
Int. J. Mol. Sci. 2013, 14, 13022-13041; doi:10.3390/ijms140713022 

 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

β-Cyclodextrin Inclusion Complex to Improve Physicochemical 

Properties of Pipemidic Acid: Characterization and  

Bioactivity Evaluation 

Rosa Iacovino 
1,
*, Filomena Rapuano 

2
, Jolanda Valentina Caso 

1
, Agostino Russo 

1
,  

Margherita Lavorgna 
1
, Chiara Russo 

1
, Marina Isidori 

1
, Luigi Russo 

1
, Gaetano Malgieri 

1
 and 

Carla Isernia 
1
 

1
 Department of Environmental, Biological and Pharmaceutical Sciences and Technologies,  

Second University of Naples, Via A. Vivaldi 43, 81100 Caserta, Italy;  

E-Mails: valentina.caso@unina2.it (J.V.C.); agostino.russo@unina2.it (A.R.); 

margherita.lavorgna@unina2.it (M.L.); chiara.russo@unina2.it (C.R.);  

marina.isidori@unina2.it (M.I.); luigi.russo2@unina2.it (L.R.);  

gaetano.malgieri@unina2.it (G.M.); carla.isernia@unina2.it (C.I.) 
2
 Department of Biological and Environmental Science, University of Sannio, Via Port’Arsa 11, 

82100 Benevento, Italy; E-Mail: filomena.rapuano@unisannio.it  

* Author to whom correspondence should be addressed; E-Mail: rosa.iacovino@unina2.it;  

Tel.: +39-82-3274-663; Fax: +39-82-3274-605. 

Received: 13 May 2013; in revised form: 8 June 2013 / Accepted: 13 June 2013 /  

Published: 25 June 2013 

 

Abstract: The aptitude of cyclodextrins (CDs) to form host-guest complexes has prompted 

an increase in the development of new drug formulations. In this study, the inclusion 

complexes of pipemidic acid (HPPA), a therapeutic agent for urinary tract infections, with 

native β-CD were prepared in solid state by kneading method and confirmed by FT-IR and 
1
H NMR. The inclusion complex formation was also characterized in aqueous solution at 

different pH via UV-Vis titration and phase solubility studies obtaining the stability 

constant. The 1:1 stoichiometry was established by a Job plot and the inclusion mechanism 

was clarified using docking experiments. Finally, the antibacterial activity of HPPA and its 

inclusion complex was tested on P. aeruginosa, E. coli and S. aureus to determine the 

respective EC50s and EC90s. The results showed that the antibacterial activity of  

HPPA:β-CD against E. coli and S. aureus is higher than that of HPPA. Furthermore, HPPA 

and HPPA:β-CD, tested on human hepatoblastoma HepG2 and MCF-7 cell lines by MTT 

assay, exhibited, for the first time, antitumor activities, and the complex revealed a higher 
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activity than that of HPPA. The use of β-CD allows an increase in the aqueous solubility of 

the drug, its bioavailability and then its bioactivity.  

Keywords: β-cyclodextrin; pipemidic acid; inclusion complex; microbial activity; 

antitumoral activity 

 

1. Introduction 

Pipemidic acid (HPPA), 8-ethyl-5,8-dihydro-5-oxo-2-(1-piperazinyl)-pyrido[2,3-d]pyrimidine-6-

carboxylic acid [1,2] shown in Figure 1, is a therapeutic agent for urinary tract infections because of its 

antibacterial activity against gram-negative as well as some gram-positive bacteria [3,4]. In the HPPA 

molecule, a quinolone derivate, the carboxylic group at C6-position makes this compound acidic while 

the piperazine in position 2 includes an amine group, which is basic. For these reasons, in aqueous 

solution, 2-piperazinyl quinolone exists in three different species: acidic for pH values under  

pKa1 = 5.4, neutral for pH value closely to isoelectric point (pH = 6.8) and alkaline for pH values  

higher pKa2 = 8.2 [5]. The existing equilibria for these types of quinolones are shown in Figure 2.  

The HPPA structure is important for its activity; in fact, it shows a better activity against  

Pseudomonas aeruginosa than piromidic and nalidixic acids, structurally related to it [6]. This drug 

severely damages DNA in the absence of an exogenous metabolizing system and it may act as a 

multidentate ligand to coordinate with metal ions [7,8]. However, its very low aqueous solubility [9,10] 

can cause formulation problems and limit its therapeutic application.  

Figure 1. Molecular structure of HPPA. 

