Guanidinium antibacterial materials have recently attracted considerable scientific attention,  

due to their unique advantages, such as high antibacterial activity, high stability, ease of storage, 

reproducibility, non-corrosiveness, non-toxicity and low cost. They have been widely utilized in various 

fields, e.g., medical devices, hospitals, water purification systems, food packaging, food preservation 

and sanitation [1–8]. As for a contact biocide, the contact area of guanidinium materials with 

microorganisms is very crucial to their antibacterial efficiency. Reduction in the size of the guanidinium 

antibacterial materials can increase their specific surface area and provide more effective antimicrobial 

functional groups and, thus, can improve the antimicrobial efficiency. Nano-materials have shown huge 

potentials and good prospects for their application in many fields, due to their outstanding properties, 

such as small size, large surface area and high reactivity [9]. Thus, increase of the specific surface area 

via preparing the guanidinium antibacterial materials with a nano-size could be an effective method to 

improve the antibacterial properties [10].  

However, guanidinium antibacterial nano-materials still have some drawbacks, such as the 

cumbersome recovery process. The antibacterial process is usually carried out in an aqueous solution, 

and then residual antimicrobial nano-material should be isolated from a large amount of the aqueous 

solution by an expensive separation procedure. Introduction of a magnetic component into the 

antibacterial system is a necessary and effective way to reduce the recovery cost, due to its unique 

properties in the magnetic separation technology [11,12]. Magnetic separation is an important technique, 

which separates and recovers magnetic particles or particles susceptible to magnetic fields through an 

external magnetic field [13,14]. Micro/nano-particles and biological particles could be separated from 

the aqueous solution quickly and easily by utilizing this technology [15–17]. The greatest advantage of 

this technique is to isolate the maximum target substance in the shortest time. Since the mid-1970s, 

magnetic separation technology has been widely applied in the bioprocessing and biomedical fields, 

such as enzyme immobilization, cell arrangement, protein separation and drug delivery [18].  

Fluorescent labeling is an important biotechnology, which plays a key role in biological imaging and 

biological monitoring. With the in-depth study of the fluorescent substance, the scientists found that the 

quantum dots have many advantages compared to conventional organic fluorescein for good stability, 

wide excitation wavelength, stable high quantum yield, highly narrow emission peaks and other aspects. 

As a fluorescent probe, doped quantum dot fluorescent microspheres can play a pivotal role in biological 

imaging and biological monitoring. The quantum dot CdTe were adsorbed on the polymer surface by 

electrostatic adsorption, so that the polymer has fluorescence, which has targeted localization and 

biological monitoring functions [19]. 

In this paper, poly(glycidyl methacrylate) (PGMA) was chosen as the cladding object, due to its high 

reactivity caused by superficial epoxy groups and good resistance to acid, heat, weather and solvent. 

Multifunctional hybrid microspheres with magnetic, antibacterial and fluorescent function were 
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obtained using a PGMA template, as shown in Figure 1. The as-synthesized microspheres could be 

effectively recovered, due to their magnetic character, and they could be used in several areas, such as 

biological imaging and biological monitoring, because of their fluorescent property. For an 

antimicrobial test, Staphylococcus aureus (S. aureus), Bacillus subtilis (B. subtilis), Escherichia coli  

(E. coli) and Pseudomonas aeruginosa (P. aeruginosa) were used as model bacteria, and hybrid 

microspheres exhibited distinguishable antibacterial activity against all of them. 

Figure 1. Schematic illustration for the formation processes of the multifunctional  

M-poly(glycidyl methacrylate) (PGMA)/poly(haxemethylene guanidine hydrochloride) 

(PHGH)-CdTe hybrid microspheres.  
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2. Results and Discussion 

2.1. Description 

PGMA microspheres capable of responding to magnetic fields were prepared by dispersion 

polymerization of GMA in the presence of iron oxides, as reported by Daniel Horák, and the conditions 

for synthesis and properties of the resulting magnetic carriers were studied systematically.  

