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Abstract: Acclimation of plants with an abiotic stress can impart tolerance to some biotic 

stresses. Such a priming response has not been widely studied. In particular, little is known 

about enhanced defense capacity of drought stress acclimated plants to fungal and bacterial 

pathogens. Here we show that prior drought acclimation in Nicotiana benthamiana  

plants imparts tolerance to necrotrophic fungus, Sclerotinia sclerotiorum, and also to  

hemi-biotrophic bacterial pathogen, Pseudomonas syringae pv. tabaci. S. sclerotiorum 

inoculation on N. benthamiana plants acclimated with drought stress lead to less  

disease-induced cell death compared to non-acclimated plants. Furthermore, inoculation of 

P. syringae pv. tabaci on N. benthamiana plants acclimated to moderate drought stress 

showed reduced disease symptoms. The levels of reactive oxygen species (ROS) in 

drought acclimated plants were highly correlated with disease resistance. Further, in planta 

growth of GFPuv expressing P. syringae pv. tabaci on plants pre-treated with methyl 

viologen showed complete inhibition of bacterial growth. Taken together, these 
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experimental results suggested a role for ROS generated during drought acclimation in 

imparting tolerance against S. sclerotiorum and P. syringae pv. tabaci. We speculate that 

the generation of ROS during drought acclimation primed a defense response in plants that 

subsequently caused the tolerance against the pathogens tested.  

Keywords: Nicotiana benthamiana; drought acclimation; disease tolerance; reactive 

oxygen species 

 

1. Introduction 

Apart from thriving under several abiotic stress factors, plants must also defend themselves from 

pathogen attack [1,2]. When exposed to multiple stress conditions plants activate specific and unique 

stress responses [3,4]. Plants response to complex biotic and abiotic stress conditions include 

expression of stress-inducible genes that function in stress tolerance, activation of signaling cascades, 

production of reactive oxygen species (ROS) and accumulation of hormones such as salicylic acid 

(SA), ethylene, jasmonic acid (JA) and abscisic acid (ABA) [5–7].  

Plant adaptation to any stress situation has been suggested to be mediated by both basal and induced 

defenses [8,9]. The effectiveness of this basal resistance can be enhanced by pre-exposing plants to specific 

mild abiotic or biotic stimuli before imposing the full strength of respective stress. For example, prior 

exposure of plants to cold and drought stress has resulted in more stronger and successful response to the 

subsequent cold or drought stress, a phenomenon known as acclimation [10,11]. Initial cold acclimation of 

plants has increased the tolerance to subsequent cold stress in different species [12–15]. Prior exposure of 

Arabidopsis plants to drought stress or ABA resulted in freezing tolerance in those plants [16]. In wheat, 

pre-anthesis high-temperature acclimation alleviated damage to the flag leaf caused by post-anthesis  

heat stress [17]. Initial acclimation of sunflower seedlings to mild temperature provided better tolerance  

to subsequent high temperature and these heat acclimated seedlings also showed oxidative  

stress tolerance [18]. Chemical priming of Arabidopsis plants with the non-protein amino acid  

β-aminobutyric acid (BABA) increased drought and salt stress tolerance through accelerated stress gene 

expression and stomatal closure mediated by ABA, suggesting the possibility of increasing plant 

tolerance to abiotic stresses through effective priming of the pre-existing defense pathways [19]. 

Similarly, prior exposure of plants to biotic stress stimuli resulted in stronger and faster defense 

response upon subsequent exposure to pathogens, a phenomenon known as priming [20]. Prior 

pathogen infection or treatments with natural or synthetic compounds like SA, riboflavin, thiamine, 

menadione, 2,6-dichloroisonicotinic acid (INA), benzothiadiazole (BTH), BABA, or phosphite (Phi) 

has been shown to prime defense against subsequent pathogen challenge by mostly potentiating SA 

defense signaling [21–29]. Numerous studies have attempted to understand the components of primed 

defense. Treatment of Arabidopsis leaves with Phi resulted in enhanced accumulation of H2O2 not only 

at the site of Phytophthora cinnamomi inoculation but also in cells away from the inoculation [28], 

indicating the role of ROS in priming the defense response.  