 

Figure 2. Acid-base equilibrium for piperazinyl quinolones, for HPPA X = Y = N, R = H 

and R2 = CH2CH3. 
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Cyclodextrins (CDs) are cyclic oligosaccharides which provide an interesting organic host system, 

since they have a hydrophobic inner cavity available to form non-covalent host-guest inclusion 

complexes with a wide variety of organic molecules of appropriate shape and size [11]. CDs are 

widely used to enhance the aqueous solubility of drugs [12–14] since the physicochemical properties 

of the guests (solubility, stability, bioavailability, antimicrobial activity, etc.) are altered upon 

complexation. For these reasons, in order to contribute to the increase of the HPPA aqueous solubility 

and thereby its pharmaceutical applications, we report here the preparation and characterization of 

inclusion complexes formed by HPPA with native β-CD. The inclusion complex HPPA:β-CD was 

prepared by kneading method and the adduct was characterized, in the solid state, by Fourier 

Transform-Infrared spectroscopy (FT-IR) and, in the solution state, by Nuclear Magnetic Resonance 

(NMR). The stoichiometry and the stability constants (Kb) of the complex, obtained in solution, were 

determined using the phase solubility diagram (PSD) and Ultraviolet-Visible (UV-Vis) spectroscopy. 

The influence of the HPPA molecule protonation state on the complex stability was also investigated 

by estimating the sensitivity of the complex formation constant (Kb) as a function of pH. Furthermore, 

to characterize the structural details of the complex we carried out a molecular docking study. To 

evaluate possible differences in antimicrobial efficiency of HPPA compared to HPPA:β-CD complex, 

different bioactivity tests were performed. The antibacterial activity was tested both on gram-negative 

and gram-positive bacteria: Pseudomonas aeruginosa, Escherichia coli and Staphilococcus aureus. 

For each strain, the effective median inhibitory bacterial growth concentration (EC50) as well as the 

respective EC90were determined using the broth-based turbidimetric assay. Previous studies showed 

that some quinolones exhibited promising cytotoxicity in different human cancer cells [15,16]. For this 

reason the cytotoxicity of the investigated compounds were tested on human hepatoblastoma HepG2 

and human breast cancer MCF-7 cell lines by MTT assay. The inclusion of HPPA with β-CD appears 

to modulate the capability of the parent compound to penetrate into the cells and improves the 

antitumor activity of HPPA against breast and hepatocellular cancers, suggesting attractive roles for 

applications in medicine.  

2. Results and Discussion 

2.1. FT-IR Spectroscopy 

The FT-IR spectrum gives detailed information about the functional groups involved in the 

interaction when the complex is formed.  

The spectra of β-CD, HPPA:β-CD obtained by kneading techniques (KND), physical mixing 

product (PM) and HPPA are shown in Figure 3. The FT-IR spectrum of β-CD showed prominent 

absorption bands at 3392 cm
−1

 (for O–H stretching vibrations), 2925 cm
−1

 (for C–H stretching 

vibrations), 1158 cm
−1

 (for C–O stretching vibrations), and 1028 cm
−1

 (C–O–C stretching vibrations), 

according to Menezes et al. [17]. In the FT-IR spectrum of HPPA, one prominent characteristic peak 

was found at 3046 cm
−1

, which was assigned to stretching vibration of the –OH group and 

intramolecular hydrogen bonding. This band also suggested how the –NH (3366 cm
−1

) stretching 

vibration of the imino‐moiety of piperazinyl groups was less prominent due to intense –OH stretching 

vibration. The band at 1721 cm
−1

 represented the carbonyl C=O stretching. The peak at 1627 cm
−1

 was 
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assigned to the N–H bending vibration of quinolones [18]. The band at 1440 cm
−1

, representing  

O–C–O stretching vibration of acid, and that at 1261 cm
−1

 suggesting bending vibration of O–H group, 

indicate the presence of carboxylic acid. The peak at 1354 cm
−1

 was assigned to the out-of-plane 

bending of the hydroxyl function of the carboxylic acid. The spectrum of the PM product shows 

approximate superimposition of the individual patterns of both β-CD and HPPA. In the spectrum of the 

KND, the –NH stretching region of HPPA (3366 cm
−1

) is covered by the O–H stretching band  

(3392 cm
−1

) of β-CD. The strong carboxyl carbonyl stretching vibration peak at 1721 cm
−1

 of HPPA 

disappears, the bending vibration of O–H group of carboxylic acid at 1261 cm
−1

 of HPPA shifts to 

1252 cm
−1

 with broadening in the complex, indicating the dissociation of the intermolecular hydrogen 

bonding and interaction through hydrogen bonding with β-CD. The intensification and the shift of the 

peak at 1354 cm
−1

 of HPPA take place in the complex supporting the involvement of the carboxylic 

acid function in the complex formation. The intermolecular C–O–C stretch (ether linkage of β-CD) at  

1028 cm
−1

 is not affected indicating that the penetration of HPPA is through the axial line of the β-CD 

cavity [19]. 

Figure 3. FT-IR spectra of β-CD, KND, PM and HPPA. 

