
Int. J. Mol. Sci. 2013, 14, 13231-13240; doi:10.3390/ijms140713231 
 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Communication 

Up-Regulation of microRNA* Strands by Their  
Target Transcripts 

Sung-Min Kang 1, Ji-Woong Choi 1, Su-Hyung Hong 1 and Heon-Jin Lee 1,2,* 

1 Department of Oral Microbiology, School of Dentistry, Kyungpook National University,  

Daegu 700-412, Korea; E-Mails: dkdkdk43@naver.com (S.-M.K.);  

cjwboyboy@naver.com (J.-W.C.); hongsu@knu.ac.kr (S.-H.H.) 
2 Brain Science and Engineering Institute, Kyungpook National University, Daegu 700-412, Korea 

* Author to whom correspondence should be addressed; E-Mail: heonlee@knu.ac.kr;  

Tel.: +82-53-660-6832; Fax: +82-53-425-6025. 

Received: 27 April 2013; in revised form: 29 May 2013 / Accepted: 17 June 2013 /  

Published: 26 June 2013 

 

Abstract: During microRNA (miRNA) biogenesis, one strand of a 21–23 nucleotide RNA 

duplex is preferentially selected for entry into an RNA-induced silencing complex (RISC). 

The other strand, known as the miRNA* species, is typically thought to be degraded. 

Previous studies have provided miRNA* selection models, but it remains unclear how the 

dominance of one arm arises during the biogenesis of miRNA. Using miRNA sponge-like 

methods, we cloned four tandem target sequences (artificial target) of miR-7b* and then 

measured miR-7b* expression levels after transfection of the artificial target. miR-7b* 

levels were found to significantly increase after transfection of the artificial target. We 

postulate that the abundance of target transcripts drives miRNA arm selection. 
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1. Introduction 

MicroRNAs (miRNAs) are noncoding 21–23 nucleotide (nt) strands and constitute an 

evolutionarily conserved class of pleiotropically acting small RNAs. miRNAs usually control 

posttranscriptional processes, such as, sequence-specific interactions with 3' untranslated regions 

(UTRs) of cognate mRNA targets in animals [1]. Nucleotides at positions 2–8 are considered to be 

important for pairing with target messenger RNAs and are referred to as “seed” sequences [2,3].  
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A miRNA gene is first transcribed into a primary miRNA (pri-miRNA), then processed into a  

~70 nt hairpin precursor miRNA (pre-miRNA) by the RNase III enzyme Drosha and double-stranded 

RNA-binding domain protein, DGCR8 [4]. Pre-miRNA is then cleaved to generate the ~22 nt 

miRNA:miRNA* duplex by another RNase III enzyme, Dicer [5]. One strand of the duplex is loaded 

onto Argonaute (Ago) protein to produce RNA-induced silencing complex (RISC). Furthermore, it has 

been suggested that, whereas all Ago proteins participate in the stabilization of mature miRNA, only 

Ago2 (which has endonuclease activity) cleaves the miRNA* strand and activates RISC [6–9]. This 

suggestion led to the observation that Ago1 facilitated RISC-mediated translational repression and 

Ago2-RISC led to target mRNA cleavage [8,10]. However, Ago proteins have also been demonstrated 

to have dual roles, for example, Ago proteins increased the abundance of mature miRNAs, and 

decreased miRNA expression was observed in a cell line from an Ago2 knockout mouse [11].  

The nomenclature originated because one arm, the miRNA, of the RNA duplex preferentially 

accumulates and the opposite arm, miRNA*, degrades. Another nomenclature often used is  

miR-3p/miR-5p, which refers to the direction of the mature miRNA strand. 3p and 5p miRNAs usually 

exhibit partial complementary overlap and have different target genes, despite being produced from the 

same transcript [12]. However, it remains unclear how dominance of one arm arises during the 

biogenesis of miRNA. Previous models suggest that the choice of the dominant miRNA arm is based 

on two mechanisms, that is, on the thermodynamic stability and structural properties of the processed 

duplex [13,14], or on energy-independent protein-mediated selection by Ago2, an endonuclease that 

cleaves complementary siRNA strands to facilitate RISC loading of the siRNA strand [6]. 

However, in a recent study, it was suggested the hairpin arm that makes dominant miRNA differs in 

different tissues, at different times of development, and between species [15]. In human gastric cancer, 

miRNA hairpin arm (3p or 5p) selection exhibits different tissue expression preferences in healthy and 

tumor tissues [16]. Furthermore, some miRNA precursors are processed to produce significant amounts of 

mature miRNAs from both arms and both miRNAs might regulate target transcripts [17]. These 

findings suggest the existence of another mechanism for controlling the selection of mature miRNAs.  