In nature, plants are simultaneously exposed to various biotic and abiotic stresses. Plants have 

mechanisms to survive in such complex environmental conditions [30]. In recent years, there are 
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emerging reports to show that enhanced defense response of abiotic stress acclimated/treated plants to 

pathogens and vice versa [31]. For example, exposure of Arabidopsis plants to ozone or UV irradiation 

has induced resistance to virulent phytopathogenic Pseudomonas syringae strains [32] and to tobacco 

mosaic virus in tobacco [33]. Similarly, infection of various host plants with cucumber mosaic virus 

improved drought tolerance and also enhanced freezing tolerance in Beta vulgaris [31]. However, very 

little is known about how prior exposure of plants to abiotic stress improves the capacity of plants to 

effectively respond to biotic stress.  

Upon successful recognition of avirulent pathogens, plants elicit a biphasic ROS accumulation  

with a rapid but weak transient first phase followed by a massive and prolonged second phase. The 

second phase increase in ROS, also called oxidative burst, is highly correlated with bacterial disease  

resistance [34]. Regulation of several abiotic stress signaling pathways is also associated with ROS [35]. 

Therefore, the generation of ROS has been proposed as a key process that is shared between biotic and 

abiotic stress responses [35,36]. Rapid production and tight regulation of the steady-state levels of 

ROS plays a pivotal role in both abiotic stress signaling and disease resistance responses [37,38]. 

Rapid generation of superoxide (O2
−) and accumulation of hydrogen peroxide (H2O2) is a characteristic 

early feature of cell death or hypersensitive response (HR) following perception of pathogen  

signals [39–41]. In this study, we used Nicotiana benthamiana to investigate the effect of drought 

acclimation on subsequent challenge with necrotrophic fungus, Sclerotinia sclerotiorum and  

hemi-biotrophic bacterial pathogen, P. syringae pv. tabaci. Upon infection, drought acclimated plants 

showed less disease-induced cell death when compared to control non-acclimated plants. This 

correlated with the levels of ROS in the drought acclimated plants. 

2. Results and Discussion 

2.1. Drought Acclimated N. benthamiana Plants Showed Increased ABA and Root-Shoot Ratio 

To confirm precise drought stress imposition and acclimation of plants, relative water content 

(RWC), ABA and root-shoot ratio were measured at the end of stress period. Plants maintained  

at 100% field capacity (FC) showed nearly 90% RWC, whereas plants at 40% FC reached RWC of 

45% (Figure 1a) confirming the cellular water deficiency in the stressed plants. Quantification of ABA 

in drought stress acclimated N. benthamiana plants showed increased ABA levels (Figure 1b). ABA 

content is known to increase under drought stress [42]. Reduction in cellular water levels decreases 

osmotic potential and RWC resulting in closure of stomata to limit water loss through transpiration. 

Stomatal closure as a result of reduced cellular water levels during drought is mediated by ABA [43]. 

Consistent with this, N. benthamiana plants undergoing drought acclimation showed reduction in 

RWC accompanied with increased ABA content as drought level increased. There was also 

considerable increase in root-shoot ratio in N. benthamiana plants maintained at different FC’s with 

maximum increase in root growth in plants maintained at 40% FC (Figure 1c). When subjected to 

drought stress, plants show differential response to root and shoot growth with rapid inhibition of shoot 

growth and continued root elongation. Root elongation under low water potential is considered to be 

an adaptation of plants to dry conditions as continued root elongation facilitates water uptake from the 
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soil [44,45]. These physiological and biochemical changes confirms acclimation of N. benthamiana 

plants subjected to different drought stress levels.  

