Supplementary Information

Figure S1. Nucleotide and deduced amino acid sequences of ApuASK. Numbers on left side indicate the positions of nucleotide and amino acid, respectively. Residues from -29 to 0 are signal peptide (underlined). Residues A336-T414 constituted CD and pullulan-degrading enzymes N -terminus domain (○). Residues Q452-R912 indicated alpha-amylase catalytic domain (grey highlight). Residues D917-L1001 represented amyC domain (\bullet). Residues T1006-L1092; Q1214-T1302 constituted two fibronectin type III (FnIII) domains (\triangle). Residues T1302-A1399 indicated CBM20 domain ($\mathbf{\Delta}$). Residues P1531-T1596 represented nine-repeated sequence of PGSGTT with a PGSGTA and PGSGTM (double underlined). Residues E1811-R1874; F1875-A1936; V1944-M2003 indicated three consecutive repeats of S-layer homology (SLH) domain (\star). The four conserved regions of the α-amylase family, designated as I, II, III, and IV are shown in rectangular.

2476 CGCGCTGTTTTCTTACTTGGAAACGGAACGGATTCATACGAACGTGCTGAACTTGATCCGAATTATAATGAAGAA

2551 CTCGGTAAAAAGCGATTAAAACTCGCTGCTATTTTACAAATGGGTTATCCAGGTGCGCCGACAATCTACTATGGT

2626 GATGAAGCAGGAGTGACAGGTTCGAAGGATCCGGACGATCGTCGTACGTATCCGTGGGGAAGTGAGGACAAGCAA

2701 CTCATTGCACATTATCAAAAAGTAGGTGCGATTCGCACGAAGCATCAAGATGTATTAGCGAAAGGAACAATTGAG
901

ACAGTATATGCGAAAGGTGATGTATACGTCTTTGCCCGTCAGTACGGAAAAGATGTTGCGCTTATTGCGGTAAAC

2851 CGCGGCAATAGTGAACAAACGGTACAGTTGGATGTCGCTTCACTTATTCCAAATGGCATCAAATTAGTAGATGAA
R G N S E Q T V Q L D V A S L I P N G I K L V D E

AGCGACAAATGGGAAGACATACAAGCAACGTACGACCGACAAGATGGCGATGCGAATGTATTCCGTGCATCGTTO$\begin{array}{llllllllllllllllllllllllll}S & D & K & W & E & D & I & Q & A & T & Y & D & R & Q & D & G & D & A & N & V & F & R & A & S & F\end{array}$ACTCCGCTACAAGCAGGCACGTACACGTATCGTTATGGCTTTACGACAAATCTCGGTGACAGTTGGGTGCATACA$\begin{array}{lllllllllllllllllllllllll}T & P & L & Q & A & G & T & Y & T & Y & R & Y & G & F & T & T & N & L & G & D & S & W & V & H & T\end{array}$GAAGAAAAAACGTTTACACTCACTGCAAATGAGGCAGATCAACAAGCACCAGCAAAGGGCATTCAACTTGTTCAA

$\Delta \Delta \Delta$ CCAGACGTTGAATCCGGTCAAGTGAATTTAACGTGGTCGTTCGTAGATCGAGATGACAATGATGCCTATATGCTT P D V E S G Q V N L T W S F V D R D D N D A Y M L $\Delta \Delta \Delta$ ATCATTGAGCGTGATGGTCAAATCGTCCATACAACAACGAATATCGGTACATCATTTACTGATTATGATGTTGAA
 $\Delta \Delta \Delta$ AACGGAAAAACATATACGTATGTTGTGAAGTTGTATGACCGTGCTGGGAACGTTGTCGCATCAAATGACGTGCAA
 $\Delta \Delta \Delta$ ATTACGCCAGACATCGTGATGGTTCAAGTGACGTTTAAAGTGAAAGCACCAAGCTATACACCGTTAGATACGCGC
 ATTACGATTCCAAATAGTATTAACGGTTGGAATACAGGTGCATGGGAAATGACGCGTGGTGGAGCGGTCACACCT
 GATTGGGAATTTACAACGGAGCTTCAAGAAGGCGAAACAATTACTTATAAGTATGTAAAGGGTAGCTCATGGGAT
 CAAGAAGGGCTAGCTGATCATACACGTGATGATCAAACAGATGATGATGTTAGCTATTATGGCTATGGTGCGATC
 GGAACGGATTTAAAAGTTACGGTACAAAATCAAGGCAATAACAAAATGATCATTCAAGATTACATTTTACGTTGG
 ATCGATATGCCTGTCGTTGTTGAAGAAGTGAAAAAAGATGGCGATCGCGTCACGATAAAAGGAAACGCGATTAAA
 GATGGCGTGTTAACGATCAATAAAGAACGTGTCACGATTCAAGACGACATGTCATTTACGTACACGTTCACACCA
 GCAGCCAATCAAAAAGAAGTGGCCATCCACATCGAACCGTCTGAACGAAGTAAGTCAGACATCTTTAAAAATGAT
 GGCGGTGCCATTGCGAAAAATACGAAAAACTACGTACTAAATATCGAAACAAAACAATTGCGCGAAGGTGTGTTG
 CAAGAGGATACAACACCGGGCAGTGGCACAACACCAGGCAGCGGTACAACACCAGGCAGTGGCACAGCACCAGGT