Subsequently [20], micron-sized, monodisperse, superparamagnetic, luminescent composite 

poly(glycidyl methacrylate) (PGMA) microspheres with functional amino-groups were successfully 

synthesized by Chang et al. [21]. The composite microspheres were bright enough, easily observed 

using a conventional fluorescence microscope and were easily separated from solution by magnetic 

decantation using a permanent magnet. Although authors claimed that these new multifunctional 

composite microspheres were promising in a variety of bio-analytical assays involving luminescence 

detection and magnetic separation, no analytical applications were reported. Soon afterward, Jing et al. 

synthesized multifunctional PGMA microspheres with the capability of recognizing and binding cancer 

cell by the aid of the magnetic and fluorescent PGMA microspheres as support [22]. Hela cells could be 

captured with these PGMA microspheres from their suspension and easily moved in the direction of the 

magnetic field. On the basis of these studies mentioned above, magnetic-fluorescent bifunctional  

PGMA microspheres herein were further functionalized with antibacterial guanidinium to obtain 

magnetic-antimicrobial-fluorescent multifunctional microspheres. In this work, the combination of 

magnetism and fluorescence, with antibacterial performance in one single entity has been utilized for the 

first time to produce multifunctional nanocomposites. 

The multifunctional M-PGMA/PHGH-CdTe microspheres were skillfully fabricated by the 

encapsulation of magnetic PGMA nanoparticles with antibacterial PHGH and the fluorescent CdTe 

attached to the PHGH shell. Figure 1 represents vividly the synthetic procedure of the multifunctional 

M-PGMA/PHGH-CdTe microspheres. Firstly, the PGMA support microspheres were modified by 

ethylene diamine to yield NH2-PGMA microspheres, and the magnetic M-PGMA microspheres are 

subsequently prepared by in situ precipitation. The PHGH coated magnetic PGMA nanoparticles were 

obtained by the aid of epoxy chloropropane (ECH) as mediator. At last, the fluorescent quantum dot 

CdTe were attached to the outer PHGH shell by electrostatic adsorption to obtain microspheres. 

Introducing magnetic PGMA nanoparticles as templates for preparation of PHGH shell enhances the 

materials’ surface area and provides an effective means for the separation of the antibacterial agents 

through the application of a magnetic field. In addition, the quantum dot fluorescent microspheres can 

play a pivotal role in biological imaging and biological monitoring as a fluorescent probe. Similar 

strategies can also be utilized for the fabrication and separation of other multifunctional materials. 

2.2. SEM Test of the PGMA, NH2-PGMA and M-PGMA Microspheres 

SEM was carried out to investigate the morphology, structure, surface state and particle size of the 

as-synthesized microspheres. Figure 2A–C present the representative SEM images of the prepared 

PGMA, NH2-PGMA and M-PGMA microspheres. PGMA, NH2-PGMA and M-PGMA microspheres 

are quasi-monodisperse, spherical, surficial smooth and solid, and the mean particle size is 1.64, 1.77 

and 1.81 μm, respectively. The increase in particle size further implied the successful formation of each 
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synthetic step. However, there is no significant difference in particle surface between NH2-PGMA and 

M-PGMA microspheres, suggesting that Fe3O4 nanoparticles prepared by in situ deposition were mainly 

deposited inside of the microspheres. 

Figure 2. SEM images of hybrid microspheres: (A) PGMA; (B) NH2-PGMA; (C) M-PGMA. 

 

2.3. Characterization of the M-PGMA/PHGH-CdTe Microspheres 

Figure 3A,B presents the representative SEM images of the prepared M-PGMA/PHGH-CdTe 

microspheres. The microspheres are quasi-monodisperse, spherical, surficial smooth and solid, and  

the mean particle size is 2.0 μm. Figure 3C depicts TEM images of the M-PGMA/PHGH-CdTe 

microspheres. In Figure 3C, the typical core–shell structure of PHGH with CdTe coated magnetic 

PGMA microspheres can be discerned. The M-PGMA/PHGH-CdTe microspheres are obviously 

spherical in shape, and the modified iron oxide nanoparticles are in the center of the microspheres.  