 

2.2. NMR Spectroscopy 

The proton chemical shifts for free HPPA (Figure 1) are summarized in the experimental section. A 

strong NOE correlation of the proton in position 7 with the proton in position 8a and a weaker NOE 
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between 7 and 8b permitted a discrimination between proton in position 7 and 4. The signals belonging 

to protons 2a-2a' and 2b-2b' were assigned based on the chemical shift reported by Jinxia Li et al. [20]. 

Figure 4 illustrates the 
1
H NMR spectra of β-CD, HPPA and of the KND. The clear changes in the 

signal pattern for β-CD further confirm the formation of the inclusion complex. The β-CD 

glucopyranosyl residues in the spectrum of the KND produce three distinct signals for the protons in 

position 1. Moreover, differences are also evident in the chemical shift of protons in position 3 and  

5 localized within the cyclodextrin cavity. This behavior clearly demonstrates the formation of an 

inclusion complex: the aromatic nature of the guest explains the differences in the magnetic field 

experienced by the same protons located on different unities. Moreover, changes in the chemical shifts 

of the HPPA protons in position 4, 7 and 8 (Figure 1) likely indicate that the aromatic part of the 

molecule is included in the β-CD cavity while the part containing protons in position 2 (the piperazinyl 

group), whose chemical shift remains almost unperturbed, is likely to be located outside the cavity. 

This behavior is further confirmed by the ROESY spectrum (Figure 5) in which two unambiguous 

NOEs prove the proximity of the methyl group of HPPA to the β-CD proton in position 5 and of 

protons 2b and 2b' of the piperazinyl group to the β-CD proton in position 2. These data have been 

confirmed by docking studies (see section 2.3 and Figure 6).  

Figure 4. The 
1
H NMR spectra of HPPA:β-CD kneading product (A), β-CD (B) and HPPA (C). 
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Figure 5. Region of the 
1
H-

1
H ROESY spectrum of the KND product with the negative 

cross peaks marked with a dotted line. 

 

Figure 6. Optimized structure of β-CD in complex with HPPA. 

 

2.3. Docking of HPPA onto β-CD  

For a deeper understanding of the molecular encapsulation capacity of β-CD, a docking study was 

performed. The optimized structure of the HPPA: β-CD complex is reported in Figure 6. The results 

show that the amino ring of HPPA is located inside the hydrophobic cavity of the β-CD. Moreover, in 
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accord with the NMR data, the structure of the complex indicates that the less polar part of the 

molecule is inserted into the cavity, while the more polar groups are exposed to the bulk solvent 

outside the opening of the cavity. 

2.4. UV-Vis Spectroscopy 

The modification in UV-Vis spectrum of the guest molecule is assumed to result from changes in its 

solvent microenvironment upon inclusion [21]. The stoichiometry of the complex was determined 

using Job method [22,23]. The 1:1 stoichiometry is given by the curve maximum at R = 0.5 (Figure 7). 

The evaluation of stability constants by direct spectroscopic methods relies on analytical differences 

between the free and complexed drug [24]. The HPPA can be present in different cationic, zwitterionic 

or anionic forms depending on the pH of the solution and each of them may form complexes with the 

β-CD. Thus, the inclusion of HPPA with β-CD was studied in unbuffered (pH = 6.8), sodium acetate 

buffered (pH = 4.6) and Tris HCl buffered (pH = 8.6) solutions. The results of the dependence of 

HPPA absorbance on β-CD concentration are shown in Figure 8. The maximum absorption 

wavelength of HPPA was pH dependent, being 323.0 nm at pH 4.6, 330.0 nm at pH 6.8, and 331.5 nm 

at pH 8.6. These results suggest that the inclusion complex was formed between β-CD and HPPA. The 

Kb can be obtained from absorbance data using the modified Benesi-Hildebrand [25,26] Equation (1):  

0
0

b

1
ε [ ]

[ ]

A A
A G

K H
A


     (1)  

where A and A0 are the absorbance of HPPA in the presence and absence of β-CD, respectively, Kb is 

the stability constant, [H] and [G] are the concentrations of β-CD and HPPA, respectively and Δε is the 

difference in the molar absorptivities between free and complexed guest. Therefore, a plot of A versus 

(A−A0)/[H], should give a straight line with slope −1/Kb. The calculated stability constants at different 

pH were listed in Table 1, from which the formation constant values were very sensitive to pH:  

Kb4.8 > Kb6.8 ≈ Kb8.6. Thus, it can be concluded that the inclusion of HPPA molecule with β-CD is more 

suitable in acidic media. The negatively charged HPPA with more hydrophilic character was 

predominant in basic media, or in aqueous solution, leading to the weaker interaction with β-CD. 

Figure 7. Job plot for the complex HPPA:β-CD (λ = 330.0 nm). 
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Figure 8. Dependence of HPPA absorbance from β-CD concentration in aqueous solutions 

with different pH values: (a) pH = 4.6 (λ = 323.0); (b) pH = 6.8 (λ= 330.0); (c) pH = 8.6  

(λ = 331.5). 