AGCGGCACAACACCAGGTAGCGGCACAATGCCGGGCAGCGGCACAACACCGGGCAGTGGCACAACACCGGGCAGT GGCACAACACCGGGCAGCGGCACAACACCAGGAAGTGGCACAACACCAGGAAGTGGCACAACACCAGTGAAGGGT
 GAAAATGGTACGGTTGTTTTACAGCCGAAAGTAGAGACGAAAGAAAAAGACGGCAAAGTAGTAGAAAAAGTGGCA
 ACTATTTCAACAAATGAAGTTGAAGCGATTGTCAAGGAGCTGTCGAATGAAAATAAACAAGTCGTCGTCTCCCTC
 GGCTCGCTTCCAAAAGGTGTAGCCACAAAAGTAGATGTGCCAGCTACATTATTTACAAAAGCGGCAAATAAGCAA
 GGAGAAGCAACGATTGTGAGTGCAACTGAGCAGGCGACATACAAATTGCCAGCAAAAGAAGTACAAGCGTCTCTG
 GCAGCGATTGCAAAAACACTCGGTGCAACAGTCGAACAAGTAAACATCTCGATCGAAATGAAAGTAAAAGATGCT
 CCACAACTACGTGCGAAAGCATTATCTGATGCAGTAGAGTTTCATGTTGTGGCGAAGGCAAACGGAAAAGAACAA
 GTGATTGATCGTTTTACTCAATATGTTGAACGTGAAATCGTATTGAAGCAGGCGGTGAATGCAAGTCGTTCTATT
 GTGGTGCGCGTAAACGATGACGGTTCCATTACACCTGTACCGACCACATTTGTTGGCAACAAAGCGGTCATCAAG
 TCATTGACGAACTCGACATACGTCGTCGTTGAAGGAACACATACATTTGGCGACATCGAGCAACATTGGGCGAAA

$\boldsymbol{t} \boldsymbol{t} \boldsymbol{t}$

 GGATATATCGAAACATTGGCAGCTAAACAGCTTGTGAAAGGTATGACAGAAACAGCATACCGACCAAATGAGCAG
5551 ATGACACGTGCCCAGTTTGCTGTGTTGCTTGTACGCGCATTAGCATTGCCACATGAAACATATGACGGTCGATTT

5851 AAACAATTGCCAACATGGGCAAAACAGGCGATTGAAGCAGTATACCAAGCAGGAGTCATGCAAGGACGAGATAAT

6001 AAATTGATGTAA
2001 K L M
$t \boldsymbol{t} \boldsymbol{t} \boldsymbol{t} \boldsymbol{t}$

Figure S2. The comparison of conserved regions of various α-amylase (Amy), cyclodextrin glucanotransferase (CGTase), type I pullulanase (Pul), and amylopullulanase (Apu) using WebLogo 3.3.

Figure S3. (a) SDS-PAGE (12\%) and (b) Native-PAGE (12\%) of the purified ApuASK. Zymogram for (c) pullulytic activity and (d) amylolytic activity of the purified ApuASK. Lane 1, standard molecular weight marker; Lane 2, purified ApuASK. Arrows pointing the band correspond to the purified ApuASK.
a

b

C
d

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