It can be seen that the quantum dots CdTe, which the arrow annotations denote in Figure 3C, were 

almost spherical attached to the PHGH shell, as indicated in Figure 1. The compositional information 

of the EDX spectrum in Figure 3D exhibits the presence of C, N, O, Cl, Fe and Cd elements in the 

M-PGMA/PHGH-CdTe microspheres. The signal of the Fe element is readily detected from Figure 3D, 

providing powerful evidence that the Fe3O4 has successfully deposited in PGMA microspheres. It is 

observed clearly for the tiny content of Cd coming from the quantum dot CdTe in the enlarged figure 

(inset, Figure 3D). The N and Cl peaks appearance confirm the formation of PHGH copolymer on the 

surface of the PGMA microspheres. 

Figure 3. (A,B) TEM images of M-PGMA/PHGH-CdTe microspheres; (C) SEM images 

and (D) EDX spectrum of the M-PGMA/PHGH-CdTe microspheres. 

 
  



Int. J. Mol. Sci. 2013, 14 7396 

 

Figure 3. Cont.  

 

2.4. FT-IR Analysis of PGMA, NH2-PGMA and M-PGMA Microspheres 

FTIR spectra were recorded and used to identify the formations of the PGMA, NH2-PGMA and 

M-PGMA microspheres in each synthetic route. As shown in Figure 4A, the strong peaks at 1732 and 

1256 cm−1 are ascribed to the carbonyl group characteristic absorption and the symmetric stretching 

vibrations of the epoxy group, respectively [23]. The peaks at 848 and 910 cm−1 are assigned to the 

asymmetric stretching vibration peak of the epoxy group. In Figure 4B, NH2-PGMA microspheres have 

shown the disappearance of the epoxy group-symmetric stretching vibration peaks at around 848 and 

910 cm−1 compared with the original PGMA, while new peaks appeared at 3310 and 1568 cm−1 

corresponding to the –NH and –NH2 stretching vibration, respectively [24]. These data indicated that the 

modification with ethylenediamine on the PGMA surface is successfully performed. In Figure 4C, the 

peak at 580 cm−1 is attributed to the Fe-O stretching vibration, indicating that the Fe3O4 has successfully 

deposited in PGMA microspheres via in situ deposition [23]. 

Figure 4. FTIR spectra of (A) PGMA; (B) NH2-PGMA; (C) M-PGMA hybrid microspheres. 

 

2.5. XRD Analysis of M-PGMA/PHGH Microspheres 

XRD patterns of the magnetic M-PGMA/PHGH microspheres (Figure 5) show characteristic (220), 

(311), (400), (422), (511) and (440) peaks of cubic inverse spinel structure, which matched well with 

standard Fe3O4 nanoparticles [25]. The pattern of the M-PGMA/PHGH microspheres shows a broad 

band appearing in the range from 15° to 25°, which is derived from the amorphous PGMA component 
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and polymer shell [26]. No other impurities were observed on XRD patterns, suggesting that the 

as-synthesized microspheres were relatively pure. It is obvious that the characteristic diffraction peaks 

of Fe3O4 are weakened in the pattern of the magnetic M-PGMA/PHGH microspheres, because of the 

presence of the amorphous template. From XRD results, it can be concluded that the iron oxide 

nanoparticles are encapsulated by PGMA, which is in good agreement with the SEM and TEM results. 

Figure 5. XRD patterns of the M-PGMA/PHGH hybrid microspheres. (a.u. = arbitrary unit). 

 

2.6. Magnetism Assessment of M-PGMA/PHGH-CdTe Microspheres 

The magnetic hysteresis loop of the M-PGMA/PHGH-CdTe hybrid microspheres was taken at room 

temperature (Figure 6). M-PGMA/PHGH-CdTe hybrid microspheres displayed a super-paramagnetic 

property, and the saturation magnetization value was found to be 4.608 emu·g−1, which is  

sufficient for magnetic separation from water solution. The saturation magnetization value of the 

M-PGMA/PHGH-CdTe microspheres is less than that of the pure magnetic iron oxide nanoparticles 

(61.87 emu·g−1), which can be explained by considering the diamagnetic contribution of the PGMA 

template surrounding the magnetic nanoparticles [27]. 

