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Abstract: MicroRNAs (miRNAs) are small, non-coding, endogenous RNA molecules that 

play important roles in a variety of normal and diseased biological processes by  

post-transcriptionally regulating the expression of target genes. They can bind to target 

messenger RNA (mRNA) transcripts of protein-coding genes and negatively control their 

translation or cause mRNA degradation. miRNAs have been found to actively regulate a 

variety of cellular processes, including cell proliferation, death, and metabolism. Therefore, 

their study is crucial for the better understanding of cellular functions in eukaryotes. To 

better understand the mechanisms of miRNA: mRNA interaction and their cellular 

functions, it is important to identify the miRNA targets accurately. In this paper, we 
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provide a brief review for the advances in the animal miRNA target prediction methods 

and available resources to facilitate further study of miRNAs and their functions. 
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1. Introduction 

In addition to DNA methylation and histone modification, epigenetic mechanisms have recently 

been extended to microRNAs (miRNAs), which are important regulators of gene expression in many 

biological systems. miRNAs are small, non-coding, endogenous RNA molecules, about 19–24 

nucleotides in length that can negatively control their target gene expression post-transcriptionally [1]. 

This is mainly achieved by recognizing and binding to the 3' untranslated region of the target 

messenger RNA (mRNA) sequences [2]. miRNAs have been found to actively regulate a variety of 

cellular processes, including cell proliferation, death, and metabolism, and therefore, their study is 

crucial for the better understanding of cellular functions in eukaryotes [3]. 

Mature miRNAs are incorporated into the RNA-induced silencing complex (RISC), where miRNAs 

specifically interact with target mRNAs. Approximately one thousand miRNAs have been discovered 

in humans and are believed to control more than half of the protein coding genes, where a single 

miRNAs might regulate hundreds of such genes [4]. This one-to-multiple mapping presents a hurdle in 

accurately identifying the miRNA targets. Furthermore, miRNAs are only partially complementary to 

their mRNA target sequences. Such imperfections in base matching (e.g., a mismatch or bulge) make it 

even more difficult to accurately predict the miRNA targets in silico [4]. 

In this paper, we provide a brief review on the advances in the miRNA target prediction methods 

and available resources. The readers are referred to the literature cited in this review, and the 

references therein for further details. 

2. Methods for miRNA Target Recognition 

A key step in the identification of miRNA target is the selection of features that are potentially of 

predictive power. Many researchers are devoted to such an effort, and quite a number of predictive 

features have been discovered. Such features include dinucleotide composition of flanking sequence [5,6], 

strong base pairing between the 3' UTR of mRNAs and the miRNA seed region [7], thermodynamic 

stability of binding sites [8], evolutionary conservation of binding sites (particularly the seed region) [5,9], 

secondary structure accessibility [10,11], and host genes expression profiles [12]. 

The most commonly used predictive features include characteristics in the seed regions and the 

phylogenetic conservation of miRNA binding sites, and almost all the existing methods take advantage 

of such features in the algorithm. 

For example, by identifying mRNAs with strong base pairing to the 5' region of the miRNA and 

evaluating the number and quality of these complementary sites, Lewis et al. identified more than  

400 regulatory target genes for the conserved vertebrate miRNAs [7]. Likewise, another popular 

algorithm PicTar [13–17] similarly incorporated seed constraints for the identification of miRNA 
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targets. The new doRiNA database offers computational miRNA target site predictions for human, 

mouse and worm, and these predictions constitute the most recent update of PicTar predictions [17].  

It is notable that some researchers have questioned the universality of the seed assumption, 

demonstrating that several experimentally confirmed miRNA targets do not seem to meet the seed 

region criterion. So far, the seed assumption is not unanimously accepted as a method to identify all 

miRNA targets, and that some relevant miRNA:mRNA interactions might not exhibit the seed region 

property [18]. 

With the purpose of enhancing the specificity of prediction for functional target sites, many 

computational studies also incorporated the evolution conservation [9,14,19–22] or flagged conserved 

putative targets [8,23]. Particularly, ElMMo [22] incorporated such conservation statistics in a more 

general, rigorous and miRNA-dependent manner. Also, Friedman et al. developed a quantitative 

method for evaluating evolutionary conservation of binding sites and applied this to the study of 

vertebrate miRNA targeting With this method, they found three times as many preferentially 

conserved sites as detected previously, further increasing the known scope and density of conserved 

miRNA regulatory interactions [9]. 

