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Abstract: Achillea millefolium L. is a member of the Asteraceae family and has been used 

in folk medicine in many countries. In this study, 19 compounds in A. millefolium essential 

oil (AM-EO) have been identified; the major components are artemisia ketone (14.92%), 

camphor (11.64%), linalyl acetate (11.51%) and 1,8-cineole (10.15%). AM-EO can 

suppress the inflammatory responses of lipopolysaccharides (LPS)-stimulated RAW 264.7 

macrophages, including decreased levels of cellular nitric oxide (NO) and superoxide anion 

production, lipid peroxidation and glutathione (GSH) concentration. This antioxidant 

activity is not a result of increased superoxide dismutase (SOD), catalase (CAT), glutathione 

peroxidase (GPx) activities, but rather occurs as a result of the down-regulation of 

inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α 

(TNF-α), interleukin-6 (IL-6) and heme oxygenase-1 (HO-1) expression, thus reducing the 

inflammatory response. Therefore, AM-EO can be utilized in many applications, including 

the treatment of inflammatory diseases in the future.  
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1. Introduction 

Inflammatory response, a physiological reaction to infection or damage, plays a significant role in 

health and disease [1]. Macrophage has a significant impact in immune response and inflammation. 

The cells inducing inflammation, also initiate and maintain specific immune responses by secreting 

various types of cytokines [2]. Lipopolysaccharides (LPS), a toxic molecule derived from  

gram-negative bacteria cell walls, activates macrophages to release numerous inflammatory mediators, 

such as nitric oxide (NO), superoxide anion, cyclooxygenase (COX)-2, tumor necrosis factor-α  

(TNF-α) and interleukin-6 (IL-6) [3]. Over production of these inflammatory mediators is involved in 

many inflammation associated disorders. Therefore, inflammatory mediator inhibition is believed to be 

a good approach for treatment of inflammatory diseases [4].  

Achillea millefolium L., known as yarrow, is a member of the Asteraceae family and has been used 

in folk medicine for hundreds of years in many countries ranging from Europe to Asia [5]. Yarrow has 

been traditionally used to treat inflammatory and spasmodic gastrointestinal disorders, hepatobiliary 

complaints and overactive cardiovascular and respiratory ailments [6,7]. In addition, yarrow is used as 

an appetite-enhancing agent because of its bitter taste; it has further been used in wound healing, as an 

antiulcer agent and as an anti-inflammation agent [7,8].  

The aerial parts of A. millefolium are generally applied as aqueous or alcoholic extracts. Many 

studies have reported antioxidant and anti-inflammatory activities [9–11], antimicrobial and antifungal 

activities [10,12], gastroprotective properties [13] and estrogenic activity [14] of A. millefolium 

extracts. Moreover, the extracts of A. millefolium exhibit potent anticancer activity in several types of 

tumor cells, including leukemia [15], cervical and breast epithelial adenocarcinoma, skin epidermoid 

carcinoma [16], hepatoma [17] and lung tumor cells [18]. Thus, extracts from this plant may have potential 

to be applied in several fields, including medicine, food additives and cosmetics.  

In addition, research on the phytochemical composition of A. millefolium has shown that it contains 

an abundance of phenolic compounds, such as flavonoids and phenolic acids [5,7]. Furthermore, 

some—but not enough—studies have revealed the chemical components of its essential oil [19–21]. 

However, until now, the complete characteristics and biological functions of the essential oil of  

A. millefolium remain unknown. Therefore, in this study, we analyzed its chemical compositions using 

gas chromatography-mass spectrometry (GC-MS) to identify the functional components of  

A. millefolium essential oil (AM-EO). The relationships between antioxidant and anti-inflammatory 

activities of AM-EO were examined in vitro. Moreover, the anti-inflammatory mechanism of AM-EO 

in LPS-induced murine macrophage cells was also investigated in the study.  
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2. Results and Discussion 

2.1. Chemical Composition of AM-EO  

Steam-distilled essential oil of AM-EO was purchased from Australian Botanical Products, Pty Ltd. 

(Hallam, Victoria, Australia) and then analyzed with GC-MS. In AM-EO, 19 primary compounds were 

identified and are listed in Table 1, in addition to the retention times and Kovats indices. The total ion 

chromatogram of AM-EO is shown in Figure 1.  