Figure 6. The magnetic hysteresis loop of the M-PGMA/PHGH-CdTe microspheres at 298 K. 
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M-PGMA/PHGH-CdTe hybrid microspheres were dispersed in water to study their magnetic 

separation behavior. Figure 7 exhibits that M-PGMA/PHGH-CdTe hybrid microspheres rapidly  

move toward the magnetic field direction in an aqueous solution under the external magnetic  

field in 30 s (from Figure 7A to Figure 7B). After the cancellation of the external magnetic field, 

M-PGMA/PHGH-CdTe hybrid microspheres evenly spread out in water again with bottle shaking  

(from Figure 7B to Figure 7A). In addition, introducing the magnetic separation can make the 

M-PGMA/PHGH-CdTe hybrid microspheres recyclable. These microspheres are potent biocidal agents, 

which can be easily separated and mechanically directed by applying a magnet. This is a utility when a 

particle-bound bacteria needs to be captured for environmental monitoring or the particles are to be 

directed specifically to a location of bacterial colonies, such as in a water treatment system and cooling 

devices and pipes. Thus, the recyclable antibacterial performance of M-PGMA/PHGH-CdTe hybrid 

microspheres is the crucial point of our study and will be taken into account in our consequent work for 

their practical application. 

Figure 7. The photograph of the magnetic M-PGMA/PHGH-CdTe microspheres dispersed 

in aqueous solution without and with an external magnetic field. 

 

2.7. The Fluorescence Assessment of M-PGMA/PHGH-CdTe Microspheres 

Introducing the quantum dots CdTe can provide the resultant hybrid microspheres fluorescent 

feature, which was confirmed through fluorescent assessment by dispersing the microspheres into 

aqueous solution [28]. M-PGMA/PHGH-CdTe hybrid microspheres render orange-red fluorescence 

under the irradiation of the ultraviolet lamps in Figure 8A and show green fluorescence under the digital 

fluorescence microscope in Figure 8B. The fluorescent property of resultant hybrid microspheres 

verified well that the quantum dot CdTe were firmly immobilized on M-PGMA/PHGH hybrid 

microsphere surface. 
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Figure 8. (A) The photograph of composite microspheres dispersed in water under 

ultraviolet irradiation; (B) Digital fluorescence microscope image of composite 

microspheres dispersed in water. 

 

2.8. Antimicrobial Functions 

The antimicrobial property of the resultant hybrid microspheres was examined against S. aureus,  

B. subtilis, P. aeruginosa and E. coli by using the MIC method. MIC is considered to be the lowest 

concentration that completely inhibits against agar plate comparing, disregarding singly colony or a faint 

haze caused by the inoculum [29]. The MIC values of M-PGMA/PHGH-CdTe microspheres against S. 

aureus, B. subtilis, P. aeruginosa and E. coli are shown in Table 1. The quantitative data in Table 1 have 

been repeated three times, and the same results were obtained. Hybrid microspheres have powerful 

antibacterial property against both Gram-positive bacteria and Gram-negative bacteria and the MIC 

values of 64 mg/mL, 500 μg/mL, 32 μg/mL and 16 μg/mL against E. coli, P. aeruginosa,  

S. aureus and B. subtilis, respectively. 

Table 1. MIC Values of M-PGMA/PHGH-CdTe microspheres Against E. coli, 25922,  

P. aeruginosa, 27853, S. aureus, 25923 and B. subtilis, 6633. 

Antibacterial 
Result 

Gram-negative Gram-positive 

E. coli 
ATCC 25922

P. aeruginosa 
ATCC 27853 

S. aureus 
ATCC 25923

B. subtilis 
ATCC 6633 

MIC (μg/mL) 64 500 32 16 

Guanidine compounds with a broad spectrum of activity against both Gram-positive and 

Gram-negative bacteria are mainly used as ideal antimicrobial agents. Among various types of 

guanidine compounds, polymer synthesized from hexamethylene and guanidine salt have been the most 

extensively investigated, due to high water solubility, wide spectrum antibacterial activity, excellent 

antibacterial efficiency and nontoxicity. Zhang et al. synthesized polyhexamethylene guanidine 

hydrochloride and polyhexamethylene biguanidine hydrochloride by melting polymerization, and the 

corresponding antibacterial assessments against bacteria and fungi were carried out as well [6].  