  

 

Table 1. The stability constants of β-CD with HPPA were calculated by absorbance 

measurement in different pH values. 

pH Kb (M
−1

) UV-Vis Kb (M
−1

) PSD 

4.6 215.2 250.8 

6.8 79.7 88.5 

8.6 90.8 86.7 

Phase Solubility Studies 

To estimate the stoichiometric ratios and stability constant of the HPPA:β-CD in solution we 

carried out phase solubility studies measuring the change of solubility of the guest substance as a 

function of the host concentration. The PSDs for the formation of complexes between HPPA and β-CD 

at different pH values are shown in Figure 9. The PSD obtained for the HPPA acid form (pH = 4.6) 

can be classified as Bs type according to Higuchi and Connors [27]. In this case, the HPPA solubility 

is enhanced by the presence of the host; in particular, a linear increase of solubility for HPPA was 

observed up to 3 × 10
−3

 M of β-CD. The ascending portion of the Bs type curve indicates that the 

stoichiometry of the complex is 1:1; then a short plateau region indicates the formation of an insoluble, 

or with different stoichiometry, complex in the solution at high concentrations of β-CD. Rigorous 
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nonlinear regression [28] of experimental data was conducted to obtain estimates of stability constant. 

Data analysis and nonlinear regression curve fitting were performed using Prism 5 software (GraphPad, 

San Diego, CA, USA). The value of Kb was found to be 250.8 M
−1

, according to the value obtained by 

UV-Vis method. The PSD for HPPA:β-CD in buffered solutions at pH = 8.6 and in unbuffered 

solution (pH = 6.8), shows that the aqueous solubility of the drug increases linearly as a function of  

β-CD concentration. The PSD can be classified as the AL type in both solutions and it indicates that the 

stoichiometry of the complex is 1:1. Kb values were estimated according to the Equation (2) where S0, 

HPPA concentration in the absence of β-CD, was obtained as the y-intercept. 

b   

0

Slope
=

(1 Slope)
K

S 
 (2)  

Figure 9. The PSD for the inclusion complex HPPA:β-CD in aqueous solutions with 

different pH values: (a) pH = 4.6; (b) pH = 6.8; (c) pH = 8.6. 

  

 

The binding constants (Table 1) were estimated to be equal to 88.5 M
−1

 at pH = 6.8 and 87.0 M
−1

 at 

pH = 8.6; these Kb values are in agreement with those obtained by UV-Vis. The stability constants 

obtained for HPPA:β-CD fall in the ideal range between 100 and 1000 M
−1

: smaller values indicated 

weak interactions between guest and β-CD, while a large value indicates incomplete guest release from 

the inclusion complex [29]. If the complex is too weak, there is a slight improvement of the water 

solubility of the host. Moreover, if the complex is too strong, as shown through a stability constant 

greater than 1000 M
−1

, the complex cannot dissociate easily. In this context, the bioavailability of 

HPPA is improved by complexation with β-CD. For this reason we have performed a number  

of bioactivity tests. The complex formation between HPPA and γ-CD was reported by  
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Duran-Meras et al. [30] and the values of stability constants obtained by spectrofluorimetric methods 

resulted in very small values compared to the values obtained for the HPPA:β-CD, probably due to the 

different size of the γ-CD cavity.  

2.5. Bioactivity Evaluation 

2.5.1. Microbial Susceptibility Test  

The antibacterial activities of the pure drug and its complex were tested against two Gram (−),  

E. coli and P. aeruginosa, and one Gram (+), S. aureus. The effective concentrations inhibiting 50% of 

bacterial growth (EC50s) were determined and results are reported in Figure 10. According to the graph, 

pipemidic acid appeared to be most effective on P. aeruginosa with an EC50 value of 0.05 mM.  

A lower effect was found on S. aureus followed by E. coli with statistically significant differences in 

their activity for p < 0.05. Furthermore, the efficiency of the complex was tested and results showed a 

significantly higher antibacterial potential of HPPA:β-CD when compared to HPPA in E. coli  

(p < 0.01) and S. aureus (p < 0.05) by Tukey test. Probably the complex, enhancing HPPA transport 

through membranes, can improve inhibiting DNA replication HPPA efficacy in E. coli and S. aureus. 