The results show that the most abundant constituent of AM-EO is artemisia ketone (14.92%). Other 

major components of AM-EO include camphor (11.64%), linalyl acetate (11.51%) and 1,8-cineole 

(10.15%). In addition, AM-EO contains D-limonene (7.39%), linalool (6.55%), yomogi alcohol 

(6.36%), borneol (5.37%) and o-cymene (5.26%). The most abundant components within AM-EO are 

monoterpene hydrocarbons and oxygen monoterpenes, which comprise 18.00% and 75.72% of the 

total, respectively. AM-EO also is composed of 4.59% sesquiterpene hydrocarbons (Table 1).  

Table 1. Chemical composition of Achillea millefolium L. essential oil. 

No. Compounds KI a Peak area (%) 

01 Camphene 929 1.79 
02 alpha-Pinene 939 1.18 
03 beta-Pinene 943 2.38 
04 Yomogi alcohol 1002 6.36 
05 o-Cymene 1021 5.26 
06 D-Limonene 1042 7.39 
07 1,8-Cineole 1059 10.15 
08 Artemisia ketone 1065 14.92 
09 Artemisia alcohol 1068 2.41 
10 Linalool  1082 6.55 
11 Thujone 1097 1.68 
12 Camphor 1121 11.64 
13 Borneol 1138 5.37 
14 Terpinenol-4-ol 1139 3.69 
15 (Z)-Chrysanthenyl acetate 1276 1.44 
16 Linalyl acetate 1279 11.51 
17 Caryophyllene 1494 1.83 
18 Germacrene D  1515 2.76 
19 Viridiflorol 1530 1.69 

Monoterpene hydrocarbons 18.00 
Oxygenated monoterpenes 75.72 

Sesquiterpene hydrocarbons 4.59 
Oxygenated sesquiterpenes  1.69 

Total identified 100.00 
a Kovats index. 
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Figure 1. Total ion chromatogram of Achillea millefolium L. essential oil from gas 

chromatography-mass spectrometry (GC-MS).  

 

Previous studies that have determined the chemical composition of A. millefolium essential oils also 

identified high levels of artemisia ketone (4.1% to 12.6%), camphor (6.1% to 24.5%), 1,8-cineole  

(11.4% to 40.4%), linalool (0.9% to 9.5%) and borneol (3.2% to 9.2%) [19–21]. However, linalyl 

acetate was only found in trace amounts in other studies of A. millefolium essential oil; this difference 

might be due to the diversity of the plant sources or different essential oil hydrodistillation procedures. 

Moreover, earlier studies have shown that high quantities of monoterpene hydrocarbons and oxygen 

sesquiterpenes are present in A. millefolium essential oils, ranging from 10.4% to 26.9% monoterpene 

hydrocarbons and 20.8% to 78.4% oxygen monoterpenes [19]. Previous studies also indicated that the 

essential oils with high levels of artemisia ketone, camphor, 1,8-cineole, linalool and borneol 

frequently feature some important biological functions, such as antioxidant, anti-inflammatory, 

antimicrobial and anticancer activities [10,21–24]. In addition, anti-inflammatory activity of the AM-EO 

major components, camphor (11.64%), linalyl acetate (11.51%) and 1,8-cineole (10.15%), have been 

demonstrated by several earlier studies [25–29]. Therefore, it can be proposed that the oil examined 

might also exhibit antioxidant and anti-inflammatory activities, suggesting that its biological functions 

and mechanisms should be studied further.  

2.2. Effects of AM-EO on Cell Viability and NO Production 

To evaluate the effects of AM-EO on LPS-stimulated (l μg/mL) RAW 264.7 macrophages and to 

determine the optimal concentrations for the following analyses, a standard MTT assay was used to 

test the effect of AM-EO on cell viability. The results are shown in Figure 2A. All tested 

concentrations (from 20 to 80 μg/mL) of AM-EO did not decrease the cell viability of LPS-stimulated 

RAW 264.7 macrophages. Additionally, AM-EO treatment was found to slightly increase the number 

of LPS-stimulated RAW 264.7 macrophages (Figure 2A).  