Figure 1. Drought acclimation of N. benthamiana plants. Drought stress was imposed on 

five-week-old plants following gravimetric approach. After all sets of plants reached 

specific FC’s, they were continued to be maintained at that level for five more days for 

acclimation (a). Stress levels were confirmed by stress-induced changes in relative water 

content (RWC) (b); ABA (c) and root-shoot ratio (d) at the end of acclimation period. Each 

bars represents standard error (n = 6). The one-way analysis of variance (ANOVA) was 

performed (p = 0.05), and letters above the data points indicate the significance and data 

points with the same letters are not significantly different.  
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Figure 2. Sclerotinia sclerotiorum-induced cell death on N. benthamiana plants. Leaves of 

control and drought acclimated plants were inoculated with potato dextrose agar (PDA) 

plugs with actively growing S. sclerotiorum cultures. Photographs were taken at 4 dpi (a) 

and necrotic area was visually scored 0 (no cell death) to 4 (severe cell death) and 

expressed as percent of each score (b). Five independent plants were analyzed for each 

treatment (each with 30 inoculation spots). Experiments were repeated twice with 

reproducible results. 

 

2.2. Drought Acclimation Reduced Sclerotinia sclerotiorum-Induced Cell Death in N. benthamiana 

S. sclerotiorum is a broad host range fungus which can cause disease on N. benthamiana [46].  

To determine the effect of drought acclimation on S. sclerotiorum-induced cell death, we inoculated 

drought acclimated N. benthamiana plants, at different FC’s for five days, with actively growing  

S. sclerotiorum. Drought acclimated N. benthamiana plants showed significantly reduced cell death 

symptoms caused by the fungus. In contrast, severe cell death was observed in non-acclimated control 

and plants maintained at 80% FC (Figure 2a,b). It is well known that relative humidity (RH) is an 
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important factor that affects fungal infection and high RH facilitates better infection. Hence a set of 

plants were also infected with S. sclerotiorum and grown under high RH (80%) to determine whether 

the observed reduction in cell death was due to the intrinsic capacity of the drought acclimated plants 

or just mere reduction in RH on the leaf surface. Interestingly, there was no change in cell death or 

disease symptom development in plants maintained at 40% FC even under high RH when compared to 

plant maintained at 40% FC with low RH (Figure 2). These results suggest that acclimation to 

moderate drought stress (40% FC) has enhanced the capacity for effective activation of cellular 

defense response resulting in improved tolerance to subsequent infection of S. sclerotiorum and the 

observed tolerance is not due to lack of moist condition. As observed in plant-pathogen interactions, 

plants are also known to display priming-like reactions to abiotic stresses. It has been reported that 

biotic and abiotic stresses may interact both positively and negatively either by enhancing the 

resistance or increasing susceptibility to other stresses [4]. Recent evidences suggest that drought 

acclimation may enhance resistance to subsequent pathogen infection. In tomato, drought acclimation 

by three cycles of wilting and recovery enhanced the resistance to the fungus Botrytis cinerea [47]. In 

Pinus yunnanensis, plants which were exposed to mild water stress during winter showed enhanced 

resistance to a pathogenic fungus, Leptographium yunnanense [48]. A study in rose showed plant 

extract from drought stressed leaves controlled the black spot disease caused by Diplocarpon rosae 

through enhanced expression of pathogenesis-related proteins, peroxidase and accumulation of defense 

response elicitors [49]. Consistent with these reports, our results also suggest that drought acclimation 

of N. benthamiana plants might have primed a defense response resulting in enhanced tolerance to 

subsequent S. sclerotiorum infection. 