Another commonly used feature for target recognition includes the thermodynamic stability of 

binding sites. It is believed that the formation of a stable miRNA:target binding in vivo, to some extent, 

must be governed by thermodynamic stability. With the rationale that this binding is a process where 

free energy changes occur through the formation of a miRNA:target duplex, such changes may help 

detect miRNA targets [24,25]. The computation of energy can vary, but most methods focus only on a 

particular form of energy (i.e., hybridization) [7,14,23,26,27]. For example, Rehmsmeier et al. 

developed a program, named RNA-hybrid, which predicts multiple potential binding sites of miRNAs 

in large target RNAs based on the thermodynamic stability of binding sites [8]. 

However, more recently, combining target accessibility and duplex stability [11,28], integrated 

thermodynamic features for miRNA target prediction demonstrated more effectiveness. In addition, 

based on the immuno-precipitation (IP) of the RISC components, AIN-1 and AIN-2, Hammell et al. 

presented that total free energy change and target accessibility yielded enrichments in miRISC-enriched 

transcripts [25,29]. In addition to incorporating accessibility into an energy parameter [28], methods to 

calculate target accessibility differ, including A/U nucleotides [5,10] and larger nucleotide window to 

the 5' of the binding site [29]. More specifically, for example, the Sfold method was used to fold whole 

3' UTR sequences plus 300 nucleotides of adjacent coding sequence for all predicted C. elegans 

transcripts. The output of Sfold was then used to calculate the average accessibility over 25 nucleotide 

windows flanking each potential microRNA binding site [29]. 

Expression-based approaches are also becoming popular to elucidate miRNA-mRNA associations. 

Based on expression profiles of host genes, Radfar et al. introduced a new computational method 

InMiR, which uses a linear-Gaussian model for the prediction of targets of intronic miRNAs [12]. 

They separated intronic miRNAs into three classes: those that are tightly regulated with their host 

gene; those that are likely to be expressed from the same promoter but whose host gene is highly 

regulated by miRNAs; and those likely to have independent promoters. Compared to a method 

considering only correlation, this method recovered nearly twice as many true positives as the same 

fixed false positive rate [12]. Engelmann et al. recently also showed that entire mRNA expression 

profiles or large groups of them can be reconstructed only from miRNA expression, and vice versa. 
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This introduced a regression model for the prediction of canonical and non-canonical miRNA-mRNA 

interactions [30]. 

Furthermore, machine learning algorithms can also be used to intelligently search for the parameters 

with most predictive power of genuine miRNA binding sites. An example of a method for miRNA 

target prediction is TargetBoost, which uses machine learning based on a set of validated miRNA 

targets in lower organisms to create weighted sequence motifs that capture binding characteristics 

between miRNAs and their targets [31]. Combining genetic programming with boosting, TargetBoost 

generates a metric that represents the likelihood of a site being targeted by the miRNA. 

3. Resources for miRNA Target Prediction 

Various popular resources for miRNA target predictions are summarized in Table 1. Different 

miRNA target prediction algorithms can provide differing results, and often researchers need to cross 

check multiple algorithms to get an additional layer of confidence for the true positive targets. For 

example, Ryland et al. incorporated miRanda [32], microCOSM Targets [33], DIANA-MicroT [27,34] 

and TargetScan [9] to determine whether the variants detected in mRNA 3' UTRs occurred within 

miRNA binding sites [35]. To facilitate that end, starBase was developed to provide a comprehensive 

exploration of miRNA-target interaction maps from CLIP-Seq and Degradome-Seq data [36]. This 

allows for a search of commonly agreed upon targets predicted by different algorithms, including 

TargetScan, PicTar, PITA, miRanda and RNA22 [37]. For example, when TargetScan and PicTar are 

selected, the database will output target sites predicted by both TargetScan and PicTar programs. This 

resource greatly facilitates inter-method and inter-database consensus comparison of miRNA targets. 

In addition, miRTar, an integrated system for miRNA target prediction, enables biologists to easily 

identify biological functions and regulatory relationships between a group of known/putative miRNAs 

and protein coding genes. Furthermore, this database delivers perspective information on miRNA 

targets and their alternatively spliced transcripts [38]. 

Table 1. Summary of prediction techniques for miRNA target recognition. 