LPS-stimulated RAW 264.7 macrophages are expected to produce NO because NO is a toxic 

molecule released by the innate immune cells during pathogenesis. As shown in Figure 2B, AM-EO 

treatment decreased NO production in LPS-stimulated RAW 264.7 macrophages at all concentrations 

tested (20, 40 and 80 μg/mL). AM-EO treatment at 80 μg/mL can reduce NO production by 

approximately 35% (Figure 2B), and this inhibition by AM-EO occurs in a dose-dependent manner. 
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These results indicate that AM-EO has no cytotoxicity in any of the tested concentrations and may 

decrease NO production in LPS-stimulated RAW 264.7 macrophages.  

Figure 2. The effect of A. millefolium essential oil (AM-EO) on (A) cell viability and  

(B) nitric oxide (NO) production in lipopolysaccharides (LPS)-induced RAW 264.7 

macrophages. Each value represents the mean ± SD (n = 3). Groups sharing the  

same superscript letter are not significantly different (p > 0.05) as revealed by Dunnett’s 

post hoc tests.  

 

2.3. The Effect of AM-EO on Superoxide Anion and Malondialdehyde (MDA) Production, GSH 

Concentration and LPS-Induced DNA Damage 

To confirm that the anti-inflammatory activity of AM-EO in LPS-stimulated RAW 264.7 macrophages 

was due to its antioxidant property, we investigated some critical indicators of oxidative stress from 

the cells treated with AM-EO.  

First, superoxide anion production was analyzed in AM-EO-treated cells, and the results are shown 

in Figure 3A. Compared to the LPS-treated cells, superoxide anion production in the AM-EO-treated 

cells decreased by 58% at concentrations of 20 μg/mL. In addition, when using AM-EO concentrations 

up to 40 μg/mL and 80 μg/mL, the level of superoxide anions could be decreased to the normal range, 

similar to that of the untreated cells (Figure 3A). In over-reactive immune response and autoimmune 

disease, the presence of superoxide leads to the death of the healthy cells in the inflammatory tissues, 

and the reduction of superoxide is sometimes beneficial for regulating immune response [30]. 

Therefore, diminution of superoxide anion production in LPS-stimulated RAW 264.7 macrophages can 

be ascribed to the anti-inflammatory activity of AM-EO.  

We also tested lipid peroxidation through the production of MDA and cellular GSH concentration 

in LPS-stimulated macrophages to verify the anti-inflammatory activity of AM-EO. The results are 

shown in Figure 3B,C. The MDA production of AM-EO-treated cells was clearly decreased in a  

dose-dependent manner when compared with control LPS-treated cells (Figure 3B). The result 

indicated that AM-EO may successfully repress cellular lipid peroxidation in LPS-stimulated 

macrophages. In addition, the cellular GSH levels of LPS-stimulated macrophages were obviously 

decreased in AM-EO treated cells at concentration of 20 μg/mL. Although the suppression effect was 

not clearly correlated with its concentration (Figure 3C), AM-EO was obviously shown to act as an 

antioxidant in LPS-stimulated macrophages, thus reducing the levels of cellular GSH.  

Generally, the inflammatory response of LPS-stimulated macrophages may damage neighboring 

cells in addition to the macrophages themselves. To confirm whether AM-EO can protect cells from 
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the damage of the inflammatory response, we analyzed the LPS-induced DNA damage of AM-EO-treated 

macrophages using a DNA fragmentation analysis. The cells treated with all tested concentrations of 

AM-EO reveal less DNA laddering than the LPS-treated cells, as shown in Figure 3D. Thus, this  

dose-dependent effect may help us to understand how AM-EO can effectively suppress LPS-induced 

apoptosis in RAW 264.7 macrophages (Figure 3D).  

Figure 3. The effect of AM-EO on (A) superoxide anion, (B) malondialdehyde (MDA) 

production, (C) glutathione (GSH) concentration and (D) DNA damage by LPS-induced 

RAW 264.7 macrophages. Each value represents the mean ± SD (n = 3). Groups sharing 

the same superscript letter are not significantly different (p > 0.05) as revealed by 

Dunnett’s post hoc tests.  