Further experiments are needed in order to clarify the possible mechanism of action of HPPA:β-CD in 

P. aeruginosa where the complex activity was lower than that shown by pure compound. In addition to 

the determination of EC50 values, EC90 values were also determined. EC90 represents the concentration 

able to generate 90% of bacterial growth inhibition, and it could be preferred to the Minimal Inhibitory 

Concentration (MIC) even if that is the most frequently used measure to detect the antibacterial 

activity. MIC, defined as the lowest concentration of the antimicrobial agent that prevents visible 

growth of a microorganism, is strongly influenced by the experimental conditions to obtain accurate 

and reproducible results as it is visually determined and based on operator decisions for the chosen 

concentrations and their spacing. The EC90 is an accurate measure because it represents the statistically 

determined concentration of the antimicrobial agent achieving 90% of growth inhibition compared to 

the control (without compounds). Results of the growth curves showing EC90 inhibition are reported in 

Figure 11. HPPA:β-CD showed the lowest EC90 equal to 0.45 mM against 1.54 mM of HPPA in  

P. aeruginosa. It is interesting to note that the complex improved the efficacy of the HPPA also in  

S. aureus and E. coli with EC90 values of 4.26 and 4.4 mM, respectively. HPPA showed EC90 values 

equal to 75.7 for E. coli and 63.01 mM for S. aureus; this means that a lower HPPA amount in the 

complex (15-fold for S. aureus and 17-fold for E. coli) would be requested. All concentration/response 

curves followed the same trend with an increase in inhibition of HPPA:β-CD compared to HPPA at 

increasing concentrations. These findings could be of great interest in urinary tract infection therapy as 

HPPA is used, against E. coli and P. aeruginosa, in these types of infections [31–33]. The inclusion 

complex of HPPA with β-CD would allow lower doses of HPPA in therapy and consequently, lower 

adverse effects. HPPA has been extensively studied for its antibacterial potential especially using the 

MIC value determination, but results vary widely because of different test conditions and of  

non-standardized procedures. Our results partially agree with Yang et al. [34] who reported high 

inhibitory action against E. coli, slight inhibition against P. aeruginosa but no sensitivity on S. aureus. 
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On the other hand, Efthimiadou et al. [8] found the highest antibacterial activity for HPPA on  

S. aureus. No studies were found using antibacterial assays on HPPA included into β-CD.  

Figure 10. EC50 values calculated from the bacterial inhibition percentages for E. coli,  

P. aeruginosa and S. aureus co-incubated with HPPA and HPPA:β-CD. Error bars show 

standard deviation. 

E. coli P. aeruginosa S. aureus

0,0

0,1

0,2

0,3

E
C

5
0
 [
m

M
]

 HPPA

 HPPA:-CD

 

Figure 11. Concentration/response curves of HPPA and HPPA:β-CD showing the EC90 

values against (a) E. coli, (b) P. aeruginosa and (c) S. aureus. 
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2.5.2. MTT Assay 

MTT assays determine the citotoxicity of compounds considering the number of viable cells. In this 

study, human hepatocellular carcinoma (HepG2) and human breast adenocarcinoma (MCF-7) cell lines 

were used to detect possible differences in antitumor activity between HPPA and its complex with  

β-CD. The results are reported in Figure 12 where IC50 values are plotted against different incubation 

times. Our findings show that HPPA has a higher antitumor activity, around one order of magnitude, 

against hepatocellular carcinoma cells compared to breast cancer cells. The highest efficacy was 

shown at 72 h both for MCF-7 and HepG2. It is worth to underline that significant differences  

(p < 0.01) were found between IC50 values only at 24 and 48 h for HepG2 while IC50s for MCF-7 were 

statistically different for p < 0.01 both at 24 and 48 h, and 24 and 72 h; a significativity of 0.05 was 

found between 48 and 72 h. The efficiencies of HPPA:β-CD compared to the pure compound 

evidenced that the inhibition of proliferation in MCF-7 cells was remarkable with IC50 values 

decreasing from 0.88 to 0.15 mM. The activity of the complex on the HepG2 was lower but, in any 

case, HPPA:β-CD showed an IC50 value more than half the value found for HPPA alone (0.14 versus 

0.3 mM). At each time test the comparison between the complex and the pure compound showed 

significant differences for p < 0.01. Both for MCF-7 and HepG2, the differences in activity can be 

reasonably explained by the modified chemistry of the complex. In fact, the inclusion of pipemidic 

acid into β-CD can increase the transport of HPPA through the cellular membranes improving its 

cytotoxic activity. The quinolone investigated has been previously studied for its antitumor activity by 

other researchers who found changes in its potential when in complex with polyoxometallates (POMs) 

whose application in medicine is difficult for their low hydrolytic stability and low selectivity as  

well as high toxicity [35,36]. In the present study, the use of cyclodextrin allows the formation of a 

safe complex that increases the aqueous solubility of the drug, its bioavailability and then its  

antitumor activity. 

Figure 12. Antitumor activity expressed as IC50 (mM) against MCF-7 and HepG2 cells of 

HPPA and HPPA:β-CD after 24, 48 and 72 h of co-incubation. 
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3. Experimental Section  

3.1. Materials 

β-CD and HPPA were purchased from Sigma-Aldrich. The buffer solutions at different pHs were 

prepared by adding the appropriate amounts of sodium acetate and Tris HCl; the solutions were 

prepared just before taking each measurement. All the reagents and solvents were of analytical grade. 