Method Feature References Availability 

TargetScan(S) 
Database of microRNA targets 

conserved in 5 vertebrates. 
[7,19] 

http://genes.mit.edu/tscan/ 

targetscanS2005.html 

miRanda 

Optimizes sequence 

complementarity based on  

position-specific rules and 

interspecies conservation. 

[23,32,39] http://www.microrna.org 

RNA-hybrid 

Determines the most favourable 

hybridization site between  

two sequences. 

[8,40] 
http://bibiserv.techfak. 

uni-bielefeld.de/rnahybrid 

PicTar (including 

doRiNA) 

Provides details about 3’ UTR 

alignments with predicted sites, and 

links to various public databases. 

[13–17] http://pictar.mdc-berlin.de 
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Table 1. Cont. 

Method Feature References Availability 

TargetBoost 

Learns the hidden rules of  

miRNA-target site hybridization 

based on machine learning. 

[31] http://www.interagon.com/demo 

PITA 

Investigates the role of  

target-site accessibility, as 

determined by base-pairing 

interactions within the mRNA. 

[11] 
http://genie.weizmann.ac.il/pubs/ 

mir07/index.html 

ElMMo 

Infers miRNA targets using 

evolutionary conservation and 

pathway analysis. 

[22] http://www.mirz.unibas.ch/ElMMo2/ 

Singh’s 

Predicts and characterizes  

45 miRNAs by genome-wide 

homology search against all the 

reported miRNAs. 

[41] 
http://www.cdfd.org.in/lmg/PDF/ 

imb816.pdf 

mirWIP 

Employs structural accessibility of 

target sequences, the total free energy 

of microRNA:target hybridization, 

and the topology of base-pairing to 

the 5 seed region of the microRNA. 

[29] http://ambroslab.org 

microCOSM 

Targets 

Web resource containing 

computationally predicted targets for 

microRNAs across many species. 

[33] 
http://www.ebi.ac.uk/enright-srv/ 

microcosm/htdocs/targets/v5/ 

DIANA-microT 

3.0 

Individually calculate several 

parameters for each microRNA and 

combines conserved and  

non-conserved microRNA 

recognition elements into a final 

prediction score. 

[27,34] http://www.microrna.gr/microT 

starBase 
Database with intersections among 

targets by five predictive softwares. 
[36] 

http://starbase.sysu.edu.cn/ 

clipSeqIntersection.php 

InMiR 

Uses a linear-Gaussian model,  

and provides a dataset of  

1,935 predicted mRNA targets for  

22 intronic miRNAs. 

[12] http://www.plosone.org 

miRTar 

Identifies the biological functions 

and regulatory relationships between 

a group of known/putative miRNAs 

and protein coding genes. 

[38] http://mirtar.mbc.nctu.edu.tw/human/ 

4. Next-Generation Sequencing for miRNA Target Identification 

With the advances of next-generation sequencing, high-throughput, systematic identification of 

specific miRNAs targets in a relatively short time became realistic. Several resources using CLIP-seq 

data to identify miRNA targets were developed, including Piranha [42], CLIPZ [43] and starBase [36]. 
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Piranha [42] provides a utility for peak-calling based on a zero-truncated negative binomial regression 

model, which is able to incorporate external information to help guide the target identification process. 

CLIPZ provides a database and analysis environment for experimentally determined binding sites of 

RNA-binding proteins [43]. 

5. Future Work  

Although quite a number of methods and databases have been developed for the identification of 

miRNA targets, most methods have a false positive rate (FPR) greater than 0.3, which means that the 

specificity is often lower than 70%. FPR is evaluated as (1-specificity), where specificity is defined as 

the ratio of the number of true negatives and true negatives plus false positives. Filtering for true 

positive targets from the large predicted target lists is challenging and time consuming. Although 

conservation and functional similarities have been taken advantage of to reduce false positives, there is 

still much room for improvement. Since different miRNA target prediction algorithms still provide 

varying results, this indicates that such methods also suffer from higher rates of false negatives. As a 

result, highly accurate prediction algorithms with small false positive and false negative rates need to 

be further developed. Such algorithms are crucial to studying the exact role of miRNA in signaling 

pathways, as well as associations with various disease pathways. 

To better perform the comparative study of different methods, it is imperative to have some  

“gold standard” data sets, and quantitatively evaluate different methods based on a fixed set of metrics. 

The establishment of a gold standard requires strong experimental evidence (reporter assay or western 

blot analysis) as well as consensus across independent experiments. 
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