2.3. Acclimation to Moderate Drought Stress Enhanced Tolerance to Pseudomonas syringae pv. tabaci 

in N. benthamiana 

To examine whether drought acclimation could also improve tolerance to plant-pathogenic bacteria, 

drought acclimated N. benthamiana plants were syringe (needless) infiltrated with a host pathogen,  

P. syringae pv. tabaci [50], which causes wildfire disease in tobacco [51]. Disease-induced cell death 

symptoms were visually scored at 5 days post-inoculation (dpi). More than 65% of the inoculated spots 

showed complete cell death and nearly 35% of the inoculated spots showed moderate cell death in 

plants maintained at 100% FC (Figure 3). The trend was very similar in plants maintained at 80% FC 

with more inoculated spots showing moderate cell death. Strikingly, the inoculated spots of plants 

maintained in 60% FC showed moderate to mild cell death and none of them showed complete cell 

death. Interestingly, nearly 30% and 70% of the inoculated spots showed complete cell death in plants 

maintained at 40% FC and severe drought stress of 20% FC, respectively (Figure 3). Surprisingly, 

when we quantified the bacterial growth in the inoculated spots of plants maintained in different FC’s, 

we did not see a significant difference at 3 dpi (data not shown). Disease symptoms induced by 

bacterial pathogens are not always correlated with bacterial growth as shown earlier [52,53]. From our 

results we suggest that acclimation of plants to moderate drought stress (60% FC) could limit the  

P. syringae pv. tabaci-induced disease development in N. benthamiana. At severe drought stress level 

(20% FC), the disease symptoms-induced by P. syringae pv. tabaci were quite similar to control 

(100% FC) plants suggesting the importance of moderate drought acclimation in imparting tolerance to 
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bacterial pathogens. Lack of ROS induction and higher levels of ABA could be the reason for 

increased susceptibility of plants maintained at 20% FC (Figures 1c and 4a,b). Recent reports suggest 

that ABA plays antagonistic role in biotic stress signaling [30,54,55]. ABA treatment has been shown 

to antagonize SA, JA and ethylene defense signaling [56,57]. Negative effect of ABA on ROS 

mediated defense response has also been reported [58]. An ABA deficient tomato mutant plant, with 

impaired aldehyde oxidase activity which is required in ABA biosynthesis, accumulated H2O2 rapidly 

following infection by Botrytis cinerea, leading to a stronger defense response and greater resistance to 

the pathogen compared with the wild-type [58]. The susceptibility of N. benthamiana plants to 

bacterial pathogen maintained at 20% FC which also accumulated higher levels of ABA could be 

attributed to antagonistic effect of ABA on SA-mediated defense signaling. 

Figure 3. Disease-induced cell death in N. benthamina plants inoculated with 

Pseudomonas syringae pv. tabaci. Leaves of control and drought acclimated plants were 

inoculated with P. syringae pv. tabaci and pathogen-induced cell death was visually scored 

0 (no cell death) to 5 (100% cell death at the inoculated spot) at 5 dpi. Three independent 

plants were analyzed for each treatment (each plant with 5 inoculation spots). Experiments 

were repeated twice with reproducible results. 

 

2.4. Tolerance to Pathogen is Correlated with ROS Levels in Drought Acclimated Plants 

We quantified the levels of O2
− and H2O2 in plants subjected to drought acclimation at different 

FC’s. The highest levels of O2
− and H2O2 were found in plants maintained at 40% FC. There was  

6-fold increase in O2
− (Figure 4a) and 2-fold increase in H2O2 fluorescence455 at 40% FC (Figure 4b). 

At other stress levels (60% and 20% FC), which also showed considerable tolerance against both the 

pathogens, the O2
− levels were higher than non-acclimated control plants. It has been previously 

proposed that prior exposure of plants to abiotic stress alters pathogen resistance related activities that 

might result in enhanced resistance to subsequent pathogen challenge [59]. Though the mechanism or 

components involved in altered activities are not clear, there are evidences suggesting common 
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connection points between biotic and abiotic stresses. Particularly, ROS generation has been suggested 

to be a central process in mediating the biotic and abiotic stress responses [30,60]. It is well known that 

the concentration of ROS increases during drought stress conditions [61]. During pathogen infection, 

plants rapidly generate ROS resulting in oxidative burst that limits pathogen spread through HR or cell 

death [35]. Our data shows that N. benthamiana plants acclimated at 40% FC drought stress enhanced 

tolerance to S. sclerotiorum and P. syringae pv. tabaci. The increased tolerance was correlated with 

higher O2
− and H2O2 levels in plants acclimated at 40% FC suggesting that high levels of ROS, very 

similar to oxidative burst under pathogen infection, might have helped reduce the disease development. 