Double distilled and MilliQ water was used throughout the experiments. 

3.2. Preparation of Solid Binary System 

The HPPA:β-CD solid binary system was prepared in 1:1 molar ratio by following different methods. 

3.2.1. Physical Mixing Method  

The Physical Mixing product (PM) was prepared by simply blending powders of β-CD (0.100 g) 

and HPPA (0.027 g) in a mortar for 5 min, at room temperature. 

3.2.2. Kneading Method  

Kneading product (KND) was obtained by adding a small volume of a water-methanol (50/50, v/v) 

solution to the HPPA (0.040 g) and β-CD (0.150 g) physical mixture and kneading the resultant 

mixture thoroughly with a pestle to obtain a homogeneous paste until the solvent was completely 

removed. The sample was dried at 40 °C in oven for 30 min to remove traces of solvent. The dried 

mass was pulverized. 

3.3. Fourier Transform Infrared (FT-IR) Spectroscopy  

FT-IR analysis was performed on Perkin Elmer Spectrum GX spectrometer (Waltham, MA, USA). 

FT-IR measurements of the pure materials (HPPA and β-CD), binary system and PM were carried out 

using the KBr disks method. The KBr disks were prepared by compressing the powder. The scanning 

range was kept from 4000 to 400 cm
−1

, with a resolution of 1 cm
−1

. 

3.4. Nuclear Magnetic Resonance (NMR) Spectroscopy 

NMR spectra of β-CD, HPPA and their kneading product HPPA:β-CD (KND) were carried out at 

500 MHz using a Varian UNITY 500 spectrometer. 
2
H2O (99.9% relative isotopic abundance) was 

purchased from Cambridge Isotope Laboratories. The proton chemical shifts were collected at 298 K, 

at pH = 5.8, and referenced to external TMS (δ = 0 ppm). Two-dimensional phase-sensitive TOCSY, 

NOESY, ROESY spectra [37] were collected using the States and Haberkorn method. Squared-shifted 

sine-bell functions were applied in both dimensions before Fourier transformation and baseline 

correction. TOCSY, NOESY and ROESY experiments were recorded with mixing times of 70, 200 

and 150 ms, respectively. Water suppression, when necessary, was achieved using the DPFGSE 

sequence [38]. The data were processed and analyzed using the VNMRJ and CARA software [39]. The 
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proton chemical shifts for free HPPA (Figure 1) are summarized: 4.11 ppm (proton in position 2a and 

2a'), 3.28 ppm (2b and 2b'), 8.51 ppm (7), 9.11 ppm (4), 4.27 ppm (8a), 1.30 ppm (8b). 

3.5. Molecular Docking 

Docking was performed using the Hex software [40] version 6.3. The PDB files of CD and HPPA 

were uploaded as inputs into Hex and treated as receptor and ligand, respectively. All the input files 

were analyzed using the spherical harmonic surface of the Hex. Computations were performed by 

using the shape complementary scoring function, with 16 and 30 expansion orders for the initial and 

final search steps. The full list of parameters is given in the Table 2. Structure refinement and energy 

minimization were performed with Hex itself. Based on the energy minimization the best pose of the 

docked complex was selected. 

Table 2. Hex parameters used in this study. 

Correlation type Shape only 

FFT Mode 3D fast life 

Receptor range angle 180 

Ligand range angle 180 

Twist range 360 

Distance range 40 

Docking main scan 16 

Docking main search 30 

3.6. Ultraviolet-Visible (UV-Vis) Spectroscopy  

For all UV-Vis spectroscopy studies, a UV-1700 Spectrometer (Shimadzu, Tokyo, Japan) was used 

with 1 cm matched quartz cuvettes. All measurements were recorded in the wavelength range  

200–400 nm at room temperature. The stoichiometry of the complex was determined using the 

continuous variation method [22,23]. According to this method, 0.05 mM unbuffered solutions of 

HPPA and β-CD were mixed at different concentration ratios R = [β-CD]/([HPPA] + [β-CD]) keeping 

the volume constant. The stoichiometric ratio was obtained by plotting ΔA × R against R (where ΔA is 

the difference of absorbance of HPPA without and with β-CD) and finding the R value corresponding 

to the extreme of this dependence. The evaluation of Kb by direct spectroscopic methods relies on 

analytical differences between the free and complexed drug [24]. Changes in the absorption intensity 

of HPPA at 330 nm (pH = 6.8), at 323 nm (pH = 4.6), and at 331.5 nm (pH = 8.6), were monitored as a 

function of β-CD concentration to measure the Kb. The HPPA concentration was kept constant  