We expressed an artificial target of miR-7b* that normally presents less than its mature miRNA, 

miR-7b in order to investigate the effect of the target mRNA on miRNA*. The expression of artificial 

targets can force the accumulation of miR-7b* rather than miR-7b, which suggests that target 

abundance might be a critical prerequisite of miRNA* strand stabilization.  

2. Results and Discussion 

The importance of the influences of target mRNA abundance and turnover rates on miRNA activity 

have been discussed [18,19]. Recently, Chatterjee et al. suggested the term “target-mediated miRNA 

protection (TMMP)”, and showed that target mRNAs in C. elegans can protect their cognate miRNAs 

from degradation in vivo [20]. However, little is known about the decay of miRNA*, the other arm of 

the same hairpin precursor. We hypothesized that target mRNAs of high abundance may drive miRNA 

arm selection, and in a previous study using miRNA sponge-like methods [21], we cloned multiple 

target sequences of miR-7b and miR-7b* (miRNA artificial targets; Figure 1B). It has been reported 

that hyperosmolar stimulation induces miR-7b in the hypothalamus and that the neuronal marker Fos 

expression is inhibited by miR-7b [22]. Usually, miR-7b is dominant (approximately eight fold higher 
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than miR-7b*) in AtT-20 mouse pituitary cells (Figure 1A). However, in the present study, both  

qRT-PCR and Northern blotting clearly showed dramatic elevated expression of endogenous miR-7b* 

by the miR-7b* artificial target. The seed-sequence mutated artificial targets (miR-7b* mutation I and 

II) reduced the miR-7b* up-regulating effect (Figure 2A,B), suggesting that the up-regulation of  

miR-7b* occurred in a sequence specific manner (see Figure 1B for artificial and seed mutated 

targets). Furthermore, luciferase assays showed that miR-7b* mimic oligonucleotide strongly 

suppressed luciferase activity by binding to its artificial target with a perfect complementary match: 

this effect was reduced by the seed mutated artificial targets (Figure 1C). We observed the same effects 

for miR-338-3p (dominant or guide strand) and for miR-338-5p (miR-338* or passenger strand) after 

artificial targets transfection (Figure 3). Interestingly, when the artificial targets of the dominant 

strands (miR-7b and miR-338-3p) were transfected, the elevation effect was not as great as that of the 

artificial target of the non-dominant strands (miR-7b* and miR-338-5p) (Figures 2A,B and 3C). This 

suggests there might be a certain threshold for this differential regulation or some unknown 

mechanism that overrides miRNA arm selection.  

Figure 1. The expression patterns of miR-7b and miR-7b*. (A) Basal levels of miR-7b and 

miR-7b* expression in AtT-20 cells were analyzed by qRT-PCR; (B) Design of miRNA 

artificial targets. Renilla (hRluc) containing miRNA artificial targets were constructed by 

inserting multiple miRNA binding sites into the 3' UTR of a hRluc reporter gene driven by 

a T7 promoter. The figure shows the nucleotide sequence of the miRNA artificial targets: 

the red letters are a mutated sequence; (C) Luciferase assay using the miRNA artificial 

target reporter constructs. COS-7 cells were co-transfected with the miR-7b* mimic 

oligonucleiotide and miRNA artificial target (1. miR-7b, 2. miR-7b*, 3. miR-7b* mutation 

I, 4. miR-7b* mutation II, 5. miR-338-3p). Renilla luciferase activity was normalized against 

firefly luciferase activity and fold changes are compared to miR-338-3p. The results shown 

are the means of three independent transfections (error bars indicate standard deviations). 
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Figure 1. Cont. 

 

Figure 2. Changed expression levels of miR-7b and miR-7b* after transfection with  

multi-transcript artificial targets. (A) 24 h after transfection of miRNA artificial targets (1 

and 1'. null, 2 and 2'. empty vector, 3 and 3'. miR-7b*, 4 and 4'. miR-7b* mutation I, 5 and 

5'. miR-7b* mutation II), AtT-20 total RNA was extracted and analyzed by northern 

blotting using probes specific for miR-7b and miR-7b*, respectively. Lane 3' shows that 

miR-7b* expression was significantly increased following transfection of the miR-7b* 

artificial target. In contrast, miR-7b expression was similar in non-transfected and miR-7b* 

artificial targets transfected samples; (B) Twenty-four hours after various artificial targets 

(1 and 1'. null, 2 and 2'. empty vector, 3 and 3'. miR-7b, 4 and 4'. miR-7b*, 5 and 5'.  