Qian et al. fabricated modified guanidine polymers composed of PHGH and an epoxy group by using 

condensation polymerization. The dynamic antimicrobial process of the guanidine polymer and the 

morphological change of bacterial cells were found by an atomic force microscope (AFM) test [30]. 
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Guan et al. grafted guanidine polymer PHGH onto the cellulose fibers by in situ graft copolymerization 

of glycidyl methacrylate-modified PHGH onto cellulose fibers. Through PHGH functionalization, the 

modified cellulose exhibited high antimicrobial activity against E. coli [7]. The hypothesis for this study 

is that the smaller the functionalized particle is, the more active it will be, for smaller particles possess a 

larger surface area and, thus, provide more functional sites to contact the bacteria, which results in  

the improved antibacterial efficiency. To improve the antibacterial effect, M-PGMA/PHGH-CdTe 

microspheres with a nanostructure were prepared in this work by immobilization of guanidine polymer 

PHGH into nano-scale M-PGMA, and the antimicrobial activities get a great improvement against both 

Gram-positive bacteria and Gram-negative bacteria compared with bulk powder counterparts. 

3. Experimental Section 

3.1. Materials 

Guanidine hydrochloride was purchased from Tianjin Huadong Chemical Reagent Plant. GMA was 

obtained from Tianjin Guangfu Fine Chemical Research Institute. Ferric chloride (FeCl3), potassium 

hydroxide (KOH), ethylenediamine, Ferrous chloride (FeCl2·4H2O), epoxy chloropropane (ECH) and 

ammonium hydroxide (25 wt%) were purchased from Beijing Chemical Company. Azobisisobutyronitrile 

(AIBN) and polyvinyl pyrrolidone (PVP) were available from Tianjin Chemical Reagent Plant and 

Shanghai Chemical Reagent Plant, respectively. CdTe were synthesized according to the previous 

literature [31]. The other reagents were analytical grade and were used without any purification. 

3.2. Characterization 

The morphology and structure of the samples were characterized using a XL30 ESEM-FEG scanning 

electron microscope (SEM). The XRD patterns were obtained with a Siemens model D5000 

diffractometer equipped with a copper anode producing X-rays with a wavelength of 1.5418 Å. Data 

was collected in continuous scan mode from 10° to 80° with a 0.02° sampling interval. Fourier 

transform infrared (FTIR) spectra were recorded by using a Thermo Nicolet (Woburn, MA, USA) 

Avatar 370 FTIR spectrometer. Magnetization curves as a function of magnetic field were measured at 

298 K under a magnetic field up to 10 kOe. The fluorescence of the samples was characterized using a 

NIKON PE2000-u digital fluorescence microscope. 

3.3. Preparation of PGMA Microspheres 

About 0.15 g of PVP was added into a mixed solution containing 120 mL of ethanol and 15 mL of 

deionized water. The mixed solution was added into a 250 mL flask in a 50 °C water bath after complete 

dissolution. Then 0.12 g of AIBN was mixed with 5 mL of GMA and subsequently added into the flask; 

the temperature was increased to 70 °C, and the reaction was kept for 16 h. After the polymerization, the 

whole system was cooled down, and the obtained microsphere emulsion was centrifuged and washed 

several times with ethanol and water. At last, the product was freeze-dried and preserved. 
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3.4. Preparation of NH2-PGMA Microspheres 

About 2 g of the PGMA were added to a mixture of 20 mL of deionized water and 20 mL of 

ethanediamine. The mixture was stirred vigorously at 80 °C for 12 h. The whole process described above 

was performed under the protection of N2, and the solution was kept stirring at a certain rate. The 

resultant microspheres were centrifuged and washed several times with ethanol and water, respectively, 

to remove the impurities and freeze-dried in a vacuum. 