 

2.4. The Effect of AM-EO on Superoxide Dismutase (SOD), Catalase (CAT) and Glutathione 

Peroxidase (GPx) Activities  

Antioxidant enzymes such as SOD, catalase and GPx play an important function in maintaining the 

redox homeostasis within cells. Accordingly, these antioxidant enzymes also respond when cells 

respond to inflammation [31]. In Figure 4, the activities of SOD, CAT and GPx in AM-EO-treated 

cells were diminished at concentrations ranging from 20 to 80 μg/mL in a dose-dependent manner. In 

addition, the CAT activity in 80 μg/mL AM-EO-treated cells was nearly the same as that of normal 

RAW 264.7 macrophages (Figure 4B).  
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Figure 4. The effect of AM-EO on (A) superoxide dismutase (SOD), (B) catalase (CAT) 

and (C) glutathione peroxidase (GPx) production by LPS-induced RAW 264.7 

macrophages. Each value represents the mean ± SD (n = 3). Groups sharing the same 

superscript letter are not significantly different (p > 0.05) as revealed by Dunnett’s 

post hoc tests.  

 

The results of these studies of important antioxidant enzymes demonstrated that the anti-antioxidant 

activity of AM-EO was not affected by increasing the SOD, CAT and GPx activities in the LPS-stimulated 

macrophages. Many compounds show antioxidant functions when levels of antioxidant-related  

enzymes increase [32,33]. However, the activities of antioxidant-related enzymes are down-regulated in 

some antioxidant-treated cells because the oxidative stress in cells was directly attenuated by the  

antioxidants [34,35]. Accordingly, combined with the previous results of similar studies, we suggest that 

AM-EO can repress the oxidative stress and lipid peroxidation of LPS-stimulated macrophages and that 

the antioxidant activity is not executed via increasing SOD, CAT and GPx activities.  

2.5. The Effects of AM-EO on the Expression Levels of iNOS, COX-2, TNF-α, IL-6 and HO-1 mRNA  

In macrophages, iNOS, COX-2, TNF-α, IL-6 and HO-1 are the key enzymes or cytokines that 

participate in inflammatory progression. The activation of iNOS may cause NO accumulation in the 

cell supernatant while COX-2 (inducible COX) may convert arachidonic acid (AA) to prostaglandins, 

collectively enhancing the inflammatory response. Additionally, the expression of HO-1 may decrease 

the level of ROS and suppress the inflammatory response by reducing the function of NO. 

Additionally, TNF-α and IL-6 are pro-inflammatory cytokines and are highly expressed during the 

inflammation process [36,37]. Hence, the mRNA expression levels for these key enzymes and 

cytokines are important indicators for the investigation of anti-inflammatory activity. The specific 

primers used to determine the expression levels of these mRNAs via RT-PCR are listed in Table 2. 

The RT-PCR results are shown in Figure 5, and the quantitation of these results is shown in Figure 6.  

The results show similar dose-dependent decreases in the mRNA levels of iNOS (Figures 5 and 6A) 

and COX-2 (Figures 5 and 6B) at all tested concentrations of AM-EO. In the 80 μg/mL AM-EO-treated 

cells, iNOS and COX-2 mRNA levels are decreased to just slightly higher than those in normal cells. 

Thus, our results show that AM-EO may protect RAW 264.7 macrophages from the inflammatory 

response through the inhibition of iNOS and COX-2 expression.  

The expression levels of TNF-α and IL-6 mRNA in AM-EO-treated cells are shown in Figures 5 

and 6C,D. The mRNA level of TNF-α clearly decreased when the AM-EO concentration was higher 

than 20 μg/mL. Moreover, the suppression of mRNA expression was correlated with the AM-EO 
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concentrations (Figures 5 and 6C). Similar to the case of TNF-α, the mRNA level of IL-6 was also 

decreased at every concentration tested in AM-EO-treated cells (Figures 5 and 6D). Unlike TNF-α 

mRNA expression, IL-6 mRNA expression in AM-EO-treated cells exhibited a significant decrease; at  

80 μg/mL AM-EO, the expression of IL-6 mRNA was reduced by approximately 50% when compared 

with the levels in LPS-stimulated cells.  

AM-EO also decreased the mRNA levels of HO-1 in the LPS-stimulated RAW 264.7 macrophages 

at all concentrations tested (Figures 5 and 6E). However, the decreases in the levels of HO-1 mRNA 

expression at AM-EO concentrations of 20 and 40 μg/mL were not significant. After the application of 

80 μg/mL AM-EO, the HO-1 mRNA expression level was restored to the levels found in normal cells 

(Figures 5 and 6E). Therefore, the results indicate that the protective effect of AM-EO on  

LPS-stimulated RAW 264.7 macrophages may be not linked to HO-1. Similar to other antioxidant 

enzymes, HO-1 expression levels are decreased because AM-EO may inhibit the inflammatory 

response via its antioxidant activity. Therefore, our results indicate that AM-EO may suppress the 

LPS-induced inflammatory response of RAW 264.7 macrophages. This suppression was mediated by 

the down-regulation of iNOS, COX-2, TNF-α and IL-6 expression. Additionally, HO-1 expression is 

diminished because AM-EO inhibits the inflammatory response through its antioxidant activity.  