It is not clear why the ROS levels decrease at severe stress condition (20% FC). In accordance with the 

reduced ROS levels, we saw reduced tolerance of N. benthamiana to tested pathogens at 20% FC when 

compared to moderate stress conditions (40% and 60% FCs). 

Figure 4. ROS levels in drought acclimated N. benthamiana plants. The ROS contents 

were measured in plants maintained at different FC’s at the end of stress period. The O2
− 

(a) and H2O2 (b) were quantified by XTT and scopoletin assay, respectively. Each bars 

represent the standard error (n = 6). The one-way analysis of variance (ANOVA) was 

performed (p = 0.05), and letters above the data points indicate the significance and data 

points with the same letters are not significantly different. (c) Visualization of bacterial 

growth in methyl viologen (MV) treated N. benthamiana leaves infected with 

Pseudomonas syringae pv. tabaci. Plants were sprayed with ROS inducer, MV, followed 

by infection with GFPuv expressing P. syringae pv. tabaci. Photographs were taken under 

UV light at 4 dpi. 
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Figure 4. Cont. 

 

To verify whether ROS generated in drought acclimated plants can reduce the pathogen infection, 

we used a ROS inducing chemical, methyl viologen (MV). We monitored the growth of GFPuv 

expressing P. syringae pv. tabaci pathogen [62] in MV sprayed N. benthamiana leaves. In light 

exposed plants, MV accepts electrons from photosystem I and transfers them to molecular oxygen 

generating superoxide in chloroplast [63]. In control plants intense bright green fluorescent spots 

representing bacterial colonies were observed under long wavelength UV light, while no or a very few 

green spots were visible on the leaves treated with MV suggesting the role of ROS in inhibiting 

bacterial growth (Figure 4c). High ROS levels in the plants maintained at 40% FC and complete 

prevention of bacterial growth in MV sprayed plants suggest that pre-generated ROS in drought 

acclimated plants might have primed the defense response against necrotrophic fungus, S. sclerotiorum 

and also to the bacterial pathogen, P. syringae pv. tabaci.  

2.5. Drought Acclimation in N. benthamiana Induces Plant Defense Genes 

Expression pattern of disease resistance marker genes was analyzed to understand the possible 

molecular mechanism for the enhanced defense capacity of drought acclimated plants. There was 

higher induction of PR-5 (pathogenesis-related protein-5) and PDF1.2 (plant defensin 1.2) in drought 

acclimated plants (Figure 5). The PR-5 gene encodes an osmotin and is induced through many 

signaling pathways including osmotic stress [64–66]. The PDF1.2 gene encodes a plant defensin, and 

is induced by pathogen attack both locally and systemically via a JA/ethylene-mediated signaling 

pathway [67]. Studies have shown that several genes which are part of plant defense response to 

pathogen attack are also induced by osmotic stress but the role of these proteins in abiotic stress is not 

fully clear [68,69]. Our results suggest that pre-induction of pathogen defense responsive genes like 

PR-5 and PDF1.2 in drought acclimated plants might also contributed to the delayed disease 

development when challenged with S. sclerotiorum and P. syringae pv. tabaci in N. benthamiana. 
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Figure 5. Increased expression of plant defense genes in drought acclimated plants. The 

relative mRNA expression levels of PR-5 (a) and PDF1.2 (b) were quantified by  

qRT-PCR in drought acclimated and control plants (100% FC). The fold change values 

were calculated using the 2−CT method and represented as changes in mRNA levels 

relative to 100% FC. NbActin was used as an internal control to normalize gene expression 

levels. The data are averages of two biologically independent experiments each consisting 

of three technical replicates.  