3.5. Preparation of M-PGMA Microspheres 

About 1 g of NH2-PGMA was added into 20 mL deionized water and dispersed to emulsion at room 

temperature. Then, the emulsion was cooled down to 10 °C. FeCl3 (162 mg), and FeCl2·4H2O (63 mg) 

was mixed in 10 mL of water at 10 °C with stirring. The mixed solution was added into the dispersed 

NH2-PGMA emulsion, and the system was pumped into vacuum rapidly down to a pressure of 10 mm 

Hg for 20 min. Then, the system was restored to the atmosphere pressure. About 2 mL of NH3·H2O  

(25 wt%) was added into the flask, and the temperature was raised to 80 °C. The reaction was kept for  

30 min, and the obtained M-PGMA microsphere emulsion was centrifuged several times and dispersed 

with ethanol and water to remove the impurities and freeze-dried in a vacuum. 

3.6. Preparation of M-PGMA/PHGH Microspheres 

Immobilization of PHGH on M-PGMA microspheres was accomplished via a two-step processes, 

including epoxide modified PHGH and PHGH immobilization. First, a 5 g mount of PHGH was added 

into 50 mL of deionized water. ECH (1 g) was added dropwise into the mixture during the last 30 min 

and kept stirring for 4 h. Then 50 mL of deionized water was added, and the reaction was kept for 

another 6 h at 60 °C to obtain the epoxide modified PHGH. In the second step, the epoxide-modified 

PHGH was added into 50 mL of ethanol, and 0.2 g of KOH were added to tune pH = 8. Then, 1 g of 

M-PGMA was injected into the mixture for 6 h. The obtained M-PGMA/PGHG microspheres were 

centrifuged and washed several times with ethanol and water, respectively, to remove the impurities and 

dried in a vacuum oven at 50 °C.  

3.7. Electrostatic Adsorption of Dot CdTe 

Typically, 0.75 mg of M-PGMA/PHGH microspheres were added into a 1.5 mL aqueous CdTe 

quantum dot solution protected by mercaptosuccinic acid and mixed by sonication for 10 min. After 

centrifugation, the supernatant was removed, and the precipitate was washed with ethanol, which was 

dispersed and centrifuged several times to obtain the M-PGMA/PHGH-CdTe microspheres. 

3.8. Antibacterial Assessment 

Staphylococcus aureus (S. aureus), Bacillus subtilis (B. Subtilis), Escherichia coli (E. coli) and 

Pseudomonas aeruginosa (P. aeruginosa) were used as model microorganisms to determine the 

antimicrobial properties of the samples. The minimum inhibition concentration (MIC) of 

SiO2-PS-CDMH nanoparticles was determined by the similar agar plate method. The sample 
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concentration varied from 32, to 64, to 128, to 256, to 512 and to 1024 µg/mL. The culture of each 

bacterium was diluted by sterile distilled water to ca. 100 CFU/mL, and the inoculated plates were 

incubated at 37 °C for a contact time of 12 h. 

4. Conclusions 

In conclusion, the M-PGMA/PHGH-CdTe hybrid microspheres with the properties of magnetism, 

fluorescence and antibiosis were successfully synthesized. The magnetic PGMA microspheres were 

synthesized as support, and PHGH was grafted on the template surface. Finally, the quantum dot CdTe 

was adsorbed on the microsphere surface. Antibacterial tests revealed that the M-PGMA/PHGH-CdTe 

microspheres exhibited powerful antibacterial performance against both Gram-positive and 

Gram-negative bacteria. Magnetic measurement showed that these hybrid microspheres possessed a 

super-paramagnetic property, and the saturation magnetization value was found to be 4.608 emu·g−1. 

Magnetic behavior can make these antibacterial microspheres structural antibacterial materials separable 

in a rapid and easy way. The resultant hybrid microspheres with the quantum dot CdTe have targeted 

positioning and biological monitoring functions. Introducing the magnetism and fluorescence in the 

antibacterial field in this study opens up the possibility of the extensive study of antibacterial materials, 

widening their potential applications in medical devices, healthcare products, water purification 

systems, hospitals, dental office equipment, food packaging, food storage, household sanitation, etc. 
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