Table 2. Primer sequences used for RT-PCR in this study. 

Target Type Sequences 
β-actin Sense 5'-TGGAATCCTGTGGCATCCATGAAAC-3' 

 Anti-sense 5'-TAAAACGCAGCTCAGTAACAGTCCG-3' 
iNOS Sense 5'-AGACTGGATTTGGCTGGTCCCTCC-3' 

 Anti-sense 5'-AGAACTGAGGGTACATGCTGGAGCC-3' 
COX-2 Sense 5'-GGAGAGACTATCAAGATAGT-3' 

 Anti-sense 5'-ATGGTCAGTAGACTTTTACA-3' 
TNF-α Sense 5'-GGCAGGTCTACTTTGGAGTCATTGC-3' 

 Anti-sense 5'-ACATTCGAGGCTCCAGTGAATTCGG-3' 
IL-6 Sense 5'-GAGGATACCACTCCCAACAGA-3' 

 Anti-sense 5'-AAGTGCATCATCGTTGTTCATACA-3' 
HO-1 Sense 5'-TGAAGGAGGCCACCAAGGAGG-3' 

 Anti-sense 5'-AGAGGTCACCCAGGTAGCGGG-3' 

Figure 5. The effect of AM-EO on the mRNA expression levels of iNOS, COX-2, TNF-α, 

IL-6 and HO-1 in LPS-stimulated RAW 264.7 macrophages.  
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Figure 6. The quantitative mRNA ratio of (A) iNOS, (B) COX-2, (C) TNF-α, (D) IL-6 and 

(E) HO-1. Each value represents the mean ± SD (n = 3). Groups sharing the same 

superscript letter are not significantly different (p > 0.05) as revealed by Dunnett’s  

post hoc tests.  

 

3. Experimental Section  

3.1. Essential Oil and Cell Line  

Steam-distilled essential oil of Achillea millefolium L. (AM-EO) was purchased from Australian 

Botanical Products, Pty Ltd. (Hallam, Victoria, Australia). The murine macrophage cell line RAW 

264.7 (BCRC 60001) was obtained from the Bioresource Collection and Research Center (BCRC, 

Hsinchu, Taiwan) and was used in anti-inflammatory activity assays.  

3.2. Materials  

Fetal bovine serum (FBS), L-glutamine, penicillin-streptomycin, trypsin-ethylenediaminetetraacetic 

acid (trypsin-EDTA), deoxynucleotide triphosphate (dNTP), oligo(dT), Taq DNA polymerase and 

Dulbecco’s Modified Eagle Medium (DMEM) medium were purchased from Gibco BRL/Invitrogen 

(Carlsbad, CA, USA). Lipopolysaccharide (LPS; from Escherichia coli, serotype O111: B4),  

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), Griess reagent, sodium nitrite, 

pyrogallol, nitro blue tetrazolium (NBT), 2-nitrobenzoic acid, nicotinamide adenine dinucleotide 

phosphate (NADPH), hydrogen peroxide solution (H2O2), bovine serum albumin (BSA), ethidium 

bromide, dithiothreitol (DTT), agarose and other chemicals were purchased from Sigma-Aldrich  

(St. Louis, MO, USA). Deionized distilled water (ddH2O) used to prepare solutions and buffers were 

purified using a Milli-Q system (Millipore, Bedford, MA, USA). 
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3.3. Gas Chromatography and Mass Spectrometry Analysis  

GC-MS analyses were carried out on a GCMS-QP-2010 plus Gas chromatograph Mass 

Spectrometer (Shimadzu, Japan) and using GCMS-solution software (v. 2.50 SU3, Shimadzu, Japan). 