(0.05 mM) while β-CD concentration was varied (0–1.85 mM). The absorbances of the resulting 

solutions were measured at different pH values obtained, adding proper buffer solutions. All 

absorption measurements were made against a blank solution treated the same way, but without HPPA 

and β-CD. Measurements of pH were performed using a calibrated CRISON pH-meter Basic 20. To 

conveniently calculate the Kb, we needed to rearrange the Benesi-Hildebrand equation [25] into a 

straight line form [26] shown in the Equation (1). 
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Phase Solubility Studies  

Phase solubility studies were performed according to the method reported by Higuchi and  

Connors [27]. HPPA, in an amount (130.5 mg) that exceeded its solubility, was added into vials in 

which there were various concentrations of β-CD (0–9 mM) and unbuffered MilliQ water (5 mL) at  

pH = 6.8, or buffered MilliQ water at pH = 4.6 or pH = 8.6. The vials were then sealed and 

thermostatically shaken at 40 °C for 100 h. This amount of time is considered sufficient to reach 

equilibrium [10]. Subsequently, using a syringe the aliquots were filtered immediately through a  

0.45 μm Millipore membrane filter. A portion of the sample was analyzed by UV spectrophotometer at 

different λmax: 323 nm (pH = 4.6); 330 nm (pH = 6.8); 331.5 nm (pH = 8.6). These wavelengths for the 

HPPA specific molar absorbance were obtained from the construction of calibration curves. The 

solubility experiments were performed in triplicate. The total concentration of HPPA solubilized was 

calculated as: [HPPA] = AHPPA/εHPPA where AHPPA is the phase solubility test absorbance and εHPPA is 

the specific molar absorbance of HPPA. It is implicitly assumed in the Higuchi and Connors [27] 

procedure that the εHPPA value does not change upon complexation with β-CD [41]. Phase Solubility 

Diagrams (PSD) were represented as the total dissolved drug concentration against the concentration 

of β-CD. The Kb for each complex was calculated from the slope of the straight-line portion curve, 

when PSD is AL type according to the Equation 2. The Kb for each complex, instead, was calculated 

from the rigorous nonlinear regression curve fitting [28] performed using Prism 5 software (GraphPad, 

San Diego, CA, USA), when PSD results Bs type. 

3.7. Bioactivity Evaluation 

3.7.1. Microbial Susceptibility Test 

Two gram-negative bacteria and one gram-positive bacterium were tested in the Broth-based 

turbidometric assay. Among the former, P. aeruginosa and E. coli ATCC13762 were chosen.  

P. aeruginosa is a free-living bacterium commonly found in soil and water while E. coli is an 

opportunistic pathogen of clinical relevance for humans. The gram-positive bacterium utilized was the 

pathogen S. aureus ATCC6538. All bacteria were stored frozen in 90% (v/v) glycerol in Tryptic Soy 

Broth (TSB, Oxoid) at −80 °C until use when they were cultured in TSB overnight at 37 °C. The test 

was performed using 96-well flat bottom micro-titre plates (Sarstedt, Italy) aseptically prepared. TSB 

broth aliquots (100 µL) were poured into each well and 100 µL of HPPA or of its complex were added 

to the top row and serial two-fold dilutions made by transferring 100 µL each time to obtain the 

desired concentrations. The concentrations of HPPA were in the range from 0.013 to 3.376 mM, while 

in the complex, HPPA concentrations were from 0.003 up to 0.712 mM. Then, each well, except the 

TSB control (only medium) row, was inoculated with 100 µL of the bacterial culture corresponding to 

1 × 10
4
 CFU [42]. The final volume in each well was 200 µL. Before incubation at 37 °C for 20–24 h, 

the plates were covered by a sterile film against evaporation. The optical density of each well at  

620 nm was recorded using a microplate reader (Spectra Fluor, Tecan, Mannedorf, Switzeland). The 

results were compared to the control containing physiologic solution (0.9% NaCl) in TSB and 

inoculum. Each experiment was performed in quadruplicate. While testing, a positive control was 

carried out with streptomycin at a starting concentration of 10 µg/mL. The bacterial inhibition 
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percentage was determined as follows: 100 − (1 − OD620 of test sample)/OD620 control bacterial 

growth × 100. The effective concentrations inhibiting 50% (EC50) and 90% (EC90) of bacterial growth 

were determined.  