   

3. Experimental Section  

3.1. Plant Growth Condition  

N. benthamiana seeds were germinated on flats filled with soilless potting mixture, Metro-Mix 830, 

BM7 (SUNGRO Horticulture Distribution, Inc., Bellevue, WA, USA). Three-week-old seedlings  

were transplanted to 10 cm diameter round pots (one seedling per pot) containing BM7. Plants were 

watered with fertilizer (20-10-20) containing soluble trace element mix (The Scotts Co., Marysville, 

OH, USA). The light intensity maintained in the greenhouse was 600 µE/m2/s with RH of 65%.  

The day/night cycles for temperature and photoperiod were 22 ± 2 °C/19 ± 2 °C and 14 h day/10 h 

night, respectively.  

3.2. Drought Stress Imposition 

Five-week-old plants were subjected to drought stress following gravimetric method of stress 

imposition. Soil moisture content at 100% field capacity (FC) was determined using the formula; Soil 

moisture content at 100% FC = [(SW − DW)/DW] × 100; Where SW-saturated soil weight taken after 

flooding the soil followed by overnight gravitational drainage; DW-oven dry soil weight.  

For stress treatments, soil water status was gradually brought down to specific FC (80%, 60%, 40% 

and 20%) by weighing the pots daily at a fixed time of the day [70]. Set of plants which reached 

specific FC early were maintained at that level by replenishing the lost water through 

evapotranspiration until the last set reaching 20% FC. Further, plants were maintained continuously at 

respective FC’s for five more days for acclimation (Figure 1a). Drought acclimated plants were then 



Int. J. Mol. Sci. 2013, 14 9507 

 

 

used for stress effect quantification and pathogen experiments. During the pathogen infection, plants 

were maintained at specified FC. A set of plants at 100% FC were used as non-acclimated controls.  

3.3. RWC and Root-Shoot Ratio Measurement  

RWC was determined following the protocol described by Flower and Ludlow, 1986 [71]. Briefly, 

after determining the fresh weight (FW), samples were immediately hydrated, by floating on  

de-ionized water in a closed Petri dish, to full turgidity for 4 h under normal room light and 

temperature and turgid weight (TW) was obtained. Samples are then oven dried at 50 °C until they 

reach constant weight to determine dry weight (DW). RWC was calculated using the formula:  

RWC (%) = [(FW − DW)/(TW − DW)] × 100 

To estimate the root-shoot ratio, the aboveground and belowground parts were harvested separately 

and oven dried at 50 °C until they reach constant weight. The aboveground weight was considered as 

shoot and the below ground weight as root and the root-shoot ratio was calculated using following 

formula; Root-shoot ratio = Root dry weight/shoot dry weight. 

3.4. ABA Quantification 

Leaf tissue was ground to fine powder in liquid nitrogen and ABA was extracted in extraction buffer, 

containing 80% methanol with 100 mg/L butylated hydroxytoluene and 500 mg/L citric acid, in darkness 

for 16 h with constant shaking at 4 °C. The mixture was centrifuged at 5000 rpm for 5 min and the 

supernatant was diluted 10-fold with TBS buffer (50 mM Tris, 1 mM MgCl2, 150 mM NaCl, pH 7.8). 

The ABA concentration was quantified using the Phytodetek competitive ELISA kit (Agdia, Elkhardt, IN, 

USA) following the manufacturer’s instructions. A standard curve of different ABA dilutions [(+) cis/trans 

ABA; Sigma Aldrich, St. Louis, MO, USA)] was constructed to calculate the sample ABA concentrations. 

3.5. Pseudomonas syringae pv. tabaci Inoculation and Scoring the Extent of Disease-Induced Cell Death  

P. syringae pv. tabaci was grown in King’s B medium at 30 °C supplemented with rifampicin  

(25 μg/mL). Bacterial cells were harvested by centrifugation of overnight grown culture at 5000 rpm 

for 10 min, washed twice and re-suspended to the desired concentration (0.00002 OD) in sterile water. 

The bacterial suspension was used to inoculate leaves of drought acclimated N. benthamiana plants at 

respective FC’s using a needless syringe [50]. Plants were maintained continuously under drought for 

three more days and then re-watered. The disease-induced cell death symptom was scored at five days 

post-inoculation (dpi).  