Compounds were separated on a Forte ID-BPX5 cross-linked 5% phenyl-95% methyl polysiloxane  

(30 m × 0.25 mm internal diameter (i.d.), film thickness 0.25 μm) capillary column (SGE Analytical 

Science, Ringwood, Victoria, Australia). The column was maintained at 50 °C for 5 min after 

injection, then programmed at 5 °C/min to 150 °C, and finally, programmed at 10 °C/min to 300 °C. 

The injection volume comprised 1.0 µL of pure essential oil with a split ratio of 1:100. Helium was 

used as the carrier gas at a constant flow-rate of 1.0 mL/min. The injector, transfer line and ion-source 

temperatures were 250, 230 and 250 °C, respectively. MS detection was performed with an electron 

impact mode at 70 eV ionization energy and 60 μA ionization current, operating in the full-scan 

acquisition mode in the 40–350 amu range. Compounds were identified by comparing the retention 

times and retention indices of the chromatographic peaks with a standard library, National Institute of 

Standards and Technology (NIST) MS spectral database (version 2005, NIST, Gaithersburg, MD, USA, 

2005) and comparing the measured Kovats index (KI) to a homologous series of n-alkanes (C5–C26).  

3.4. Cell Culture  

RAW 264.7 cells were cultured in DMEM supplemented with 10% FBS, 2 mM L-glutamine and 1% 

penicillin-streptomycin (100 U/mL penicillin and 100 μg/mL streptomycin). The cells were maintained 

in a humidified incubator at 37 °C with 5% CO2. The cells were sub-cultured every 3–4 days to maintain 

logarithmic growth and were allowed to grow for 24 h before treatments were applied. The cells were 

treated with different concentrations of the essential oil (0, 20, 40 and 80 μg/mL) and 1 μg/mL LPS for 20 h.  

3.5. Cell Viability  

RAW 264.7 cells were plated in 12-well plates at a density of 3 × 105 cells/mL. The cells were 

treated with different concentrations (0, 20, 40 and 80 μg/mL) of essential oil and LPS (l μg/mL) and 

grown at 37 °C in 5% CO2 and 95% air for 20 h. A MTT assay was used to determine cell viability [38].  

3.6. Nitrite Production  

Nitrite was measured as an indicator of NO production after 20 h of essential oil treatment and LPS 

induction. A 100 μL aliquot of the culture supernatant was plated in a 96-well plate, and an equal 

amount of Griess reagent (1% sulfanilamide and 0.1% N-1-(naphthyl) ethylenediamine dihydrochloride 

in 2.5% H3PO4) was added. The plate was then incubated for 5 min, and the absorbance was measured 

at 540 nm. The amount of NO was calculated using a sodium nitrite standard curve [39].  

3.7. Measurement of Superoxide Anion Production, Lipid Peroxide and Glutathione (GSH) Levels  

RAW 264.7 cells were incubated with various concentrations of essential oil (0, 20, 40 and 80 μg/mL) 

and LPS (l μg/mL) for 20 h prior to testing the levels of superoxide anions. The superoxide anion 

measurement, based on the NBT assay, was performed according to the method of Freire et al. [40]. 
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For lipid peroxide level measurement, cells were harvested and sonicated in 1 mL of cell lysis buffer 

containing 1 mM phenylmethylsulfonyl fluoride (PMSF) to obtain a cell homogenate. The thiobarbituric 

acid reactive substances (TBARS) method was used to estimate cellular malondialdehyde (MDA) 

levels with a spectrophotometer by measuring the absorbance at 535 nm [41]. Glutathione (GSH) 

concentration was measured using an enzymatic recycling procedure in which GSH is sequentially 

oxidized by 2-nitrobenzoic acid and reduced by NADPH in the presence of GSH reductase [42]. The 

protein content of the cell homogenate was determined based on the Biuret reaction [43] using a BCA 

kit (Pierce, Rockford, IL, USA) with BSA standards. The MDA and GSH levels in cells are expressed 

as nanomole per milligram protein.  

3.8. DNA Fragmentation Assay  

RAW 264.7 cells were incubated with various concentrations of essential oil (0, 20, 40 and 80 μg/mL) 

and LPS (l μg/mL) for 20 h. The cells were then harvested by centrifugation. The DNA was isolated, 

separated by gel electrophoresis, stained with ethidium bromide and photographed under UV light 

according to the method of Lu et al. [44]. 