3.7.2. MTT-Assay  

The cell growth inhibition on human hepatocellular carcinoma (HepG2) and human breast 

adenocarcinoma (MCF-7) cell lines was determined by MTT assay, following the procedure of 

Mothanna et al. [43]. In this assay, the increase or decrease in the number of viable cells is linearly 

connected with the mitochondrial activity, highlighted by the conversion of the tetrazolium salt  

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) into formazan crystals, which 

can be solubilized and spectrophotometrically quantified. The HPPA and HPPA:β-CD activity is 

expressed as the concentration of the compound able to achieve 50% growth inhibition compared to 

the growth of the untreated control (50% inhibitory concentration, IC50). The routine maintenance of 

HepG2 and MCF-7 cell lines consisted of their growth in Roswell Park Memorial Institute (RPMI) 

supplemented with 10% fetal bovine serum (FBS), 2% L-Glutamine, 2% HEPES and 1% 

penicillin/streptomycin (10000 U/mL) (Lonza, Verviers, Belgium), at 37 °C in an atmosphere of 5% 

CO2 air under saturating humidity. In the MTT assay, HepG2 and MCF-7 cells were plated at  

1 × 10
4
 cells/well in a 96-well tissue culture plate and incubated for a sufficient time to assure 

attachment and 40% to 60% confluence. After 24 h, the medium was aspirated off and replaced with 

fresh medium (200 μL) containing the samples under investigation. HPPA concentration ranged from 

0.05 to 1.65 mM, while in the complex, HPPA concentrations ranged from 0.01 to 0.35 mM. Three 

plates were incubated at 37 °C, 5% CO2, for the OD measurements at 24, 48 and 72 h, respectively. 

After the respective incubation time, MTT solution (20 μL) was added in each well, then incubated for 

a further 4 h. After that, MTT-containing medium was gently removed and replaced with 2-propanol 

(200 μL per well). The plates were read at a microtitre plate reader at 590 nm (Spectrafluor,  

Tecan, Mannedorf, Switzeland). For each compound tested, the IC50 was calculated from the  

dose-response curves. 

3.7.3. Data Analysis  

HPPA and HPPA:β-CD were examined three times (three independent assays) and results 

expressed as nominal concentrations. The results of MTT and turbidometric test were analyzed using 

Toxcalc™ (Tidepool Scientific Software, McKinleyville CA, USA, 1996). IC50 values of the cell 

growth inhibition in HepG2 and MCF-7 cells as well as EC50 and EC90 values of bacterial growth were 

calculated by concentration/response regression using Maximum Likelihood-Logit method. 

4. Conclusions  

An inclusion complex of HPPA with β-CD (HPPA:β-CD) was prepared in the solid state by 

kneading method and physical mixture. The formation of the inclusion complex was confirmed by  

FT-IR spectroscopy. In aqueous solution, the effect of β-CD on the absorption spectra of HPPA has 

been studied in buffered and unbuffered solutions at different pH. The 1:1 stoichiometry was 
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established by a Job plot and confirmed by phase solubility studies. The inclusion complex formation 

was investigated by UV-Vis titration and the HPPA:β-CD stability constants (Kb), calculated for each 

pH value, resulted 215.2 M
−1

 at pH = 4.6, 79.7 M
−1

 at pH = 6.8 and 90.7 M
−1

 at pH = 8.6. The phase 

solubility studies, according to Higuchi and Connors method, were also performed at different pH 

values. The HPPA solubility is enhanced by the presence of the host in all the solutions. The PSD for 

HPPA:β-CD in buffer solutions at pH = 4.6 can be classified as Bs type and the Kb was estimated to 

be equal to 251.0 M
−1

. The PSD for HPPA:β-CD in buffer solutions at pH = 8.6 and in unbuffered 

solution (pH = 6.8), instead, can be classified as the AL type and, utilizing phase solubility diagrams 

data, the Kb were estimated to be equal to 88.5 M
−1

 at pH = 6.8 and 87.0 M
−1

 at pH = 8.6 respectively. 

The obtained inclusion complex was more stable under the acidic conditions due to the hydrophobic 

effect. NMR, docking and FT-IR of KND revealed that the less polar part of the molecule is inserted 

into the cavity, while the more polar groups are exposed to the bulk solvent. The biological activity of 

HPPA and its complex was determined to detect possible differences in their antibacterial capability. 

The results, expressed as EC50, showed that the complex exerted a robust action against E. coli and  

S. aureus. The calculation of EC90 values confirmed this result for E. coli in terms of HPPA amount 

reduction, demonstrating that the complex has the potential, after further investigation, to replace the 

use of HPPA in medicine. Furthermore, these compounds, tested on human breast adenocarcinoma 

MCF-7 cells and, for the first time to our knowledge, on the human hepatoblastoma HepG2 cell line, 

exhibited antitumor activity and the complex revealed a higher anticancer effect than HPPA, especially 

for HepG2 cells, opening interesting scenarios to explore. In conclusion, in this study we demonstrated 

an improvement of solubility of HPPA using β-CD. Moreover, the results indicate that the bioactivity 

of the drug remains in the HPPA:β-CD, indicating that CDs may serve as excipient in pharmaceutical 

formulations. Further detailed studies, including the clarification of the structure-bioactivity relationship 

of the cyclodextrin inclusion complex by NMR analysis, are now in progress in our laboratories.  
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