3.6. Sclerotinia sclerotiorum Inoculum Preparation and Plant Inoculation 

S. sclerotiorum culture was initially grown on PDA (Difco, Sparks, MD, USA) medium and  

agar plugs (5 mm diameter) from actively growing regions were used as inoculum. Leaves of  

N. benthamiana plants maintained at different FC’s were inoculated with agar plugs and maintained  

at 65% RH. For increased RH, another set of plants inoculated with S. sclerotiorum were maintained  
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at 80% RH chamber. All plants were kept at 22 ± 2 °C on a 14 h photoperiod at light intensity of  

200 μE/m2/s. The disease symptoms were recorded at 5 dpi. 

3.7. Quantification of ROS in Drought Acclimated Plants 

Leaf tissue from drought acclimated plants, at a specified FC for 5 days, was used for quantifying 

O2
− and H2O2. Superoxide content was quantified by incubating leaf disks in 1 mL of K-phosphate 

buffer (20 mM, pH 6.0) containing 500 µM XTT (Polyscience Europe, Eppelheim, Germany) in 

darkness at 25 °C on a shaker. The increase in absorbance (A470) in the incubation medium was measured 

using spectrophotometer [72]. For determining H2O2 levels, leaf disks were pre-incubated for 30 min 

in 3 mL of K-phosphate buffer (20 mM, pH 6.0) to remove pre-formed H2O2 and were then incubated 

in 3 mL of the same buffer containing 5 µM scopoletin [7-hydroxy-6-methoxy-2H-1-benzopyran-2-one 

(Sigma Aldrich, St. Louis, MO, USA)] [73] and 3 µg/mL horseradish peroxidase in darkness at 25 °C 

on a shaker. The decrease in fluorescence (excitation: 346 nm, emission: 455 nm) in the incubation 

medium was measured using reagent blanks as reference. 

3.8. Inoculation and Monitoring Bacterial Growth in Methyl Viologen Pre-Treated Plants 

Initially a set of four-week-old N. benthamiana plants were sprayed with 5 µM MV. Six-hours later, 

plants were inoculated with P. syringae pv. tabaci expressing GFPuv [63] by vacuum infiltration. The 

inoculated plants were kept in greenhouse at 22 ± 2 °C. Two-days after inoculation, bacterial growth 

was visualized in leaves directly under UV light in a dark room. The photographs were taken using 

regular digital camera under UV light.  

3.9. Real-Time Quantitative RT-PCR (qRT-PCR) Analysis 

Total RNA was extracted from 100 mg of leaf tissue collected at the end of drought acclimation 

period using the RNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA) following the manufacturer’s 

instructions. Two microgram of DNase treated total RNA was used for cDNA synthesis using 

SuperScript™ III First-Strand Synthesis System (Invitrogen™ life technologies, Grand Island, NY, 

USA). Equal dilution of cDNA was used as a template for qRT-PCR analysis using gene-specific 

primers (Supplementary Table S1) and the SYBR® Green (Sigma Aldrich, St. Louis, MO, USA). The 

PCR reactions were run on Bio-Rad Thermal Cycler (Bio-Rad Life Science Research, Hercules, CA, USA) 

using the following program: 95 °C for 2 min, 95 °C for 15 s, 55 °C for 1 min for 40 cycles. The 

NbActin was used as internal control to normalize gene expression levels. Quantification of the relative 

changes in gene expression was performed using the 2−CT method [74]. 

4. Conclusion  

The results from our study indicate that drought acclimation of N. benthamiana plants enhance 

tolerance to S. sclerotiorum and P. syringae pv. tabaci. The increase in ROS levels in drought acclimated 

plants could have primed the defense response in plants to subsequent pathogen infection very similar to 

second phase of oxidative burst in plant-pathogen interaction. Our study further strengthens the 

concept that ROS could be the central process connecting abiotic and biotic stress responses.  
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