miR-7b* mutation I, 6 and 6'. miR-7b* mutation II) were transfected, miR-7b (left) and 

miR-7b* (right) expression levels were analyzed by qRT-PCR. miRNA expression levels 

were normalize to U6. Fold changes are expressed versus empty target of each (2 or 2');  

(C) Twenty-four hours after various artificial targets (1 and 1'. empty vector, 2 and 2'.  

miR-7b*, 3 and 3'. miR-7b* mutation I, 4 and 4'. miR-7b* mutation II) were transfected, 

AtT-20 lysates were immunoprecipitated (IP) using anti-Ago2 antibody. IPs were analyzed 

by immunoblotting with the same anti-Ago2 antibody (upper panel). Co-immunoprecipitated 

RNA was extracted and analyzed by qRT-PCR (lower panel). Fold changes are expressed 

versus the empty target for each (1 or 1'). Error bars in graphs indicate standard deviations; 

p-values are also indicated. 
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Figure 2. Cont. 

 

Figure 3. miR-338-3p and miR-338-5p expressions. (A) miR-338-3p and miR-338-5p 

expression were analyzed by qRT-PCR of the total RNA extracted from AtT-20 cells.  

miR-338-3p levels were about twice as high as miR-338-5p levels in AtT-20 cells;  

(B) Schematic representation of miRNA artificial targets. Construct map of the miR-338-3p 

and miR-338-5p artificial targets with miR-338-3p and miR-338-5p artificial target 

sequences below; (C) Both miR-338-3p and miR-338-5p expression was up-regulated by 

each of artificial targets. However, the change of miR-338-3p was not as great as miR-338-5p 

(miR-338*) by their artificial target. The expression levels of miR-338-5p were 

significantly elevated by miR-338-5p artificial target transfection but not by transfection of 

the miR-338-3p artificial target or empty vector (1 and 1'. null, 2 and 2'. empty vector, 3 

and 3'. miR-338-3p, 4 and 4'. miR-338-5p). Fold changes are expressed versus the  

empty target for each (2 or 2'). Error bars in graphs indicate standard deviations; p-values 

are also indicated. 
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Figure 3. Cont. 

 

Figure 4. Schematic diagram of miRNA arm selection. Pri-miRNA is transcribed by RNA 

polymerase II and processed into pre-miRNA by Drosha/DGCR8 in the nucleus. Then  

pre-miRNA is processed into a duplex form of mRNA that is unwound during RISC 

assembly in the cytoplasm. Selection of the miRNA* sequence is determined by target 

transcript abundances. When miRNA* target transcripts are sufficiently abundant the 

miRNA* sequence is stabilized and acts on target transcripts in the same manner as miRNA.  

 

Since Ago proteins are key players in small RNA-mediated RNA silencing pathways [23], and 

Ago2 mediates RNA cleavage by harboring RNA catalytic activity in human and mouse [24,25], we 

performed an Ago2-immunoprecipitation assay to check whether up-regulated miR-7b could interact 

with Ago2. We found that up-regulated miR-7b* interacted with Ago2 (Figure 2C), which suggests 

that miR-7b* may have the same inhibitory function as mature miRNAs, similar to the regulatory 

activity of miRNA* function without degradation [17]. We tried to examine the effect of TMMP on 

miR-7b* by using endogenous miR-7b* target transcripts, but failed to identify targets of miR-7b 
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experimentally due to the difficulty of predicting miRNA targets. Based on our results, we postulate 

mature miRNA arm selection is influenced by the abundance of miRNA target transcripts, and that 

selection may occur as duplex miRNAs, incorporated into the RISC complex (Figure 4), unwind from 

RISC assembly [26]. 

3. Experimental Section 

3.1. Cell Culture 

COS-7 cells (a monkey kidney fibroblast cell line) were obtained from the Korea Cell Line Bank 

(Seoul). COS-7 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM/High Glucose) 

(Hyclone, Logan, UT, USA) containing 10% fetal bovine serum (FBS) (Hyclone, Logan, UT, USA) 

and 1× antibiotic-antimycotic (GIBCO, Grand Island, NY, USA), and then incubated at 37 °C in a 5% 

CO2 atmosphere. AtT-20 cells (a mouse pituitary tumor cell line) were obtained from the  

American Type Culture Collection (ATCC, CCL-89), and were grown in Kaighn’s Modification of 

Ham’s F-12 (F-12K) medium (Hyclone) supplemented with 15% horse serum, 2.5% FBS and  

1× antibiotic-antimycotic. These cells were used in the non-luciferase assays.  