3.9. Measurement of Superoxide Dismutase (SOD), Catalase (CAT),  

Glutathione Peroxidase (GPx) Activity  

RAW 264.7 cells were incubated with various concentrations of essential oil (0, 20, 40 and 80 μg/mL) 

and LPS (l μg/mL) for 20 h. Cells were harvested and sonicated in 1 mL of cell lysis buffer containing 

1 mM PMSF to obtain a cell homogenate. SOD activity was determined by spectrophotometry based on 

the absorbance readings obtained at 325 nm, which indicate the SOD-mediated decrease in the rate of 

pyrogallol autoxidation under alkaline conditions [45]. A unit of SOD activity was defined as the 

amount of enzyme that inhibited the rate of pyrogallol oxidation. Catalase activity was analyzed by 

following the decrease in absorbance of H2O2 at 240 nm. One unit of catalase was defined as the 

amount of enzyme that decomposed 1.0 μM of H2O2 per minute [46]. For glutathione peroxidase 

(GPx) activity, one unit of GPx was defined as the amount of enzyme that oxidized 1 nM of NADPH 

per minute based on the absorbance readings obtained at 340 nm [47]. The specific activities of SOD, 

CAT and GPx are expressed as unit/mg protein.  

3.10. Measurement of Messenger RNA (mRNA) Levels of Inducible nitric Oxide Synthase (iNOS), 

Cyclooxygenase-2 (COX-2), Tumour Necrosis Factor-α (TNF-α), Interleukin-6 (IL-6) and Heme 

Oxygenase-1 (HO-1) 

RAW 264.7 cells were incubated with various concentrations of essential oil (0, 20, 40 and 80 μg/mL) 

and LPS (l μg/mL) for 20 h, and the total RNA was extracted using the Qiagen RNeasy Mini Kit 

(Qiagen, Inc, Valencia, CA, USA). Briefly, a reverse transcription (RT) reaction was performed using 

5 μg of total RNA, 1 μL of oligo(dT), 1 μL of dNTP mix (10 mM) and up to 12 μL of ddH2O. The 

mixture was heated for 5 min at 65 °C and quickly chilled on ice. Subsequently, 4 μL of first strand 

buffer, 2 μL of 0.1 M DTT and 1 μL of RNAseOUT were added to the mixture. The mixture was 

incubated at 37 °C for 2 min, and 1 μL of M-MLV reverse transcriptase was added. The reaction was 
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stopped by heating the solution to 70 °C for 15 min. A 1 μL aliquot of cDNA mixture was used in the 

subsequent enzymatic amplification. Polymerase chain reaction (PCR) was performed using 1.5 mM 

MgCl2, 0.2 mM dNTP, 2.5 units of Taq DNA polymerase and 0.1 μM each of the primers targeting 

iNOS, COX-2, TNF-α, IL-6 and HO-1 (Table 2). The amplified products were separated in 2% 

agarose gel in Tris-borate-EDTA (TBE) buffer and stained with ethidium bromide [48]. 

3.11. Statistical Analysis 

All assays were conducted at least three times with three different sample preparations. All data are 

expressed as the mean ± standard deviation (SD). An analysis of variance was performed using SPSS 

version 16.0 (SPSS Inc., Chicago, IL, USA, 2007). A one-way ANOVA and Dunnett’s post hoc test 

were used for these analyses, and p < 0.05 was considered to be statistically significant.  

4. Conclusions  

In summary, 19 compounds had been identified in AM-EO. Among them, artemisia ketone 

(14.92%), camphor (11.64%), linalyl acetate (11.51%) and 1,8-cineole (10.15%) are the main 

components. Obvious inhibition of inflammatory responses and oxidative stress of LPS-stimulated 

RAW 264.7 macrophages was found when AM-EO was present in the medium. This antioxidant 

activity is not mediated by increasing SOD, CAT and GPx activities, but by the down-regulation of 

iNOS, COX-2, TNF-α and IL-6 expression. HO-1 expression is also decreased because AM-EO 

reduces the inflammatory response, mainly due to its own antioxidant activity. The effects of AM-EO 

infer that such natural volatilized oils provide, not only flavor, but also possess biological activities. 

Therefore, due to these antioxidant and anti-inflammatory activities, the essential oil volatilized from 

A. millefolium could be used in many applications in the future, including utilization as a functional 

ingredient in health foods or as a drug for treating inflammatory related diseases.  
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