3.2. Construction of Artificial miRNA Target  

We annealed, ligated, and cloned oligonucleotides for miRNA binding sites with four tandem target 

sequences (Figure 1B) into psiCEHCK2 vector (Promega, Madison, WI, USA) downstream of the 

Renilla luciferase (hRluc) coding sequence.  

3.3. Luciferase Assays 

COS-7 cells were plated the day before transfection and transfected in triplicate with Lipofectamine 

2000 (Invitrogen, Carlsbad, CA, USA) and 800 ng of various artificial target plasmids and 25 nM of 

miR-7b* mimic oligonucleotide (Bioneer, Daejeon, Korea). All assays were performed 24 h after 

transfection using the dual luciferase assay (Promega, Madison, WI, USA), according to the 

manufacturer’s protocol. All experiments were performed in triplicate. 

3.4. Isolation of miRNA and Quantitative Real-Time PCR (qRT-PCR) Analysis  

Total RNAs were extracted from the artificial target transfected AtT-20 cells using QIAzol (Qiagen, 

Valencia, CA, USA) using a modification of the manufacturer’s instructions, and then treated with 

DNaseI (Ambion, Foster City, CA, USA). qRT-PCR of miRNAs was conducted on an ABI 7500  

real-time PCR system using TaqMan Universal PCR Master Mix, miRNA Expression Assay primer, 

and probe sets (Applied Biosystems, Foster City, CA, USA). U6 RNA (a small nuclear RNA) was 

used as an internal cDNA loading control. Threshold cycle times (Ct) were obtained and relative gene 

expressions were calculated using the comparative cycle time method. 
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3.5. Immunoprecipitation  

For the immunoprecipitation of endogenous Ago2, AtT-20 cells were grown on 10 cm dishes and 

harvested at 24 h after miRNA transfections. Cells were then incubated with lysis buffer for 20 min on 

ice, homogenized, and centrifuged at 12,000 rpm for 20 min at 4 °C. Supernatants were incubated with 

anti-Ago2 antibody (Sigma Aldrich, St. Louis, MO, USA) with constant rotation for one day at  

4 °C. Then, 20 µL of protein G Sepharose® beads (Sigma Aldrich, St. Louis, MO, USA) were added 

and incubated with rotation for 4 h at 4 °C. Beads were then washed three times with lysis buffer.  

3.6. Isolation of Ago2-Associated miRNA 

To measure amounts of RISC-associated miRNAs, cell lysates were prepared from AtT-20 cells 

after the transfection of miRNA artificial targets. Ago2-miRNA complex was immunoprecipitated 

from lysates using anti-Ago2 antibody and total RNA was isolated from immunoprecipitates using 

QIAzol reagent (Qiagen, Valencia, CA, USA). The miRNAs levels were measured by quantitative  

RT-PCR and normalized against U6 levels in cell lysates. 

3.7. Northern Blot Analysis for miRNA  

Ten μg aliquots of AtT-20 total RNA isolated from AtT-20 cells using QIAzol (Qiagen, Valencia, 

CA, USA), according to the manufacturer’s instructions, was separated on 15% TBE-urea gels 

(Invitrogen, Carlsbad, CA, USA) and electro-transferred to Nylon+ membranes (Invitrogen, Carlsbad, 

CA, USA). Hybridizations were carried out in North2South® hybridization buffer (Invitrogen) at 37 °C 

using miR-7b* probe (Bioneer, Daejeon, Korea), or at 42 °C using miR-7b LNA (Locked Nucleic 

Acid) probe (Exiqon, Vedbaek, Denmark). 

3.8. Statistical Analysis  

All data are presented as means ± standard deviations (SD). Significant variation analysis was 

conducted to calculate the parametric two-tailed non-paired t-test. All analyses were performed using 

Origin 8.0 (OriginLab, Northampton, MA, USA), and p-values of ≤0.05 were considered  

statistically significant.  

4. Conclusions 

Despite extensive study of miRNA, it remains largely unclear how one miRNA arm becomes less 

dominant (often referred as miRNA*) during the miRNA maturation process. In this study, we 

introduced an artificial target of miR-7b* in order to check miR-7b* stability. Transfection of the  

miR-7b* artificial target led to a dramatic up-regulation of miR-7b*, but did not have much effect on 

miR-7b, the dominant sequence of miR-7b hairpin precursor. A similar phenomenon was observed in 

miR-338-3p and miR-338-5p (miR-338*). Therefore, we postulate that selection of the miRNA arm 

might be decided by the mechanism “target-mediated miRNA protection (TMMP)” and TMMP is 

probably more selective to miRNA* strands. 
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